
Citation: Rodrigues, P.; Freitas, F.;

Simão, J. QuickFaaS: Providing

Portability and Interoperability

between FaaS Platforms. Future

Internet 2022, 14, 360. https://

doi.org/10.3390/fi14120360

Academic Editors: Xu Wang, Bin Shi

and Yili Fang

Received: 22 October 2022

Accepted: 28 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

QuickFaaS: Providing Portability and Interoperability between
FaaS Platforms
Pedro Rodrigues 1,* , Filipe Freitas 1,* and José Simão 1,2,3

1 Instituto Superior de Engenharia de Lisboa (ISEL), Politécnico de Lisboa (IPL), 1959-007 Lisboa, Portugal
2 INESC-ID, 1000-029 Lisboa, Portugal
3 Future Internet Technologies, Instituto Superior de Engenharia de Lisboa (ISEL), 1959-007 Lisboa, Portugal
* Correspondence: pedro-rodri@outlook.com (P.R.); filipe.freitas@isel.pt (F.F.)

Abstract: Serverless computing hides infrastructure management from developers and runs code
on-demand automatically scaled and billed during the code’s execution time. One of the most
popular serverless backend services is called Function-as-a-Service (FaaS), in which developers are
often confronted with cloud-specific requirements. Function signature requirements, and the usage
of custom libraries that are unique to cloud providers, were identified as the two main reasons for
portability issues in FaaS applications, leading to various vendor lock-in problems. In this work,
we define three cloud-agnostic models that compose FaaS platforms. Based on these models, we
developed QuickFaaS, a multi-cloud interoperability desktop tool targeting cloud-agnostic functions
and FaaS deployments. The proposed cloud-agnostic approach enables developers to reuse their
serverless functions in different cloud providers with no need to change code or install extra software.
We also provide an evaluation that validates the proposed solution by measuring the impact of a cloud-
agnostic approach on the function’s performance, when compared to a cloud-non-agnostic one. The
study shows that a cloud-agnostic approach does not significantly impact the function’s performance.

Keywords: cloud computing; serverless computing; Function-as-a-Service; vendor lock-in; cloud
interoperability; cloud orchestration; cloud-agnostic; FaaS portability

1. Introduction

Serverless computing was a major technological breakthrough that has been drawing
interest both from the industry and research, largely due to the recent shift of enterprise
application architectures to containers and microservices [1–3]. Serverless potential is
sustained by the great abstraction of server management challenges with low costs [4,5].
Function-as-a-Service, or simply FaaS, is known as the popular implementation of the
serverless computing model, where developers can compose applications using arbitrary,
event-driven functions to be executed on demand.

The main idea behind cloud serverless computing is to mitigate the need for in-
frastructure management while keeping control of the system configurations [6]. There
are some extra reasons to embrace serverless solutions: (a) Faster deployment and deliv-
ery—developers can easily deploy serverless applications without the requirement for
server administration experience [7]; (b) Auto-scaling—serverless platforms assume re-
sponsibility for scaling applications in case there’s an increase in demand, but also scale
them back to zero to reduce costs [8]; (c) Cost efficiency—follows the pay as you go pricing
model [9–11], where customers only pay for the consumed computational resources, there’s
no need to pay for idle servers or the overhead of servers creation and destruction [12],
such as VMs booting time; (d) Greener computing—the usage of computational resources
is more efficient, less computing power is wasted on idle state.

Major cloud providers [13,14], such as Microsoft Azure, Amazon Web Services (AWS)
and Google Cloud Plataform (GCP), have available widely adopted solutions for deploying

Future Internet 2022, 14, 360. https://doi.org/10.3390/fi14120360 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14120360
https://doi.org/10.3390/fi14120360
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-3750-7051
https://orcid.org/0000-0003-2370-3908
https://orcid.org/0000-0002-6564-593X
https://doi.org/10.3390/fi14120360
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14120360?type=check_update&version=2


Future Internet 2022, 14, 360 2 of 29

functions as a service. This is being used in many use cases in different areas, from video,
image, text processing [15–17] to receiving data from IoT and edge applications [18–20].

Developers are many times confronted with cloud-specific requirements when devel-
oping FaaS applications. The noticeable tight-coupling between providers and serverless
function services amplifies various vendor lock-in problems that discourage developers
and organizations to migrate or replicate their FaaS applications to different platforms.
Some effects of vendor lock-in are relevant to point out [15,21]: (a) Struggle when switching
between cloud providers due to the impact at operational level, in addition to costs; (b) If
the provider’s quality of service declines, or never meets the desired requirements to begin
with, the client will have no choice other than to accept the conditions; (c) A provider may
impose price increases for the services, knowing that their clients are locked-in.

As mentioned by the Research Cloud group of the Standard Performance Evaluation
Corporation (SPEC) [22]:

“There is a need for a vendor-agnostic definition of both the basic cloud-function
and of composite functions, to allow functions to be cloud-agnostic.”

Otherwise, migrating a FaaS application from one provider to another would imply
rewriting all the functions that make up that application, causing an impact at operational
level in addition to costs. This happens due to function signature requirements and the
usage of libraries that are unique to cloud providers, resulting in non-portable solutions.

This work focuses on characterizing and describing three cloud-agnostic models that
compose FaaS platforms. The Authentication mechanism and the FaaS deployment models
relate to cloud interoperability due to requiring the exchange of information between
the application and the cloud provider. The third model is the Function definition, which
represents the entities and respective attributes that determine the definition of a cloud-
agnostic function, thus being related to the portability of FaaS applications.

These models were materialized into a multi-cloud interoperability desktop tool
named QuickFaaS, where users can develop and deploy cloud-agnostic functions to a set
of cloud providers with no need to install extra software. By adopting a cloud-agnostic
approach, developers can provide better portability to their FaaS applications, and would,
therefore, contribute to the mitigation of vendor lock-in in cloud computing. The tool
is capable of doing full deployments of serverless functions automatically, in different
providers, without having to rewrite the function code. Despite being built using the
JVM ecosystem, the models were designed to be independent of the language where
the functions will be implemented. We also provide an evaluation that validates the
proposed solution by measuring the impact of a cloud-agnostic approach on the function’s
performance, when compared to a cloud-non-agnostic one. The study shows that the
cloud-agnostic approach does not have a significant impact on the function’s performance
(execution time, memory usage) and package size. To the best of our knowledge, no
published work suggests a uniform approach to model FaaS applications or a way to
characterize cloud-agnostic functions development and deployment, while avoiding the
installation of provider-specific tooling.

The remainder of this paper is organized as follows: Section 2 discusses recent related
works concerning multi-cloud interoperability and FaaS portability. Section 3 reveals and
details the three modules that compose the cloud-agnostic solution, together with a number
of use cases to exemplify the usage of cloud-agnostic functions. Section 4 introduces the
desktop tool QuickFaaS by presenting its architecture and technologies, and finally, the
uniform programming model is characterized. Section 5 evaluates different metrics to
measure the impact of a cloud-agnostic approach on the function’s performance. Section 6
concludes this work by mentioning its main achievements and by briefly discussing in
what aspects we believe QuickFaaS can be improved as a future work.

2. Related Work

There are already a couple of tools and studies concerning cloud orchestration that
have an important role in providing developers a better management of multi-cloud



Future Internet 2022, 14, 360 3 of 29

environments by solving some of the problems discussed in this work. Provider-specific
modeling tools, such as AWS Cloud-Formation [23], focus solely on their own platform. As
a result, additional software is required for the coordination and deployment on multi-cloud
environments. The following subsections detail various related tools and mechanisms that
facilitate multi-cloud usage.

2.1. Terraform

Terraform [24] is probably the developer’s number one choice for an infrastructure
as code (IaC) tool. It provides open-source software for cloud service management with a
consistent CLI workflow. However, when it comes to FaaS development and deployment,
it is far from being cloud-agnostic.

Each cloud provider has its own dedicated configuration file (*.tf) to be strictly fol-
lowed in order to successfully deploy a serverless function to the cloud. Folder structures
that contain the function’s source code are also cloud-specific. No custom libraries or
signatures are provided to facilitate the development of serverless functions either.

2.2. Serverless Framework

Another example of a cloud orchestration tool is Serverless Framework [25]. Just
like in Terraform, this framework enables the automation of infrastructure management
through code, this time using YAML syntax instead of Terraform language. Serverless
Framework focuses on app-specific infrastructure, while Terraform allows the management
of a full-fledged infrastructure (e.g., defining networking, servers, storage, etc.).

The framework supports deployments to AWS out of the box, deploying to other cloud
providers requires the installation of extra plugins. Even though Serverless Framework
is dedicated to managing serverless applications, the deployment models are not cloud-
agnostic. The models describe provider-specific services, event types, etc., ending up
sharing the same problems highlighted previously with Terraform [15].

2.3. Pulumi

Pulumi [26] is a modern infrastructure as code platform that allows developers to use
familiar programming languages and tools to build, deploy, and manage cloud infrastruc-
ture. As a language-neutral IaC platform, Pulumi doesn’t force developers to learn new
programming languages, nor does it use domain-specific languages. Just like previous
tools, provider-specific software is required for authentication and deployment purposes.

Pulumi introduces a new approach for simplifying the development of serverless
functions in the form of lambda expressions, they call it Magic Functions [27]. Still, both the
function signatures and event trigger libraries that are required by Magic Functions are not
cloud-agnostic. Developers from Pulumi have also worked on a new framework named
Cloud Framework [28], which lets users program infrastructure and application logic, side
by side, using simple, high-level, cloud-agnostic building blocks. It provides a Node.js
abstraction package called @pulumi/cloud [29], which defines common APIs to all providers.
At the moment, the library is in preview mode, where only AWS is supported. MsAzure
support is currently being worked on, and it is in an early preview state. They also intend
to support GCP in the future.

Nonetheless, we found Pulumi’s solution to be a step ahead of the previous IaC
tools, in the sense that it makes a real attempt to provide a cloud-agnostic way to develop
cloud applications, with Cloud Framework, as well as offering a flexible and simple path to
serverless, using Magic Functions. The ability to specify every deployment configuration
using familiar programming languages is also very convenient for developers, avoiding
the need to use YAML configuration files.

2.4. OpenFaaS

OpenFaaS [30] is a framework for building serverless functions on the top of containers
through the use of docker and kubernetes. With OpenFaaS, serverless functions can be



Future Internet 2022, 14, 360 4 of 29

managed anywhere with the same unified experience. This includes on the user’s laptop,
on-premises hardware, or by creating a cluster in the cloud.

Technically, OpenFaaS’s solution enables serverless functions to run on multiple cloud
environments without the need to change a single line of code, by providing custom
function signatures and libraries. Function templates for various programming languages
can be found in their templates GitHub repository [31]. However, despite supporting many
different kinds of events [32], OpenFaaS functions cannot be directly triggered by the
majority of events originated within the cloud infrastructure, such as storage or database
events. Workarounds can be implemented, but would not be as optimized as triggering a
function using the default FaaS platform from cloud providers. Most OpenFaaS use cases
rely on HTTP events for triggering serverless functions.

The OpensFaaS framework does not provide portability to serverless functions using
the existing FaaS from cloud providers; it instead creates a custom FaaS platform on top of
a different service to do so. Hence, that is the reason why we did not consider this to be a
valid solution for the problem we intend to solve with this work. For instance, the usage of
a kubernetes cluster service may be inappropriate for developers that start from scratch,
and want to build a less complex FaaS application.

2.5. Lambada

Automated code deployment and transparent code offloading to FaaS platforms are
interesting new workflows in cloud application software engineering and testing scenarios.
A work from the Zurich University of Applied Sciences [33] introduces Lambada, a tool
to automate this workflow by shifting Python functions and methods along with module-
internal code dependencies into hosted function services. The work shares similarities with
automated transformation approaches for Java [34].

However, the proposed FaaSification process of converting a code structure into an
executable FaaS format will produce serverless functions that are only compatible with
AWS. These functions rely on cloud-specific signatures and libraries, making Lambada not a
valid solution for the problems addressed in this work. Moreover, the lambdafication process
of rewriting code, as stated in the paper, introduces significant overhead in execution time.

2.6. SEAPORT Method

Manual portability assessment is inefficient, error-prone, and requires significant
technical expertise in the domains of serverless and cloud computing. To simplify this
process, a work from the University of Stuttgart [35] specifies a method called SEAPORT
(SEreverless Applications PORtability assessmenT) that automatically evaluates the portability
of serverless orchestration tools with respect to a chosen target provider or platform. The
method can be optimized over time by testing more and more heterogeneous use cases.

The SEAPORT method introduces a CAnonical SErverless (CASE) model, which is the
result of transforming the obtained deployment model from a certain serverless orches-
tration tool into a provider-agnostic format. Yet, we find the represented CASE model far
too abstract for our needs, making it non-reusable. For instance, the model does not detail
the various composing elements of a function definition, it only specifies the function’s
programming language and the event category that triggers its execution. Furthermore, it
does not illustrate the abstraction of different types of authentication mechanisms used by
cloud orchestration tools in order to obtain access to resources from different providers.
Lastly, the model represents some extra entities that are only convenient to facilitate the
portability evaluation of a serverless application, making them unrelated to this work.

3. Cloud-Agnostic Models

We decided to use entity-relationship models (ERMs) to represent the main entities
and relations of the cloud-agnostic solution. We adopted a top-down approach when
designing the ERMs, the more general one can be found in Figure 1. This model illustrates
the three main modules that compose the cloud-agnostic solution.



Future Internet 2022, 14, 360 5 of 29

Figure 1. Abstract ERM of the cloud-agnostic solution.

Achieving interoperability between FaaS platforms requires a certain number of
permissions for accessing platform-specific APIs. These permissions can only be granted
by the user, thus, an authentication mechanism needs to be provided before being able to
interact with any of those APIs (AUTHMECHANISM entity).

Furthermore, each cloud provider uses its own strategies and services to enable FaaS
deployments using a certain mechanism—manual GUI deployment, ZIP deployment, CLI
deployment, etc.—hence the need to establish a deployment process for each platform,
preferably a common one (FaaSDEPLOYMENT entity).

Finally, for every FaaS deployment, a function definition needs to be provided for
execution (FUNCDEFINITION entity). This definition should be as independent as possible
from the selected cloud provider in order to improve the portability of FaaS applications.

3.1. Challenges

Described below are several challenges that are faced by developers when adopting
FaaS solutions. These challenges need to be taken into account when designing a uniform
model for FaaS applications as well:

• Custom function signatures. Every cloud provider imposes its own function signature
depending on the programming language and trigger selected by the developer. The
function’s implementation can become deeply dependent on the provider’s specific
requirements [15], resulting in portability-related issues.

• Unique libraries. There are no common libraries shared between cloud providers that
could attenuate portability issues when developing solutions to multiple platforms.
Library dependencies are introduced not only for processing custom data types,
but also for interacting with provider-specific APIs [15]. Switching between cloud
providers requires the developer to adapt, making him less productive.

• Provider-specific deployment environments. Each cloud provider decides where and
how service deployments can be performed. For instance, up until this date, the cloud
provider MsAzure does not support the deployment of a serverless function written
in Java or Python directly on the Azure portal [36], while Google Cloud Platform does.
The workaround requires the installation of the provider-specific tool named Azure
CLI. The variety of tooling is not ideal for solutions that require multi-cloud usage.

• Discrepancy in deployment configurations. During a service deployment configu-
ration stage, developers are confronted with different payment plans and detailed
hardware specifications to set up [37]. The amount of providers and their intrin-
sic variability results in a discrepancy between configurations that do not facilitate
multi-cloud usage [38].

To evidence the differences between function signatures, exemplified below, in Listings 1 and 2,
are two simple use cases of serverless functions written in Java. Both functions are trig-
gered by HTTP requests and can be deployed to MsAzure and Google Cloud Platform,
respectively. The end result will be the same for both functions.



Future Internet 2022, 14, 360 6 of 29

Listing 1. Java "Hello world!"—Azure function, MsAzure.

1 public class Function {
2 @FunctionName("HttpExample")
3 public HttpResponseMessage run(
4 @HttpTrigger(name = "req", methods = {HttpMethod.GET},
5 authLevel = AuthorizationLevel.ANONYMOUS)
6 HttpRequestMessage<String> request,
7 ExecutionContext context) {
8 return request
9 .createResponseBuilder(HttpStatus.OK)

10 .body("Hello world!").build();
11 }
12 }

Listing 2. Java "Hello world!"—Cloud function, GCP.

1 public class Function implements HttpFunction {
2 @Override
3 public void service(HttpRequest request, HttpResponse response)
4 throws IOException {
5 BufferedWriter writer = response.getWriter();
6 writer.write("Hello world!");
7 }
8 }

By introducing such wrapping around the actual business logic, functions can become
deeply dependent on the provider’s requirements.

3.2. Cloud Interoperability

Establishing a proper authentication mechanism is usually the very first step towards
achieving interoperability with cloud providers. In Figure 2, we represent the entities
and respective attributes that model the authentication mechanism based on the OAuth
2.0 protocol.

Figure 2. Authentication mechanism ERM.

This protocol is commonly used by different types of applications to authenticate
users in various platforms, so developers can easily find documentation on how to adapt
this model to their provider of choice. The trust relationship between the tool and the
provider’s identity platform is established once the developer registers it as an application
in the respective cloud provider. This trust is unidirectional, the application trusts the
provider identity platform, and not the other way around.

After registration, a client ID and a client secret are randomly generated (clientId
and clientSecret attributes from CLOUDAUTH entity). Trying to obfuscate client secrets in
installed applications is one of the main challenges in adopting this protocol, since they can
be always recovered using the abundance of reverse engineering and debugging tools [39].

With OAuth 2.0, an application can request one or more scopes (SCOPE entity), and
this information is also presented in the consent screen during the user authentication



Future Internet 2022, 14, 360 7 of 29

process. Once the user is successfully authenticated, an access token is requested and
issued to the application (accessToken attribute from SESSION entity) using a specific token
URL (tokenUrl attribute from CLOUDAUTH entity). The extent of the application’s access
is limited by the scopes granted. Access tokens normally last for about an hour in both
GCP and MsAzure [40,41].

Facilitating cloud service deployments to multiple providers helps in managing multi-
cloud complexity, thus contributing to cloud interoperability. Considering that this work
focuses on characterizing interoperability to FaaS platforms, Figure 3 only illustrates cloud
entities that participate in the deployment of a FaaS application.

Figure 3. FaaS deployment ERM.

Usually, a function needs to be linked to a storage resource. We adopted the same
naming terminology from AWS and GCP by calling it a bucket (BUCKET entity). These
buckets can have various purposes: storing every version of the function’s source code,
storing execution logs, etc. The user must have at least one bucket created before being able
to deploy the FaaS resource to a certain location (location attribute from FUNCTION entity).
A location is wherever the resource resides, preferably as close as possible to the end user.
As for the entryPoint attribute, from the FUNCTION entity, it specifies the entry point to the
FaaS resource in the source code. This is the code that will be executed when the function
runs. A project (PROJECT entity) is simply a holder for various types of resources from
different cloud services.

When adopting this model, developers have to consider the differences in naming
terminologies for services and resources. For instance, in MsAzure, a PROJECT corresponds
to a resource group, a FUNCTION to a function app, and a BUCKET to a container associated
with a storage account.

3.3. FaaS Portability

The usage of provider-specific function signatures, as well as libraries, can be consid-
ered as the two main causes for portability issues that limit a serverless function to only
work on a single cloud provider. To counter these problems, we propose a model for the
development of cloud-agnostic functions, that is, functions that can be reused in multiple
cloud providers with no need to change a single line of code.

Serverless functions have access to a wide variety of libraries offered by cloud providers.
Cloud-agnostic libraries should provide uniform access to operations that are commonly
found in most provider-specific libraries for a particular resource or event trigger, meaning
that operations that are unique to a specific provider will probably be left out for the
sake of providing a full cloud-agnostic usage. Additionally, if for some reason a certain
cloud-agnostic operation cannot be implemented for a particular provider, the documen-
tation should warn developers specifying that the operation is incompatible with that
cloud provider.

The entities and respective attributes that model a cloud-agnostic function definition
are represented in Figure 4.



Future Internet 2022, 14, 360 8 of 29

Figure 4. Function definition ERM.

The FUNCTION entity is the exact same entity as the one illustrated in Figure 3,
and should not be confused with the HOOKFUNC entity, which is the cloud-agnostic
function defined by the developer (definition attribute from HOOKFUNC entity). Starting
a new function instance involves loading the runtime environment (RUNTIME entity),
capable of running code from a certain programming language (LANGUAGE entity). The
developer has the option to specify a list of external dependencies (dependencies attribute
from HOOKFUNC entity) to be downloaded from a remote repository if needed. These
should follow the appropriate syntax when specified, that can vary depending on the
chosen runtime (dependsSyntax attribute from RUNTIME entity). For instance, Maven
dependencies for Java projects are specified in the POM file using XML, while Node.js
dependencies are specified in the package.json file using JSON.

For every programming language, a cloud-agnostic function signature needs to be
established (signature attribute from LANGUAGE entity). Defined below, in Listings 3 and 4,
are two examples of cloud-agnostic function signature skeletons used for Java and JavaScript
programming languages, respectively.

Listing 3. Java cloud-agnostic signature.

1 <packages>
2
3 public class MyFunctionClass {
4 public void myFunction(<parameters>) {
5 <definition>
6 }
7 }

Listing 4. JavaScript cloud-agnostic signature.

1 <packages>
2
3 module.exports = function(<parameters>) {
4 <definition>
5 }

The words between the angle brackets represent the mutable parts of a function, thus,
they can change from one deployment to another. Both the parameters and packages are
established based on the trigger and programming language selected by the developer
(packages and parameters attributes from the LANGUAGE ↔ TRIGGER relation). These
should be referencing the cloud-agnostic libraries for a specific event trigger. Both of them



Future Internet 2022, 14, 360 9 of 29

are defined using the appropriate language-specific syntax (paramSyntax and pkgSyntax
attributes from LANGUAGE entity).

3.4. Use Cases

We defined three use cases that exemplify the usage of cloud-agnostic functions in a
practical scenario to highlight their main benefits. The first use case, illustrated in Figure 5,
was based on a frequently-described example of an event-driven FaaS-based application,
called the thumbnail generation [15].

Figure 5. Use case 1—thumbnail generation.

The use case starts with the upload of an image file to persist in a storage bucket
(Bucket1). The upload action triggers the execution of a cloud-agnostic function responsible
for generating and storing a new image thumbnail in a second storage bucket (Bucket2).
Prior to the thumbnail generation, the function makes a remote call to the provider’s storage
service to read the uploaded image bytes. The thumbnail generation operation simply
consists in cutting the image width in half using common Java libraries. This first use
case intends to demonstrate the high portability of a full cloud-agnostic function between
different cloud providers (multi-cloud approach), even when being triggered by an event
originated within the cloud infrastructure (storage event).

The second use case, represented in Figure 6, illustrates two cloud-agnostic functions
that interact with each other in a poly cloud approach. The purpose of the use case is to
translate and store short pieces of text into a database, and we named it store translation.

Figure 6. Use case 2—store translation.

The use case starts by sending an HTTP request with a piece of text to be translated
by the first cloud-agnostic function deployed in Google Cloud Platform. Because we are
already in Google’s environment, no extra authentication is required when accessing the
Cloud Translation API [42]. The translation result is then sent, once again, via HTTP, to a
second cloud-agnostic function, this time deployed in MsAzure. The second function has
the single task of storing the translation result into a NoSQL database, using the Azure
Cosmos DB service. Because both functions are using the same event trigger type, their
function signatures will be the same as well. With this use case, we intend to demonstrate
that even when using a poly cloud approach, cloud-agnostic functions can help develop-



Future Internet 2022, 14, 360 10 of 29

ers to focus more on business logic and less on provider-specific requirements, such as
following a sophisticated function signature.

The third and last use case is called search blobs, represented in Figure 7. This use case
was designed exclusively for the purpose of the performance testing evaluated in Section 5.

Figure 7. Use case 3—search blobs.

The cloud-agnostic function is triggered via HTTP requests, in which the users must
specify the blob name that they want to search for, together with the bucket name. The
listBlobs operation, found in the cloud-agnostic libraries, is then executed to retrieve a list
of blobs contained in a given bucket, which requires a remote call to the storage service.
Finally, a simple search is made to check whether any of the blob names include the
requested string. The search results are then sent as a response to the execution request.

4. QuickFaaS

QuickFaaS is a multi-cloud interoperability desktop tool targeting cloud-agnostic
functions development and FaaS deployments. Our mission, with QuickFaaS, is to substan-
tially improve developers’ productivity, flexibility and agility when developing serverless
computing solutions to multiple providers. The cloud-agnostic approach allows developers
to reuse their serverless functions in different cloud environments, with the convenience of
not having to change a single line of code. This solution aims to minimize vendor lock-in
in FaaS platforms while promoting interoperability between them.

Initially, the tool will support automatic cloud-agnostic function packaging and FaaS
deployments to MsAzure and Google Cloud Platform. The expansion to other cloud
providers is feasible. For the next subsections, we describe the system’s architecture, as
well as the technologies utilized by QuickFaaS.

4.1. Architecture

An overview of the system’s architecture can be visualized in Figure 8. This type of
diagram is known as a deployment diagram, typically designed using UML. These are often
used for describing the hardware components where software is deployed. In our case,
the diagram focuses on revealing the main software components and technologies behind
QuickFaaS, and how these components interact with each other and with remote services.

We adopted a design pattern that is commonly used in various types of GUI appli-
cations, called Model-View-Controller (MVC). In QuickFaaS, the Controller manages the
flow of the application mainly during the start-up process, where the HTTP server as well
as the View are initialized. The Model manages the behavior and data of the application
domain, responds to requests for information about its state, and responds to instructions
to change state. The View simply defines how the data should be displayed to the user.

4.2. Technologies

As regards to technologies, the Kotlin-Gradle plugin from JetBrains was chosen to
compile the Kotlin code, targeted to JVM. Gradle also offers a highly-customizable resolu-
tion engine for dependencies specified in the build.gradle file. The majority of dependencies
required by QuickFaaS are Ktor dependencies. This framework allowed us to instantiate
the HTTP server as well as using an asynchronous HTTP client to make requests and
handle responses. We extended the dependencies functionalities with the addition of a few
extra plugins provided by Ktor, such as the authentication plugin to the server [43], and
the JSON serialization to the client [44]. Finally, the View was developed using Compose



Future Internet 2022, 14, 360 11 of 29

for Desktop [45], a relatively new UI framework that provides a declarative and reactive
approach to create desktop user interfaces with Kotlin.

Figure 8. Deployment diagram.

Notice that no extra software is required by QuickFaaS for authentication or deploy-
ment purposes. QuickFaaS relies solely on the HTTP protocol to establish communications
and exchange data with cloud providers. However, developers should still install the
necessary runtime-related software for their functions, such as Maven together with JDK 11,
to build Java projects, or npm to download Node.js modules, which are not yet supported.

4.3. Uniform Programming Model

The following subsections map out the structure of the application through class
diagrams designed using UML. Class diagrams tend to model software applications that
follow an object-oriented programming approach, just like QuickFaaS does. We divided the
full programming model into three smaller class diagrams. Each diagram is detailed in a
dedicated subsection and has a corresponding ERM already described in Section 3. The full
programming model, connecting all class diagrams together, can be found in Appendix A.1.
The standard way of designing a class block is to have the class name at the top, attributes
in the middle, and operations or methods at the bottom.

Classes named with the word Cloud, are actually interfaces in QuickFaaS that are
mandatory to implement for a cloud provider to be considered as being supported. We
instead represented these as common classes so that we could exemplify how a neutral
cloud provider would implement them.

4.3.1. Authentication Mechanism

Both MsAzure and Google Cloud Platform share similar implementations of services
based on the industry-standard protocol for authorization OAuth 2.0: Google Identity
and Microsoft Identity Platform. QuickFaaS benefits from this common mechanism to
authenticate its users in those providers, avoiding the need to require the installation of
extra software for authentication purposes.

Automated pipelines are often adopted by organizations when delivering cloud-
native apps to clients. Despite being a popular industry-standard authorization protocol,
OAuth 2.0 comes with the trade-off of being hard to integrate with automation scripts.
Usually, developers have to rely on provider-specific tools (e.g., gcloud, Azure CLI, etc.) and
programming interfaces to access OAuth services. QuickFaaS abstracts the developer from
these problems and provides a uniform interface to each provider’s authentication service.



Future Internet 2022, 14, 360 12 of 29

The programming classes that resulted from the ERM previously illustrated in Figure 2
are now represented in Figure 9.

Figure 9. Authentication Mechanism class diagram.

The authentication process starts once the user decides which cloud provider to work
with. After selecting one of the available cloud providers through QuickFaaS’s UI, the user
is redirected to the provider’s authentication web page. A few OAuth 2.0 server settings
need to be specified before being able to establish a connection between the application
and the vendor’s identity platform (OAuth2ServerSettings). These settings include the
authorization page URL, the access token request URL, the scopes, and the application’s
client ID and client secret. CloudRequests classes define several other methods responsible
for making HTTP requests to the provider APIs.

4.3.2. Function Definition

Serverless functions need to follow provider-specific signatures in order to be triggered
by the occurrence of events, so how can cloud providers handle the execution of cloud-
agnostic functions? To overcome this constraint, we adopted the behavioral design pattern,
identified by Gamma, called the Template Method Pattern [46,47]:

“The Template Method lets subclasses redefine certain steps of an algorithm without
changing the algorithm’s structure.”

In our case, the template method/function is the entry point of the deployed FaaS,
that is, the function that follows a provider-specific signature and is triggered by a certain
event. The cloud-agnostic function, developed by the QuickFaaS user, corresponds to
the hook function, specified in the Template Method Pattern. The term “hook” is applied
to functions that are invoked by template functions at specific points of the algorithm.
Template functions are predefined in QuickFaaS, and do not require any modification by
the user. Template functions, unlike hook functions, are specific to a cloud provider due to
requiring the usage of custom function signatures and unique libraries. QuickFaaS provides
a built-in code editor for the development of hook (cloud-agnostic) functions, which can be
visualized in Figure A2. Below, in Listings 5 and 6, we exemplify the usage of the Template
Method Pattern for the provider GCP, by implementing both the template function and a
hook function, respectively, using the Java programming language. The template function
follows the provider-specific signature that enables it to be triggered by HTTP requests.

The developer should embrace the libraries provided by QuickFaaS when writing a
fully cloud-agnostic function definition. In the above example, the HTTP event classes
HttpRequestQf and HttpResponseQf are bundled into a JAR file. Even though the libraries
may look cloud-agnostic from the user’s perspective, they are interacting with unique APIs
from providers to execute specific operations.

Figure 10 is based on the ERM previously illustrated in Figure 4. The use of a hook func-
tion is an easy concept to be implemented in other languages such as C-Sharp, JavaScript,
or Python. This expansion is possible by adding new constants to runtime-related enumer-
ation classes and configuration files for data classes (ConfigsData).



Future Internet 2022, 14, 360 13 of 29

Listing 5. GCP template function—HTTP trigger.

1 import ...
2 import quickfaas.triggers.http.HttpRequestQf;
3 import quickfaas.triggers.http.HttpResponseQf;
4
5 public class GcpHttpTemplate implements HttpFunction {
6 @Override
7 public void service(HttpRequest request, HttpResponse response) {
8 HttpRequestQf reqQf = new GcpHttpRequest(request);
9 HttpResponseQf resQf = new GcpHttpResponse(response);

10 new MyFunctionClass().myFunction(reqQf, resQf); // Calls hook function
11 }
12 }

Listing 6. Hook (cloud-agnostic) function—HTTP trigger.

1 import quickfaas.triggers.http.HttpRequestQf;
2 import quickfaas.triggers.http.HttpResponseQf;
3
4 public class MyFunctionClass {
5 public void myFunction(HttpRequestQf req, HttpResponseQf res) {
6 res.send(200, "Hello world!");
7 }
8 }

Figure 10. Function Definition class diagram.

To start the cloud-agnostic function development, the user must first choose which
runtime environment to work with. For now, we only support function deployments for



Future Internet 2022, 14, 360 14 of 29

Java runtime, despite Node.js being defined as a constant in the Runtime enumeration
class. The user can also define useful JSON configurations and extra dependencies to be
downloaded right before deployment (configurations and dependencies properties from the
HookFunction class, respectively). The configurations file allows users to specify JSON
properties that can be accessed during the function’s execution time. In some cases, a few
configurations are mandatory to be specified, otherwise, certain cloud-agnostic libraries
will work properly. For instance, a bucket access key needs to be provided in configura-
tions when using the cloud-agnostic storage libraries for MsAzure. An example of these
configurations can be found below in Listing 7, written in JSON.

Listing 7. Configurations file content example.

1 {
2 "resources": [
3 {
4 "id": "my−bucket−name",
5 "type": "storage",
6 "properties": {
7 "accessKey": "my−private−key"
8 }
9 }

10 ],
11 "fruits": ["apple", "banana", "orange"]
12 }

The accessKey property is mandatory for accessing the respective bucket deployed in
MsAzure, while the fruits array exemplifies a custom property that can be added by the
user. QuickFaaS takes advantage of the Gson library from Google when doing these types
of operations, which is a Java serialization/deserialization library to convert Java objects
into JSON and back [48]. For the time being, the configurations file is always read during
cold starts, regardless of whether the JSON properties are used or not. The impact of this
operation on the function’s performance is evaluated in Section 5.3.

Finally, to demonstrate a more complete use of the cloud-agnostic libraries, we provide
the implementation of the thumbnail generation use case in Listing 8.

Listing 8. Use case 1 function definition—thumbnail generation.

1 import ...
2 import quickfaas.resources.storage.BucketQf;
3 import quickfaas.resources.storage.StorageQf;
4 import quickfaas.triggers.storage.BlobQf;
5 import quickfaas.triggers.storage.BucketEventQf;
6
7 public class MyFunctionClass {
8 public void myFunction(BucketEventQf event, BlobQf blob) {
9 BucketQf bucket1 = StorageQf.newBucket(event.getBucketName());

10 byte[] source = bucket1.readBlob(blob.getName());
11 byte[] thumbnail = generateThumbnail(source, "jpeg");
12 BucketQf bucket2 = StorageQf.newBucket("bucket2thumbnails");
13 bucket2.createBlob("thumbnail−" + blob.getName(), thumbnail, "image/jpeg");
14 }
15 public byte[] generateThumbnail(byte[] source, String type) {...}
16 }

There are two cloud-agnostic operations that remote call the provider’s storage service,
these are the readBlob and the createBlob operations from the BucketQf class (lines 10 and
13, respectively). The first one reads all the bytes from the specified blob stored in the
referenced bucket, while the second one creates a blob in the referenced bucket. The
getBucketName operation, from the BucketEventQf class (line 9), returns the bucket name
where the storage event occurred. It is also worth mentioning that the newBucket static



Future Internet 2022, 14, 360 15 of 29

operation, from the StorageQf class (lines 9 and 12), returns a reference to an existing bucket,
it does not create a new one. The generateThumbnail operation definition was omitted due
to being irrelevant in this context (line 15).

4.3.3. FaaS Deployment

FaaS deployments can be challenging when dealing with multiple cloud providers
that require the usage of different types of environments. QuickFaaS benefits once again
from a common mechanism available in the supported cloud providers that avoids the need
to install extra provider-specific tooling. The deployment mechanism works by uploading
a ZIP archive using provider-specific APIs. The following model, represented in Figure 11,
shows the programming classes that resulted from the ERM illustrated in Figure 3.

QuickFaaS requires most deployment configurations to be established by the user
before enabling the cloud-agnostic function development. The standard configurations in-
clude: (i) the project that manages the FaaS resource (project property from the CloudProvider
class), (ii) the function name, (iii) the resource location, and (iv) the bucket used to store
function related files, such as the function’s source code, execution logs, etc. (name, location
and bucket properties from the CloudFunction class, respectively). However, cloud providers
can require extra and unique configurations to be established by the user. This happens
with the azure subscription ID field, which is mandatory to be specified when deploying
resources for the majority of services in MsAzure, including FaaS resources (function apps).
Cloud-specific properties are declared in cloud-specific data classes. For instance, the
subscription ID is declared in the MsAzureProjectData class, which extends the ProjectData
class. This class is missing from the diagram due to declaring cloud-specific properties.

Figure 11. FaaS Deployment class diagram.

The ZIP deployment strategy requires the implementation of a dedicated deployment
script for each of the supported cloud providers. Functions are packaged and deployed
differently, e.g., AWS allows having multiple functions in one package, whereas MsAzure
allows only one function per package. Described below are the two main operations, from
the CloudFunction class, responsible for the function’s deployment to a FaaS platform:

1. buildAndZip
This operation starts by building the function’s source code, if needed, into an exe-
cutable file. The template function file, together with the created hook (cloud-agnostic)
function file, make up the function’s source code. We used Maven when building Java-
based projects. As for JavaScript, no build tool would be necessary, only a package
manager tool, such as npm, to download the required modules.
The executable JAR file that results from the Maven build is then packaged together
with the downloaded dependencies. These packages should be organized using the



Future Internet 2022, 14, 360 16 of 29

provider’s specific folder structure, which varies depending on the function’s run-
time [49,50]. Runtime build scripts are defined per cloud provider, by implementing
the CloudBuildScripts operations. This modular approach allows QuickFaaS to expand
and integrate new environments efficiently. Since Node.js is not yet supported, only
the javaBuildScript operation is implemented for both GCP and MsAzure.
The buildAndZip operation terminates once everything is zipped and ready to be
deployed.

2. deployZip
The last operation of the process is the ZIP archive deployment. Cloud providers
offer different APIs and services to enable FaaS deployments. For instance, MsAzure
requires the deployment of a function app first [51], which is where ZIP archives are
deployed afterwards. Additionally, MsAzure ZIP archives can contain multiple azure
functions to be deployed to a single function app at once, while in GCP there can only
be one function per FaaS resource. Because function apps can only support one runtime
at a time, QuickFaaS reuses existing function apps, that were configured with the same
runtime, when deploying new azure functions, resulting in faster deployment times.
The Kudu API was used to perform ZIP deployments to function apps [52,53].
As for GCP, we first used the Cloud Storage API to initiate a resumable upload of the
ZIP archive to the selected storage bucket [54]. The create operation, from the Cloud
Functions API, is then invoked to deploy the FaaS resource [55]. The ZIP sources are
automatically loaded during deployment using the sourceArchiveUrl property that
specifies the exact location of the ZIP archive within the storage bucket.

As shown in Figure 12, the ZIP archive contains all the necessary artifacts to suc-
cessfully launch the serverless function in the cloud. In this example, we illustrate the
deployment process of a cloud-agnostic function written in Java to GCP, where Maven is
used as the build tool.

Figure 12. FaaS deployment to GCP for Java runtime.

Below, we describe the purpose of each artifact that is bundled into the ZIP archive:

• pom.xml—includes information about the Java project and configuration details used
by Maven to build the project, such as the build directory, source directory, de-
pendencies, etc. The only modification allowed to the POM file is the addition of
custom dependencies.

• MyFunctionClass.java—contains the cloud-agnostic function defined by the devel-
oper (hook function). This file is created during the buildAndZip operation.

• GcpHttpTemplate.java—contains the template function to be triggered by the occur-
rence of events. In the above example, the template function is triggered by HTTP



Future Internet 2022, 14, 360 17 of 29

requests. Template function files are predefined in QuickFaaS and use the following
file naming syntax.

[cloudProvider][eventTrigger]Template[.languageFileExtension]

• function-configs.json—contains user defined JSON properties to be accessed during
function’s execution time, using QuickFaaS’s libraries.

• quickfaas-triggers.jar—establishes event trigger contracts between cloud-agnostic
classes and provider-specific implementation classes.

• quickfaas-gcp-trigger-http.jar—implements cloud-agnostic HTTP trigger contracts
using provider-specific event libraries. In this case, Google Cloud Platform event
libraries are used for implementation.

• quickfaas-resources.jar—establishes contracts between cloud-agnostic classes and
provider-specific implementation classes for interaction with common cloud resources
and services.

• quickfaas-gcp-resources.jar—implements cloud-agnostic resource contracts using
provider-specific libraries of services from Google Cloud Platform.

For GCP in particular, QuickFaaS requires developers to enable the Cloud Resource
Manager API [56]. This will allow QuickFaaS to programmatically manage resource metadata.

5. Evaluation

Measuring the performance of computer systems is a challenging task, specially when
dealing with distributed systems managed by cloud providers. This section introduces
different metrics that measure the impact of a cloud-agnostic approach on the function’s
performance, by comparing it to a cloud-non-agnostic one.

To do this, we made several deployments and executions of the search blobs use case in
MsAzure and Google Cloud Platform. The search blobs use case, represented in Figure 7,
was written in Java, and it is the only one out of the three described in this work that
gets triggered by HTTP requests, while at the same time being fully cloud-agnostic. Being
triggered through HTTP helped in the development of automated tests, whose purpose
is to automatically generate and collect data for evaluation. The automated tests were
developed using the Kotlin language, together with a JUnit 5 testing framework and Gradle
build tool [57]. For each of the given tests, we describe the data collection methodology
and analyze the obtained results.

5.1. Metrics Definition

Having established the appropriate use case for evaluation, we now have to decide
what were the key metrics that could best characterize the performance of the function’s
deployment and execution. The execution time is commonly recognized as the primary
metric for measuring a function’s performance. When cold started, the function’s execution
time includes an extra latency derived from the container’s startup process, thus producing
higher execution times than warm starts. The execution time was measured in milliseconds,
while the second performance metric, the function’s memory usage, was measured in
megabytes (MB). The memory usage refers to the total amount of memory consumed
during the function’s execution.

When measuring for Google Cloud Platform, both metrics can be programmatically
obtained using the MetricService from the Cloud Monitoring gRPC API [58]. Within this
service, the operation ListTimeSeries can then be used to capture sets of metrics data that
match certain filters, for a given time frame. The following filters need to be specified when
capturing the execution time and the memory usage, respectively: function/execution_times
and function/user_memory_bytes [59].

An extra cloud service is also required when capturing the function’s execution time in
MsAzure, called the Application Insights. This is a feature of Azure Monitor that provides
extensible application performance management and monitoring for live applications,
including function apps. We created as many Application Insights resources as function apps



Future Internet 2022, 14, 360 18 of 29

deployed. The Query operation, from the Application Insights REST API [60], can then be
invoked to request a set of execution times (FunctionExecutionTimeMs) within a given time
frame. This is done by sending the following log query as the body of the HTTP request:

requests| project timestamp, customDimensions[’FunctionExecutionTimeMs’]

Unfortunately, the measurement of memory usage per function execution is not a met-
ric currently available through Azure Monitor. There are several other related metrics [61]:

• Working set—the current amount of memory used by the app (function app), in
mebibytes (MiB).

• Private bytes—the current size, in bytes, of memory that the app process has allocated
that cannot be shared with other processes. Useful for detecting memory leaks.

• Function execution units—a combination of execution time and memory usage, mea-
sured in MB-milliseconds.

Both the Working set and the Private bytes consist of measuring the app’s memory as
a whole, they are not exclusive to serverless functions, making them inadequate metrics
for this study. Additionally, any sort of interaction with the app via its REST APIs, or
through the Azure Portal, can cause memory spikes, even when no functions were recently
executed. As a consequence, the data collection process would have difficulties in accurately
distinguishing the memory consumed during the function’s execution time from the one
spent in processing secondary app operations.

The Function execution units is the one out of the three specified metrics that best meets
our needs, for different reasons: (i) gets measured for every function execution, (ii) does
not include memory consumption from secondary app operations, and (iii) the calculation
formula is defined in official documentation [62]. The Function execution units per function
execution are calculated according to Equation (1):

FunctionExecutionUnits = execution_time×memory_usage, (1)

even though this is being applied once every function execution by Azure Monitor, the
units are presented as a time-based aggregation, meaning that they cannot be obtained
individually for a particular function execution. To be more specific, Azure Monitor
aggregates units of function executions made within the same minute, so that it can be
obtained as an average, minimum, maximum, sum, or count.

A set of FunctionExecutionUnits averages, for a particular time frame, can be requested
using the Metrics operation from the Application Insights REST API [63]. The time frame
and the Average aggregation are specified using the timespan and the aggregation query
parameters, respectively. Then, using the formula specified above, the average memory
consumption is determined by simply doing the average of the set of FunctionExecutionUnits
averages, divided by the average of the respective set of execution times. Because cold
starts evaluation only requires the measurement of one execution per FaaS resource, the
two generated sets only include a single value each, so the division can be applied straight
away. The count property was also useful to keep track of the number of executions each
FunctionExecutionUnits average value corresponded to.

An article published in CODE Magazine, detailing various aspects regarding Azure
Functions, also follows the same approach when measuring the function’s memory us-
age [64]. In their case, the memory usage is relevant for the calculation and comparison of
consumption costs between different azure pricing models.

5.2. Function Execution Environment

The specifications for the execution environments are presented below in Table 1.
Apart from the location and the runtime, these are the default values recommended by
providers when deploying a serverless function [65,66].



Future Internet 2022, 14, 360 19 of 29

Table 1. Function execution environment specifications.

Specification Google Cloud Platform Microsoft Azure

Location europe-west1 (Belgium) west europe (Netherlands)
Runtime Java 11 Java 11

Memory allocated 256 MB 1.5 GB
Min/Max instance count 0–3000 0–200

Operating system Ubuntu 18.04 Windows

The aim of the current study is to evaluate and compare the performance of different
functions hosted within the same cloud provider. For that reason, we did not make an
effort in configuring machine specifications as similar as possible for the two providers.

5.3. Cold Starts

Cold starts are one of the most critical performance challenges in FaaS applications
due to its overwhelmingly expensive latency caused by the booting time, which can easily
dominate the function’s total execution time [12].

The time it takes for an inactive container to be deallocated varies depending on the
cloud provider. For instance, MsAzure offers three types of hosting plans for azure functions
that affect the frequency of cold starts: consumption plan, premium plan and dedicated
(App Service) plan [67]. The hosting plan that best suits our needs is the consumption plan,
given that the search blobs use case does not require heavy operations for execution, and we
also do not want to avoid cold starts for the purposes of this evaluation, like the premium
plan does. When using the consumption plan, containers are deallocated after roughly
20 min of inactivity, meaning that the next invocation will result in a cold start [68].

Even though there is no official documentation from Google Cloud Platform specifying
for how long a container stays in an idle state (idle timeout) before being offloaded, some
studies have argued that container instances are recycled after 15 min of inactivity [69].

This evaluation will enable us to verify whether the usage of cloud-agnostic libraries,
in addition to the execution of a few extra operations in template functions, have an evident
impact on the function’s performance when cold started.

5.3.1. Measurement Methodology

The established measurement methodology consists in generating and collecting
300 cold start execution records of both the cloud-agnostic and the cloud-non-agnostic
functions, in each cloud provider. This methodology requires a waiting time of at least
15 to 20 min after the latest execution to obtain a single data record. This interval allows
the container to have enough time to transition from an idle to a stopped (cold) state. This
means that if we were to trigger a FaaS resource to obtain a single cold start execution
record at a time, each function test would take around 100 h to retrieve the 300 data records
(300× 20 min). To overcome this issue, we first deployed 100 FaaS resources in each cloud
provider, that is, 100 cloud functions in GCP and 100 function apps in MsAzure. We then
used three batches of 100 invocations to trigger the 100 deployed functions one at a time
in each cloud provider. The invocation batches were separated by an interval of about an
hour to ensure that cold starts would occur.

In MsAzure, cold starts happen per function app, meaning that once an azure function
is cold started, any other function within the same app can be warm started if executed
shortly after the cold start. Therefore, the fastest way of collecting 100 cold start execution
records is by cold starting 100 different function app instances, each one containing a single
azure function. Due to some unanticipated problems in cold starting each function app, to
be discussed in Section 5.6, we ended up only doing 50 executions per batch in MsAzure
for 50 function apps. This issue caused the process of data collection in MsAzure to take
the double the amount of time of GCP. Nevertheless, we were still able to retrieve the
300 records for each function.



Future Internet 2022, 14, 360 20 of 29

5.3.2. Measurement Analysis

Given the nature of cold starts, not all 300 records per function definition were con-
sidered when determining the average execution time. Each function bar, illustrated in
Figure 13, only takes into account the best 75% of the total measured records to perform the
average calculation. This reduces the probability of presenting misleading results, known
as outliers, that occur frequently in cold starts due to latency issues.

Figure 13. Cold start execution time.

From the results illustrated above, we can conclude that the cloud-agnostic function
definition had an increase in execution time of 3.2% in Google Cloud Platform and 3.8%
in Microsoft Azure, when compared to the cloud-non-agnostic one. The slight increase
in execution times was inevitable for cold starts, given that template functions start by
reading the configurations JSON file, ending up causing some overhead due to being a file
I/O operation. The only configuration specified by the search blobs use case is the bucket’s
access key when deployed to MsAzure, which is a requirement for accessing the storage
service. The same access key is hardcoded in the respective cloud-non-agnostic definition, so
that we can have a clear perception of the impact on execution time when performing the
file I/O operation. For the time being, the configurations file is always read in cold starts,
regardless of whether the JSON properties are used or not. As for GCP, the execution time
could be improved by not reading the file, since no storage access key is needed.

We can also point out that around 17% of the total number of cold start execution times
measured in MsAzure (cloud-agnostic and cloud-non-agnostic), with no exclusions, were
above three seconds. While in Google Cloud Platform, no record reached the two-second
mark. This can be attributed to different hardware, but also to the underlying operating
system and virtualization technology [70]. Perhaps Ubuntu containers, from GCP, have
faster start-up times on average when compared to Windows containers from MsAzure [71].

As for the memory usage, represented in Figure 14, no records were ignored when
determining the average memory consumption.

The difference in memory usage between the two function definitions is practically
non-existent in both providers. This difference was expected to be close to zero, since there
are no extra heavy allocated objects or operations executed by cloud-agnostic libraries that
could cause the memory usage to increase drastically.



Future Internet 2022, 14, 360 21 of 29

Figure 14. Cold start memory usage.

5.4. Warm Starts

A warm start happens whenever an existing execution environment (container) is
reused in subsequent executions of the same function. A container is considered to be in an
idle (warm) state after having recently served one or more execution requests prior to the
current one. To reduce costs, FaaS containers are offloaded after remaining idle for a certain
period of time. The lifetime of a warm instance varies depending on the cloud provider.

By measuring multiple consecutive warm starts, we will be able to evaluate whether
QuickFaaS’s cloud-agnostic libraries produce any kinds of memory leaks as the executions
go by. As for execution times, it is expected the difference between the two function
definitions to be close to zero milliseconds.

5.4.1. Measurement Methodology

The established measurement methodology consists in generating and collecting
200 warm start execution records of both the cloud-agnostic and the cloud-non-agnostic
functions, in each cloud provider. The 200 records are a combination of two batches of
100 execution records, each batch being measured at separate times. The very first function
execution of each batch originates a cold start, and for that reason, it was not considered as
one of the data records. To be able to retrieve the 100 records for each batch, a randomly
selected FaaS resource from the previous test was triggered around 400 consecutive times
(4× 100 records), with a delay of 10 s between invocations. The reason for the high number
of executions and delay between them, is explained in Section 5.6. As a result, the warm
starts test was the one that took the longest amount of time to be completed.

5.4.2. Measurement Analysis

Warm starts are less likely to have high latency issues when compared to cold starts,
since they do not have to deal with cold booting operations as often. Therefore, the
percentage of best records to be taken into consideration when calculating the average was
increased from 75% to 85%. Because we are triggering the same function multiple times,
cold boots can still occur due to auto-scaling, which causes a new instance to be created.
The warm starts test results can be found in Figure 15.

The test results show minor differences in execution times, despite the greater abstrac-
tion provided by cloud-agnostic libraries, which also simplifies code complexity. Even
though there is no guarantee that the state of serverless functions is preserved between
consecutive invocations, the execution environment can be often recycled during warm
starts. QuickFaaS libraries take advantage of this characteristic by caching certain objects
that may be expensive to recreate on each function invocation [72]. For instance, whenever
a cold start happens, the JSON text of the configurations file is cached in a global variable,
avoiding the need to repeat the file I/O operation in subsequent warm starts. By adopting



Future Internet 2022, 14, 360 22 of 29

this strategy, we are able to close the gap in execution times between the two function
definitions, which was much higher in cold starts.

Figure 15. Warm start execution time.

It is also worth mentioning the difference in execution times between cloud providers.
GCP functions took approximately the double the amount of time of MsAzure functions to
finish execution. One of the factors that may have contributed to this time difference is the
amount of memory allocated to MsAzure containers, which is much higher than in GCP.
Low memory capacity can increase the function’s execution time.

As shown in Figure 16, there was also a considerable difference in memory usage. No
records were excluded this time when determining the average memory consumption.

Figure 16. Warm start memory usage.

The measurements reveal that cloud-agnostic functions made a better use of the avail-
able memory when compared to the cloud-non-agnostic ones. We were unable to find
a reasonable answer to justify these differences in memory consumption. Despite the
difference, both functions from GCP reached a maximum of 145 MB in memory consump-
tion during testing. The same analysis cannot be made for azure functions, given that
Function execution units are presented as a time-based aggregation and not individually for
a particular execution. Despite the noticeable increase in memory usage when compared to
cold starts, there were no signs of memory leaks. This increase is a natural consequence of
warm starting the same container instance several times.



Future Internet 2022, 14, 360 23 of 29

5.5. ZIP Deployments

To conclude the evaluation, we will do a comparison between ZIP deployment times
to check whether the usage of QuickFaaS’s libraries has a negative impact in this regard.
The evaluation consists in comparing ZIP sizes and deployment times of the search blobs
use case in both cloud providers.

5.5.1. Measurement Methodology

The established measurement methodology consists in collecting data from 100 FaaS
resource deployments of both the cloud-agnostic and the cloud-non-agnostic functions, in
each cloud provider. The deployment time was determined based on the formula specified
by Equation (2):

DeploymentTime = zip_upload_time + resource_deployment_time, (2)

where the zip_upload_time corresponds to the HTTP request duration that is responsible
for the upload of the ZIP archive to the cloud provider, while the resource_deployment_time
indicates the time it took for the FaaS resource to be available for access after being requested
to be deployed. In Google Cloud Platform, a cloud function is ready to be accessed once
the resource’s updateTime attribute is defined with the deployment timestamp [73]. As
for MsAzure, a function app is considered to be successfully deployed once a record with
the Create value attached to the changeType attribute appears in the activity logs [74]. By
accessing this record, we can then retrieve the deployment timestamp. Each timestamp
is then used to calculate the resource_deployment_time, by subtracting the respective HTTP
deployment request timestamp, stored previously.

5.5.2. Measurement Analysis

The 100 deployments of each function were made in a sequential order, with an average
upload speed of 21 megabits per second (mbps). For the next chart, two distinct data types
are included in each function bar. The first one being the average ZIP deployment time in
seconds (s), at the top of the function bar, and the second one being the ZIP archive size in
kilobytes (KB), at the middle of the function bar.

As shown in Figure 17, cloud-agnostic libraries only add a few extra kilobytes of space
to ZIP archives, 16 KB for GCP and 20 KB for MsAzure to be more precise. As expected,
the size difference had almost no impact on the function’s deployment time. Nonetheless,
as the libraries become more and more complete over time, ZIP archives will become larger
in size, resulting in higher deployment times. By that time, QuickFaaS should be capable of
minimizing the number of its own dependencies as much as possible, not only to lower
deployment times, but most importantly, to optimize cold starts [75].

Figure 17. ZIP deployment time.



Future Internet 2022, 14, 360 24 of 29

5.6. Adversities

Described below, are the main adversities we came across while collecting performance
metrics data, together with an explanation on how we managed to overcome them. They
are sorted based on the time period in which they occurred:

1. Function apps unavailable.
The fastest way of collecting 100 cold start execution records in MsAzure is by cold
starting 100 different function app instances. However, while triggering each azure
function, we noticed that the last 30 or so functions were responding with a 503 HTTP
status code, indicating that the function app service was unavailable. The function apps
were redeployed a few times, but the same problem persisted. We also verified that
the consumption plan allowed a maximum number of 100 function apps [65], meaning
that the limit was not being surpassed. Unfortunately, we were unable to determine
the exact reason behind this problem.
To overcome this issue, we decided to only cold start the first 50 azure functions twice,
causing the process of data collection in MsAzure to take the double the amount of
time of GCP.

2. Unregistered executions.
The warm starts evaluation included a total of 800 warm start execution records,
meaning that we had to do at least 200 consecutive invocations for each function
definition. It turns out that not all warm start executions are registered by Google
Cloud Platform metrics. For instance, out of 100 consecutive function invocations, less
than 10 got registered by the metrics service. We tried to mitigate this issue by adding a
ten-second delay between consecutive function invocations. The purpose of this delay
is to give some extra time to the metrics service to register execution metrics. With
this strategy, we were able to reduce the number of necessary invocations from 10×
to 4× the number of desired records. Therefore, in order to generate the 200 execution
records, each function had to be warm started around 800 times (4× 200 records). If no
delay was applied while generating the 200 execution records, each function would
have to be warm started around 2000 times (10× 200 records).
On the other hand, the Application Insights, from MsAzure, is capable of registering
every function execution time. However, a zero-second delay for warm starts could
no longer be used as well. Otherwise, most execution times with a zero-second
delay would be much lower than the ones registered using a ten-second delay, which
would lead to unfair comparisons between the two providers. To verify this analysis,
we made an extra test in MsAzure using a zero-second delay between warm start
invocations of the cloud-agnostic function. We came to the conclusion that most
execution times ranged from 20 to 40 ms, while with a ten-second delay, as shown
in Figure 15, the average execution was around 75 ms, with most execution times
ranging from 60 to 80 ms.

3. Measurements inconsistency.
Latency cannot be ignored when evaluating the performance of FaaS applications.
The highest latency is usually experienced in cold starts, during the preparation of the
execution environment. For the search blobs use case in particular, the remote calls to
the storage service also contribute with some network latency. All things considered,
execution times can therefore be volatile, causing the results to be inconsistent when
measured at separate times.
To increase the reliability of measurements, various tests had to be repeated multiple
times on different days during off-peak hours (i.e., between 2 p.m. and 6 p.m.), in an
effort to avoid network congestion.

6. Conclusions and Future Work

The overall goal of this work was to characterize a solution to provide portability and
interoperability between FaaS platforms. To achieve this, we defined three cloud-agnostic
models that represent the main building blocks of FaaS platforms. These models were



Future Internet 2022, 14, 360 25 of 29

materialized into a multi-cloud interoperability desktop tool named QuickFaaS that targets
the development of cloud-agnostic functions as well as FaaS deployments to multiple cloud
environments, without requiring the installation of extra provider-specific software. The
proposed approach enables developers to reuse their serverless functions in multiple cloud
providers, with the convenience of not having to change code.

This work was an extension of a short position paper presented at the Projects Track of
the 9th European Conference On Service-Oriented And Cloud Computing (ESOCC) [76], where
an initial view of the models was given. We now present a more complete view of the
cloud-agnostic models, as well as a detailed characterization and description of a new
uniform programming model for FaaS applications. Architectural and software design
decisions taken when implementing the tool and its models were also described. Finally, a
quantitative evaluation of the tool was discussed and compared with non-agnostic cloud
solutions. The study has shown that the cloud-agnostic approach does not have a significant
impact neither in the function’s execution time nor in memory usage.

The main contributions of this work were made publicly available on a GitHub reposi-
tory [77]. In terms of code development, the repository includes the uniform programming
model for authentication and FaaS deployments, and finally, the cloud-agnostic libraries
and respective documentation in the wiki page. The data supporting the reported results
for evaluation are also included in the form of Excel spreadsheets, together with the im-
plementation of the search blobs use case using a cloud-agnostic and a cloud-non-agnostic
approach. Being an open-source project will allow us to receive feedback or even accept
new contributions from the community.

Further development of QuickFaaS will consist on supporting more cloud providers,
runtimes, and adding extra features. At the moment, Amazon Web Services (AWS) is the
cloud provider with the highest priority. As for new function runtimes, Java is the only
one supported for now, and we intend to support Node.js next. New possible features
include enabling the automation of FaaS deployments through the command-line, and pro-
viding users a way to test their cloud-agnostic functions before being deployed. Currently,
QuickFaaS does not support agnostic monitoring of the deployed serverless functions.
This feature is also considered for future work in order to minimize the need to manually
interact with different platforms in a multi-cloud solution.

We strongly believe that this work will inspire other developers to create their own
solutions that could somehow improve the portability of cloud applications for any kind
of service. Contributions resulting from new projects will be fundamental to help us take
major steps towards the mitigation of vendor lock-in in cloud computing.

Author Contributions: Conceptualization, P.R., F.F. and J.S.; methodology, P.R.; software, P.R.; vali-
dation, P.R., F.F. and J.S.; formal analysis, P.R.; investigation, P.R.; resources, P.R., F.F. and J.S.; data
curation, P.R.; writing—original draft preparation, P.R.; writing—review and editing, P.R., F.F. and
J.S.; visualization, P.R.; supervision, F.F. and J.S.; project administration, P.R., F.F. and J.S.; funding
acquisition, F.F. and J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by national funds through FCT, Fundação para a Ciência e a
Tecnologia, under project UIDB/50021/2020, and by Instituto Politécnico de Lisboa under project
IPL/2021/FaaS-IntOp_ISEL.

Data Availability Statement: The data supporting the reported results can be found in the form of
excel spreadsheets at https://github.com/Pexers/quickfaas-essentials, accessed on 21 October 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1

In this subsection, the full uniform programming model is provided. This type of
diagram is known as class diagram, and it is designed using UML.

https://github.com/Pexers/quickfaas-essentials


Future Internet 2022, 14, 360 26 of 29

Figure A1. Uniform programming model.

Appendix A.2

The following Figure A2 illustrates a screenshot of the desktop application in action.



Future Internet 2022, 14, 360 27 of 29

Figure A2. Cloud-agnostic function definition screenshot.

References
1. Baldini, I.; Castro, P.; Chang, K.; Cheng, P.; Fink, S.; Isahagian, V.; Mitchell, N.; Muthusamy, V.; Rabbah, R.; Slominski, A.; et al.

Serverless Computing: Current Trends and Open Problems; Springer: Singapore, 2017. [CrossRef]
2. Castro, P.; Ishakian, V.; Muthusamy, V.; Slominski, A. The Rise of Serverless Computing. Commun. ACM 2019, 62, 44. [CrossRef]
3. Ivan, C.; Vasile, R.; Dadarlat, V. Serverless Computing: An Investigation of Deployment Environments for Web APIs. Computers

2019, 8, 50. [CrossRef]
4. Eivy, A.; Weinman, J. Be Wary of the Economics of “Serverless” Cloud Computing. IEEE Cloud Comput. 2017, 4, 9–11. [CrossRef]
5. Hsu, P.; Ray, S.; Li-Hsieh, Y.Y. Examining cloud computing adoption intention, pricing mechanism, and deployment model. Int. J.

Inf. Manag. 2014, 34, 474–488. [CrossRef]
6. Aske, A.; Zhao, X. Supporting Multi-Provider Serverless Computing on the Edge. In Proceedings of the 47th International

Conference on Parallel Processing Companion, Eugene, OR, USA, 13–16 August 2018; pp. 1–6. [CrossRef]
7. Nguyen, H.D.; Zhang, C.; Xiao, Z.; Chien, A. Real-Time Serverless: Enabling Application Performance Guarantees. In Proceedings

of the 5th International Workshop on Serverless Computing, Davis, CA, USA, 9–13 December 2019; pp. 1–6. [CrossRef]
8. Mirabelli, M.E.; García-López, P.; Vernik, G. Bringing Scaling Transparency to Proteomics Applications with Serverless Computing.

In Proceedings of the 2020 Sixth International Workshop on Serverless Computing, Delft, The Netherlands, 7–11 December 2020;
pp. 55–60. [CrossRef]

9. Eismann, S.; Grohmann, J.; van Eyk, E.; Herbst, N.; Kounev, S. Predicting the Costs of Serverless Workflows. In Proceedings of
the ACM/SPEC International Conference on Performance Engineering, Edmonton, AB, Canada, 25–30 April 2020; pp. 265–276.
[CrossRef]

10. Elgamal, T.; Sandur, A.; Nahrstedt, K.; Agha, G. Costless: Optimizing Cost of Serverless Computing through Function Fusion
and Placement. In Proceedings of the IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA, USA, 25–27 October 2018;
pp. 300–312. [CrossRef]

11. Simão, J.; Veiga, L. Partial Utility-Driven Scheduling for Flexible SLA and Pricing Arbitration in Clouds. IEEE Trans. Cloud
Comput. 2016, 4, 467–480. [CrossRef]

12. Ustiugov, D.; Petrov, P.; Kogias, M.; Bugnion, E.; Grot, B. Benchmarking, Analysis, and Optimization of Serverless Function
Snapshots. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Virtual, 19–23 April 2021; pp. 559–572. [CrossRef]

13. Saraswat, M.; Tripathi, R. Cloud Computing: Comparison and Analysis of Cloud Service Providers-AWs, Microsoft and Google.
In Proceedings of the 9th International Conference System Modeling and Advancement in Research Trends (SMART), Moradabad,
India, 4–5 December 2020; pp. 281–285. [CrossRef]

14. Jonas, E.; Schleier-Smith, J.; Sreekanti, V.; Tsai, C.C.; Khandelwal, A.; Pu, Q.; Shankar, V.; Carreira, J.; Krauth, K.; Yadwadkar, N.;
et al. Cloud Programming Simplified: A Berkeley View on Serverless Computing. arXiv 2019, arXiv:1902.03383.

15. Yussupov, V.; Breitenbücher, U.; Leymann, F.; Müller, C. Facing the Unplanned Migration of Serverless Applications: A Study on
Portability Problems, Solutions, and Dead Ends. In Proceedings of the 12th IEEE/ACM International Conference on Utility and
Cloud Computing, Auckland, New Zealand, 2–5 December 2019; pp. 273–283. [CrossRef]

http://doi.org/10.1007/978-981-10-5026-8
http://dx.doi.org/10.1145/3368454
http://dx.doi.org/10.3390/computers8020050
http://dx.doi.org/10.1109/MCC.2017.32
http://dx.doi.org/10.1016/j.ijinfomgt.2014.04.006
http://dx.doi.org/10.1145/3229710.3229742
http://dx.doi.org/10.1145/3366623.3368133
http://dx.doi.org/10.1145/3429880.3430101
http://dx.doi.org/10.1145/3358960.3379133
http://dx.doi.org/10.1109/SEC.2018.00029
http://dx.doi.org/10.1109/TCC.2014.2372753
http://dx.doi.org/10.1145/3445814.3446714
http://dx.doi.org/10.1109/SMART50582.2020.9337100
http://dx.doi.org/10.1145/3344341.3368813


Future Internet 2022, 14, 360 28 of 29

16. Kuhlenkamp, J.; Werner, S.; Borges, M.; Tal, K.; Tai, S. An Evaluation of FaaS Platforms as a Foundation for Serverless Big
Data Processing. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing, Auckland,
New Zealand, 2–5 December 2019; pp. 1–9. [CrossRef]

17. Hassan, H.B.; Barakat, S.A.; Sarhan, Q.I. Survey on serverless computing. J. Cloud Comput. 2021, 10, 39. [CrossRef]
18. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet of Things J. 2016, 3, 637–646.

[CrossRef]
19. Fortier, P.; Le Mouël, F.; Ponge, J. Dyninka: A FaaS Framework for Distributed Dataflow Applications. In Proceedings of the 8th

ACM SIGPLAN International Workshop on Reactive and Event-Based Languages and Systems, Chicago, IL, USA, 18 October
2021; pp. 2–13. [CrossRef]

20. George, G.; Bakir, F.; Wolski, R.; Krintz, C. NanoLambda: Implementing Functions as a Service at All Resource Scales for the
Internet of Things. In Proceedings of the IEEE/ACM Symposium on Edge Computing (SEC), San Jose, CA, USA, 12–14 November
2020; pp. 220–231. [CrossRef]

21. Vendor Lock-In and Cloud Computing. Available online: https://www.cloudflare.com/en-gb/learning/cloud/what-is-vendor-
lock-in/ (accessed on 7 November 2021).

22. van Eyk, E.; Iosup, A.; Seif, S.; Thömmes, M. The SPEC cloud group’s research vision on FaaS and serverless architectures. In
Proceedings of the 2nd International Workshop on Serverless Computing, Las Vegas, NV, USA, 11–15 December 2017; pp. 1–4.
[CrossRef]

23. AWS CloudFormation. Available online: https://aws.amazon.com/cloudformation/ (accessed on 17 July 2022).
24. Terraform. Available online: https://www.terraform.io (accessed on 17 July 2022).
25. Serverless Framework. Available online: https://www.serverless.com (accessed on 17 July 2022).
26. Pulumi. Available online: https://www.pulumi.com (accessed on 17 July 2022).
27. Magic Functions in Pulumi. Available online: https://www.pulumi.com/blog/lambdas-as-lambdas-the-magic-of-simple-

serverless-functions/#magic-functions (accessed on 12 March 2022).
28. Cloud Framework (Preview). Available online: https://www.pulumi.com/docs/tutorials/cloudfx/ (accessed on 23 Septem-

ber 2022).
29. @pulumi/cloud. Available online: https://www.npmjs.com/package/@pulumi/cloud (accessed on 23 September 2022).
30. OpenFaaS. Available online: https://www.openfaas.com/ (accessed on 5 August 2022).
31. Templates–OpenFaaS. Available online: https://github.com/openfaas/templates (accessed on 6 August 2022).
32. Triggers–OpenFaaS. Available online: https://docs.openfaas.com/reference/triggers/#cloudevents (accessed on 5 August 2022).
33. Spillner, J. Transformation of Python Applications into Function-as-a-Service Deployments. arXiv 2017, arXiv:1705.08169.
34. Spillner, J.; Dorodko, S. Java Code Analysis and Transformation into AWS Lambda Functions. arXiv 2017, arXiv:1702.05510.
35. Yussupov, V.; Breitenbücher, U.; Kaplan, A.; Leymann, F. SEAPORT: Assessing the Portability of Serverless Applications. In

Proceedings of the 10th International Conference on Cloud Computing and Services Science, Online, 7–9 May 2020; pp. 456–467.
[CrossRef]

36. Language Support Details. Available online: https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-
function-app-portal#language-support-details (accessed on 28 December 2021).

37. Maissen, P.; Felber, P.; Kropf, P.; Schiavoni, V. FaaSdom: A Benchmark Suite for Serverless Computing. In Proceedings of the
14th ACM International Conference on Distributed and Event-Based Systems, Montreal, QC, Canada, 13–17 July 2020; pp. 73–84.
[CrossRef]

38. Dolstra, E.; Bravenboer, M.; Visser, E. Service Configuration Management. In Proceedings of the 12th International Workshop on
Software Configuration Management, Lisbon, Portugal, 5–6 September 2005; pp. 83–98. [CrossRef]

39. OAuth Threats–Obtaining Client Secrets. Available online: https://datatracker.ietf.org/doc/html/rfc6819#section-4.1.1 (accessed
on 23 July 2022).

40. Token Types. Available online: https://cloud.google.com/docs/authentication/token-types#access (accessed on 21 Septem-
ber 2022).

41. Configurable Token Lifetimes in the Microsoft Identity Platform. Available online: https://learn.microsoft.com/en-us/azure/
active-directory/develop/active-directory-configurable-token-lifetimes#access-tokens (accessed on 21 September 2022).

42. Cloud Translation API. Available online: https://cloud.google.com/java/docs/reference/google-cloud-translate/latest/com.
google.cloud.translate (accessed on 20 July 2022).

43. OAuth–Ktor. Available online: https://ktor.io/docs/authentication.html#oauth (accessed on 20 July 2022).
44. Ktor–JSON Serializer. Available online: https://ktor.io/docs/serialization-client.html#register_json (accessed on 20 July 2022).
45. Compose for Desktop. Available online: https://www.jetbrains.com/lp/compose-desktop/ (accessed on 19 July 2022).
46. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley

Longman Publishing: Boston, MA, USA, 1995.
47. Riehle, D. Design Pattern Density Defined. SIGPLAN Not. 2009, 44, 469–480. [CrossRef]
48. Gson Library. Available online: https://github.com/google/gson (accessed on 26 July 2022).
49. Folder Structure of an Azure Functions Java Project. Available online: https://docs.microsoft.com/en-us/azure/azure-functions/

functions-reference-java?tabs=bash%2Cconsumption#folder-structure (accessed on 5 January 2022).

http://dx.doi.org/10.1145/3344341.3368796
http://dx.doi.org/10.1186/s13677-021-00253-7
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1145/3486605.3486789
http://dx.doi.org/10.1109/SEC50012.2020.00035
https://www.cloudflare.com/en-gb/learning/cloud/what-is-vendor-lock-in/
https://www.cloudflare.com/en-gb/learning/cloud/what-is-vendor-lock-in/
http://dx.doi.org/10.1145/3154847.3154848
https://aws.amazon.com/cloudformation/
https://www.terraform.io
https://www.serverless.com
https://www.pulumi.com
https://www.pulumi.com/blog/lambdas-as-lambdas-the-magic-of-simple-serverless-functions/#magic-functions
https://www.pulumi.com/blog/lambdas-as-lambdas-the-magic-of-simple-serverless-functions/#magic-functions
https://www.pulumi.com/docs/tutorials/cloudfx/
https://www.npmjs.com/package/@pulumi/cloud
https://www.openfaas.com/
https://github.com/openfaas/templates
https://docs.openfaas.com/reference/triggers/#cloudevents
http://dx.doi.org/10.5220/0009574104560467
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal#language-support-details
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-function-app-portal#language-support-details
http://dx.doi.org/10.1145/3401025.3401738
http://dx.doi.org/10.1145/1109128.1109135
https://datatracker.ietf.org/doc/html/rfc6819#section-4.1.1
https://cloud.google.com/docs/authentication/token-types#access
https://learn.microsoft.com/en-us/azure/active-directory/develop/active-directory-configurable-token-lifetimes#access-tokens
https://learn.microsoft.com/en-us/azure/active-directory/develop/active-directory-configurable-token-lifetimes#access-tokens
https://cloud.google.com/java/docs/reference/google-cloud-translate/latest/com.google.cloud.translate
https://cloud.google.com/java/docs/reference/google-cloud-translate/latest/com.google.cloud.translate
https://ktor.io/docs/authentication.html#oauth
https://ktor.io/docs/serialization-client.html#register_json
https://www.jetbrains.com/lp/compose-desktop/
http://dx.doi.org/10.1145/1639949.1640125
https://github.com/google/gson
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption#folder-structure
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption#folder-structure


Future Internet 2022, 14, 360 29 of 29

50. Structuring Source Code for Java. Available online: https://cloud.google.com/functions/docs/writing#structuring_source_code
(accessed on 5 January 2022).

51. Web Apps–Create or Update. Available online: https://docs.microsoft.com/en-us/rest/api/appservice/web-apps/create-or-
update (accessed on 28 July 2022).

52. Kudu API. Available online: https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/app-service/deploy-zip.md#
kudu-api (accessed on 27 July 2022).

53. Deploying from a Zip File or url–Kudu. Available online: https://github.com/projectkudu/kudu/wiki/Deploying-from-a-zip-
file-or-url (accessed on 27 July 2022).

54. Perform Resumable Uploads. Available online: https://cloud.google.com/storage/docs/performing-resumable-uploads
(accessed on 28 July 2022).

55. Create Cloud Function. Available online: https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.
functions/create (accessed on 28 July 2022).

56. Cloud Resource Manager API. Available online: https://cloud.google.com/resource-manager/reference/rest (accessed on
26 August 2022).

57. Test Code Using JUnit in JVM. Available online: https://kotlinlang.org/docs/jvm-test-using-junit.html (accessed on
10 June 2022).

58. MetricService. Available online: https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#metricservice
(accessed on 19 June 2022).

59. Cloud Function Metrics. Available online: https://cloud.google.com/monitoring/api/metrics_gcp#gcp-cloudfunctions (ac-
cessed on 20 June 2022).

60. Query–Application Insights REST API. Available online: https://docs.microsoft.com/en-us/rest/api/application-insights/
query/execute (accessed on 30 June 2022).

61. Supported Metrics with Azure Monitor. Available online: https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/
metrics-supported#microsoftwebsites (accessed on 1 July 2022).

62. Consumption Plan Costs. Available online: https://docs.microsoft.com/en-us/azure/azure-functions/functions-consumption-
costs?tabs=portal#consumption-plan-costs (accessed on 1 July 2022).

63. Metrics–Application Insights REST API. Available online: https://docs.microsoft.com/en-us/rest/api/application-insights/
metrics/get (accessed on 3 July 2022).

64. Digging into Azure Functions: It’s Time to Take Them Seriously. Available online: https://www.codemag.com/article/1711071/
Digging-into-Azure-Functions-It%E2%80%99s-Time-to-Take-Them-Seriously (accessed on 2 July 2022).

65. Azure Functions Hosting Options–Service Limits. Available online: https://docs.microsoft.com/en-us/azure/azure-functions/
functions-scale#service-limits (accessed on 13 June 2022).

66. Cloud Functions–Memory Limits. Available online: https://cloud.google.com/functions/docs/configuring/memory (accessed
on 8 July 2022).

67. Azure Functions Hosting Options—Overview of Plans. Available online: https://learn.microsoft.com/en-us/azure/azure-
functions/functions-scale#overview-of-plans (accessed on 11 June 2022).

68. Understanding Serverless Cold Start. Available online: https://azure.microsoft.com/en-us/blog/understanding-serverless-
cold-start/ (accessed on 11 June 2022).

69. Cold Starts in Cloud Functions. Available online: https://mikhail.io/serverless/coldstarts/gcp/ (accessed on 11 June 2022).
70. Figiela, K.; Gajek, A.; Zima, A.; Obrok, B.; Malawski, M. Performance evaluation of heterogeneous cloud functions. Concurr.

Comput. Pract. Exp. 2018, 30, e4792. [CrossRef]
71. McGrath, G.; Brenner, P.R. Serverless Computing: Design, Implementation, and Performance. In Proceedings of the IEEE

37th International Conference on Distributed Computing Systems Workshops (ICDCSW), Atlanta, GA, USA, 5–8 June 2017;
pp. 405–410. [CrossRef]

72. Use Global Variables to Reuse Objects in Future Invocations. Available online: https://cloud.google.com/functions/docs/
bestpractices/tips#use_global_variables_to_reuse_objects_in_future_invocations (accessed on 7 July 2022).

73. Cloud Function Resource. Available online: https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.
functions#CloudFunction (accessed on 12 July 2022).

74. Get Resource Changes. Available online: https://learn.microsoft.com/en-us/azure/governance/resource-graph/how-to/get-
resource-changes (accessed on 12 July 2022).

75. Manner, J.; Endreß, M.; Heckel, T.; Wirtz, G. Cold Start Influencing Factors in Function as a Service. In Proceedings of the
IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), Zurich, Switzerland,
17–20 December 2018; pp. 181–188. [CrossRef]

76. Rodrigues, P.; Freitas, F.; Simão, J. QuickFaaS: Providing Portability and Interoperability between FaaS Platforms. In Proceedings
of the 9th European Conference on Service-Oriented And Cloud Computing (ESOCC), Wittenberg, Germany, 22–24 March 2022.

77. QuickFaaS Essentials Repository. Available online: https://github.com/Pexers/quickfaas-essentials (accessed on 18 Octo-
ber 2022).

https://cloud.google.com/functions/docs/writing#structuring_source_code
https://docs.microsoft.com/en-us/rest/api/appservice/web-apps/create-or-update
https://docs.microsoft.com/en-us/rest/api/appservice/web-apps/create-or-update
https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/app-service/deploy-zip.md#kudu-api
https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/app-service/deploy-zip.md#kudu-api
https://github.com/projectkudu/kudu/wiki/Deploying-from-a-zip-file-or-url
https://github.com/projectkudu/kudu/wiki/Deploying-from-a-zip-file-or-url
https://cloud.google.com/storage/docs/performing-resumable-uploads
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions/create
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions/create
https://cloud.google.com/resource-manager/reference/rest
https://kotlinlang.org/docs/jvm-test-using-junit.html
https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#metricservice
https://cloud.google.com/monitoring/api/metrics_gcp#gcp-cloudfunctions
https://docs.microsoft.com/en-us/rest/api/application-insights/query/execute
https://docs.microsoft.com/en-us/rest/api/application-insights/query/execute
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/metrics-supported#microsoftwebsites
https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/metrics-supported#microsoftwebsites
https://docs.microsoft.com/en-us/azure/azure-functions/functions-consumption-costs?tabs=portal#consumption-plan-costs
https://docs.microsoft.com/en-us/azure/azure-functions/functions-consumption-costs?tabs=portal#consumption-plan-costs
https://docs.microsoft.com/en-us/rest/api/application-insights/metrics/get
https://docs.microsoft.com/en-us/rest/api/application-insights/metrics/get
https://www.codemag.com/article/1711071/Digging-into-Azure-Functions-It%E2%80%99s-Time-to-Take-Them-Seriously
https://www.codemag.com/article/1711071/Digging-into-Azure-Functions-It%E2%80%99s-Time-to-Take-Them-Seriously
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#service-limits
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale#service-limits
https://cloud.google.com/functions/docs/configuring/memory
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale#overview-of-plans
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale#overview-of-plans
https://azure.microsoft.com/en-us/blog/understanding-serverless-cold-start/
https://azure.microsoft.com/en-us/blog/understanding-serverless-cold-start/
https://mikhail.io/serverless/coldstarts/gcp/
http://dx.doi.org/10.1002/cpe.4792
http://dx.doi.org/10.1109/ICDCSW.2017.36
https://cloud.google.com/functions/docs/bestpractices/tips#use_global_variables_to_reuse_objects_in_future_invocations
https://cloud.google.com/functions/docs/bestpractices/tips#use_global_variables_to_reuse_objects_in_future_invocations
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions#CloudFunction
https://cloud.google.com/functions/docs/reference/rest/v1/projects.locations.functions#CloudFunction
https://learn.microsoft.com/en-us/azure/governance/resource-graph/how-to/get-resource-changes
https://learn.microsoft.com/en-us/azure/governance/resource-graph/how-to/get-resource-changes
http://dx.doi.org/10.1109/UCC-Companion.2018.00054
https://github.com/Pexers/quickfaas-essentials

	Introduction
	Related Work
	Terraform
	Serverless Framework
	Pulumi
	OpenFaaS
	Lambada
	SEAPORT Method

	Cloud-Agnostic Models
	Challenges
	Cloud Interoperability
	FaaS Portability
	Use Cases

	QuickFaaS
	Architecture
	Technologies
	Uniform Programming Model
	Authentication Mechanism
	Function Definition
	FaaS Deployment


	Evaluation
	Metrics Definition
	Function Execution Environment
	Cold Starts
	Measurement Methodology
	Measurement Analysis

	Warm Starts
	Measurement Methodology
	Measurement Analysis

	ZIP Deployments
	Measurement Methodology
	Measurement Analysis

	Adversities

	Conclusions and Future Work
	Appendix A
	Appendix A.1
	Appendix A.2

	References

