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Abstract: The main challenge of the health risk assessment of the aerosol transport and deposition to
the lower airways is the high computational cost. A standard large-scale airway model needs a week
to a month of computational time in a high-performance computing system. Therefore, developing
an innovative tool that accurately predicts transport behaviour and reduces computational time is
essential. This study aims to develop a novel and innovative machine learning (ML) model to predict
particle deposition to the lower airways. The first-ever study uses ML techniques to explore the
pulmonary aerosol TD in a digital 17-generation airway model. The ML model uses the computational
data for a 17-generation airway model and four standard ML regression models are used to save the
computational cost. Random forest (RF), k-nearest neighbour (k-NN), multi-layer perceptron (MLP)
and Gaussian process regression (GPR) techniques are used to develop the ML models. The MLP
regression model displays more accurate estimates than other ML models. Finally, a prediction model
is developed, and the results are significantly closer to the measured values. The prediction model
predicts the deposition efficiency (DE) for different particle sizes and flow rates. A comprehensive
lobe-specific DE is also predicted for various flow rates. This first-ever aerosol transport prediction
model can accurately predict the DE in different regions of the airways in a couple of minutes. This
innovative approach and accurate prediction will improve the literature and knowledge of the field.

Keywords: machine learning regression; tracheobronchial airways; deposition prediction; drug
delivery; inhalation toxicology; aerosol therapy

1. Introduction

Particulate matter emission into the atmospheric air is a global health challenge, and
emissions are increasing every day [1]. The increasing rate of respiratory health patients
is evidence of the health hazards of atmospheric pollution [1]. Precise knowledge of
atmospheric aerosol transport and deposition to the airways of the human lung is essential
for health assessment and drug delivery purposes [2]. To date, researchers have employed
wide-ranging approaches (in silico, in vivo and in vitro) to understand aerosol transport
to the airways. The computational fluid dynamics (CFD) approach is the most popular
method for airflow and particle transport in airways [3,4] and most of the studies to
date used CFD for aerosol transport in airways. Almost all of the published literature
considers the upper airways and analyses aerosol transport in airways [5–7]. Cheng et al. [8]
performed an in vivo study for ultrafine aerosol transport and deposition in human oral
and nasal airways. The study employed 10 adult healthy males cast for the analysis.
The in vivo study reports the smaller cross-section area of the extrathoracic airways and
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that the complex airway shape influences the overall ultrafine particle deposition pattern.
Later, Zhang et al. [6] studied ultrafine and microparticles transport in an idealised mouth–
throat and upper airways. The symmetric three-generation (G0–G3) model investigates the
aerosol deposition pattern for different flow rates. The study reports a higher deposition
concentration of the aerosol at the carinal angle region of the airways than in the bifurcating
airways. In 2008, Zhang et al. [9] considered a 16-generation airway model and analysed
the nanoparticle’s transport and deposition. The study did not consider the asymmetric
whole lung model for the 16 generations, and several 3-generation models were used to
analyse the particle deposition.

To date, the best available and large-scale asymmetric airway model with maximum
bifurcating branches has been developed by Schmidt et al. [10]. The authors developed a
large-scale and highly complex airway model for the first 17 generations of human airways.
Gemci et al. [5] used the model of Schmidt et al. [10] and analysed the airflow for the large-
scale model for the first time. The digital reference model had 1453 bronchi up to the 17th
Horsfield order. This study analysed the airflow for the first time for a large-scale model
and improved the knowledge of the field. Later, in 2017, Islam et al. [7] used the same
17-generation airway model and comprehensively analysed the microparticle transport and
deposition in a 17-generation model. This first-ever study considered different physical
activity conditions (resting, light activity and heavy physical activity) and analysed the
deposition pattern for the first time. However, the CFD simulation of a 3-dimensional
anatomically realistic 17-generation lung model based on high-resolution computer tomog-
raphy (HRCT) data requires huge time and computational resources. The 17-generation
model used by Islam et al. [7] took approximately 55 days for a single simulation in a
high-performance computing system. This study did not consider all branches of the 17-
generation model and would significantly increase the computational cost. Islam et al. [11]
also studied ultrafine particle transport and deposition to the lower airways of the 17-
generation model, and the first-ever study comprehensively analysed the lobe-specific
deposition pattern. The study calculated the deposition hot spot for the ultrafine particles,
and the computational cost for ultrafine particle transport for the 17-generation model was
significantly high. The computational cost for the CFD model is extremely high due to
the huge number of computational cells, and it is nearly impossible to simulate a whole
lung model (23 generations) with all bifurcating branches. Therefore, coalescing machine
learning algorithms (MLAs) with CFD simulation has attracted wide attention because it
can accelerate the prediction and save time and computational cost [12].

Recently, many researchers have used MLAs in combination with CFD to save time and
cost required in the CFD simulation. Ref. [13] employed the random forest (RF) technique
to predict the viscosity of nanofluids. Kwon et al. [14] discovered that the RF model agreed
with the CFD results in estimating convective heat transfer in a channel. Jamei et al. [15]
used different MLAs to estimate the specific heat capacity of nanofluids. Although re-
searchers have used MLAs for different engineering applications using CFD data, no ML
model has been developed for aerosol transport and deposition to the lower airways.

Therefore, the objective of this study is to develop an innovative ML prediction model
for pharmaceutical aerosol transport to the lower airways of a 17-generation model. The
main goal of this study is to develop ML regression models based on the CFD dataset
generated in our previous work. Next, the different ML models are compared using
statistical parameters, and the best ML model is selected. For this purpose, four different
MLAs are adopted to significantly decrease the computational cost and find the impact of
each parameter on estimated results. Then using the best MLA model, particle transport
and deposition (TD) in the transitional and respiratory zones (deeper airways) of the human
lung for different particle diameter and flow rates are predicted and analysed.

2. Problem Definition and Numerical Methods

The present study extends our previous work in which we considered a highly-
asymmetric 17-generation airway model (Figure 1) for aerosol transport prediction. The
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airway model is constructed from the airway dimensions of Schmidt et al. [10] and the
final model consists of 1453 bronchioles. The large-scale 17-generation model is one of
the best available airway models in the literature. The airflow and particle transport in
a whole lung model is highly computationally expensive as it needs to solve millions of
computational cells. The 17-generation model consists of 7 million cells, and the multiphase
flow for a single case takes approximately 55 days in high-performance computing systems.
To get a precise understanding of the various shape and size-specific parameters of aerosol
transport to the lower airways of the large-scale model, it needs to run a large number
of simulations, and it needs a significant amount of time. Our previous study analysed
particle transport numerically and developed a database for aerosol transport for various
flow rates and diameter particles [11]. In the present work, the database is used to develop
an ML model which can accurately predict aerosol transport to the lower airways for
various aerosol sizes and flow rates.
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The numerical study solved mass and momentum equations for the primary and
dispersed phase [7]. A proper grid independence and validation with the benchmark
experimental, numerical and theoretical data was conducted by a numerical model. The
detailed numerical methods, grid refinement and validation of the numerical data were
available in the author’s previous studies [7,11]. That study developed the database for the
deposition efficiency at the right lung and the left lung of the airway model. Table 1 shows
the deposition data at the right lung and the left lung for different flow rates. Table 2 shows
the deposition data at the right (Upper, Middle and Lower) and left (Upper and Left) lungs
for different flow rates.

Table 1. Numerical data of DE for various size particles at different flow rates.

10-µm 5-µm 1-µm

Left Lung Right
Lung Left Lung Right

Lung Left Lung Right
Lung

15 lpm 25.81081 45.27027 16.48649 27.63514 12.90541 24.18919

30 lpm 32.97297 59.45946 20.60811 35.06757 15.27027 27.97297

60 lpm 32.02703 67.36486 26.89189 47.09459 16.68919 31.75676

Table 2. Numerical DE data for different lung sections for various size particles at different flow rates.

Right Upper Right Middle Right Lower Left Upper Left Lower

10-micron

15 lpm 13.12 11.31 39.16 7.51 28.9

30 lpm 11.11 9.8 43.35 3.8 31.94

60 lpm 6.66 4.07 56.97 1.34 30.93

5-micron

15 lpm 16.54 13.78 32.16 10.87 26.65

30 lpm 13.32 14.72 33.12 9.5 29.3

60 lpm 10.96 13.61 39 7.49 28.95

1-micron

15 lpm 17.49 14.39 33.15 11.11 23.86

30 lpm 17.19 15 33.34 12.5 22.97

60 lpm 16.83 12.87 35.22 12.78 27.3

3. Methodology

The procedure adopted in the present work is presented in the flowchart, as shown
in Figure 2. Firstly, we collected the CFD data from our previous work for the ML step.
The goal of using MLAs with CFD simulations was to decrease the computational time
and, thus, the computational cost. The four MLAs used in the present analysis are k-
nearest neighbours (k-NN) [16], Gaussian process regression (GPR) [17], random forest
(RF) [18] and multi-layer perceptron (MLP). The best MLA among all was then used for
optimisation. MLAs application requires hyper-parameters tuning to obtain the optimum
result. The GridsearchCV tool was used for obtaining the optimised values of the important
parameters. It is available in the Scikit-learn library [19].
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Figure 2. Flowchart showing methodology used in the present work.

Machine Learning Regression Models

The CFD problems involving multi-variables can be easily solved by using MLAs.
Further, the number of variables can be easily increased in MLAs (Jalalifar et al., 2020) as
they are proficient in handling many input and output quantities. The present study has
three independent variables (particle size, flow rate and lung position) and one dependent
variable (deposition efficiency). The functional form of the model is presented below:

DE = f (particle size, f ow rate, lung position) (1)

Two categories of models are developed in the present study. In category-I models,
we selected left and right lungs only, while in Category-II, we selected left lower, left upper,
right lower, right middle and right upper lungs to achieve a more detailed analysis.

The four ML techniques selected in this work have been extensively used for regression
problems [20,21].

k-nearest neighbour (k-NN) [22]: k-NN MLA is robust, computationally inexpensive
and easy to implement. The outcome of a test point is computed based on the interpolated
value of the test point’s adjacent neighbours. The optimum number of neighbours, n, is
indicated by the user and it is defined by the n training points with minimum Euclidean
distance in the input feature space. k-NN MLA can estimate an outcome by performing
data points weighted average with analogous input features.

Random forest (RF) [23]: RF is an ensemble model that increases estimating ability by
combining models. The method it works on is called bagging. In this method several trees
are created from input data and then data are reinstated and extracted from all data. The
final result is the average of the results of all trees. The RF method is widely used because
of its prediction capability.
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Gaussian process regression (GPR) [24]: Gaussian processes can represent random
variables in ML. It may be an unidentified error in a linear regression model or anything else.
The data can be represented similar to a normal distribution curve in a GPR distribution.
Gaussian distribution, similar to a normal distribution, has two key parameters, i.e., mean
(µ) and variance (σ2) (“Gaussian Distribution for Machine Learning and Data Science
(Normal Distribution) | by Hemanth Nhs | Medium”). The following equation gives the
Gaussian distribution for a dataset:

f
(

x
∣∣∣µ, σ2

)
=

1√
2πσ2

e−
(x−µ)2

2σ2 (2)

where µ is the average value and σ is the skewness of any dataset.
Multi-layer perceptron (MLP) [25]: MLP can offer improved output by learning the

non-linear data pattern through network modelling. MLP has a minimum three layers:
an input layer, a hidden layer and an output layer. Each node contains a neuron along
with non-linear activation function, excluding the input nodes. MLP uses a Levenberg–
Marquardt algorithm (back propagation) for training. MLP comprises of hyperbolic tangent
sigmoid transfer function for hidden layers and a linear function at outer layer.

4. Results and Discussion
4.1. Regression Model Results

• Performance evaluation

In the current study, 80% of the data was selected for training, while 20% of the data
was used to validate the ML models as recommended by Nguyen et al. [26]. The training
and testing data were randomly selected to confirm that the datasets were typical samples
of the original dataset.

The MLAs performance was evaluated with the help of some of the most commonly
used statistical indicators. The particulars of the statistical parameters are revealed in
Table 3 [27].

Table 3. Equations of statistical parameters.

S. No. Statistical Parameter Equation

1. Correlation coefficient (R) R =
∑n

i=1(Mi−Mavg)(Ei−Eavg)√
∑n

i=1(Mi−Mavg)
2

∑n
i=1(Ei−Eavg)

2

2. Mean Bias Error (MBE) MBE = 1
n ∑n

i=1(Ei −Mi)

3. Root Mean Square
Error (RMSE) RMSE =

√
1
n ∑n

i=1(Ei −Mi)
2

4. Mean Percentage Error (MPE) MPE = 1
n ∑n

i=1

(
(Ei−Mi)

Mi

)
× 100

5. Mean Absolute Percentage
error (MAPE) MAPE = 100

m ∑m
i=1

∣∣∣ (Ei−Mi)
Mi

∣∣∣
6. Maximum Absolute Relative

Error (erMAX) erMAX = max
(∣∣∣ (Ei−Mi)

Mi

∣∣∣)
7. Mean Absolute Error (MAE) MAE = 1

n ∑n
i=1|(Ei −Mi)|

8. Uncertainty at 95% (U95) U95 = 1.96
(

SD2 + RMSE2
)0.5

9. T-Statistics (t-stats) t =
[

(n−1)MBE2

RMSE2−MBE2

]0.5

Table 4 depicts the configuration parameters for all the considered MLAs. The Grid-
searchCV tool in Scikit-learn was used to obtain the significant hyperparameters for each
MLA. The hyper-parameters of ML models were calculated based on the fit accuracy.
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Table 4. Hyper-parameters of the MLAs used in the present work.

No. MLAs Hyper-Parameters

Category 1 Category 2

1 k-NN No. of Neighbors: 4 12
2 RF No. of estimators: 4 4

3 GPR
Kernel type: DotProduct (sigma = 1) +

RBF(length scale = 1),
DotProduct (sigma = 1) +

RBF(length scale = 1),
No. of restarts optimiser 2 2

4 MLP

Sizes of hidden layer: (100,) (100,)
No. of hidden layers: 1 1

Max iterations: 10000 10000
No. of hidden layers: 0.001 0.001

learning rate:

Figure 3 shows the performance of developed MLAs. There is a good agreement
between the estimated and the measured (from CFD simulations) values for most MLAs.
The deposition efficiency was estimated extremely well by all the MLAs. The MLP and GPR
models performed exceptionally well, while the RF and k-NN models performed reasonably.
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Figure 3. (a) Scatter diagrams of estimated and predicted deposition efficiency for only left and right
lung. (b) Scatter diagrams of estimated and predicted deposition efficiency for different sections of
left and right lung.

Table 5 shows the values of different statistical pointers, with the most significant
value shown in bold. MBE values are in the range from −1.810 to 0.090 for category 1 and
0.066 to −0.711 for category 2. Most models have negative MBE values that suggest under-
prediction, whereas the MLP model has a positive value that suggests over-prediction. The
GPR model possesses the most significant value of MBE.

The observed RMSE values are from 1.675 to 7.754 for category 1 and from 1.419 to
4.095 for category 2, with the MLP model showing the smallest value for both categories.
MAPE values are detected in the range from 0.027% to 0.122% for category 1 and from
0.026% to 0.096% for category 2, with a minimum value seen for the MLP model in both
categories. The coefficient of determination (R) values lies within 0.716–0.986 in category 1
and 0.889–0.986 in category 2, demonstrating an excellent data fit for all models. The MLP
model shows the maximum value of R as 0.986 in both categories. The statistical pointer
U95 values are from 25.308–30.208 in category 1 and from 23.431–24.791 in category 2, with
the RF model showing the smallest values in both categories.

In MAE, the values range from 0.9–4.025 in category 1 and from 0.577–1.743 in cate-
gory 2, with the MLP model again having a minimum value in both categories. For t-stat,
the values range from 0.067–0.989 in category 1 and from 0.312–1.602 in category 2, with
the minimum for the RF model in category 1 and MLP model in category 2. The erMAX
value ranges from 6.221 to 29.115 in category 1 and from 7.778–13.283 in category 2, with
the minimum value for the MLP model in both categories.
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Table 5. Statistical Indicator Values for different ML algorithms.

MBE RMSE MAPE R U95 MAE t-Stats erMAX

Category 1

RF 0.090 5.477 0.122 0.858 25.308 4.025 0.067 11.891

KNN −1.810 7.754 0.110 0.716 30.208 3.059 0.989 29.115

GPR −0.079 3.164 0.033 0.954 27.225 1.272 0.104 11.016

MLP −0.230 1.675 0.027 0.986 27.356 0.915 0.573 6.221

Category 2

RF −0.469 2.636 0.096 0.954 23.429 1.588 1.200 8.855

KNN −0.711 4.095 0.090 0.889 24.284 1.743 1.170 13.283

GPR −0.475 2.026 0.039 0.972 23.786 0.796 1.602 7.919

MLP 0.066 1.419 0.026 0.986 24.791 0.577 0.312 7.778

• Global Performance Indicator (GPI)

GPI was employed to improve our outcomes and eliminate anomalies in the statistical
analysis and model ranking. Despotovic et al. [28] were the first to introduce GPI as a
novel aspect; it is a fantastic way to integrate the effects of many statistical pointers. The
particulars of the GPI technique can be found in Ref [29].

Scaled values of statistical parameters (0 to 1) and GPI and ML model ranking are
depicted in Table 6. Figure 4 represents the overall GPI estimation. The MLP model ranks
1st with GPI = 1.603 then the GPR model with GPI = 1.308, followed by the RF model
with GPI = −0.946. The MLP model shows the best performance among all the models in
category 1. In category 2, the MLP model again shows top performance, followed by the
GPR and RF models. Thus, we selected the MLP model for further analysis.

Table 6. Scaled statistical values and GPI for different ML models.

MODEL MBE RMS MAPE R U95 MAE t-Stat erMAX GPI Rank

Category 1

RF 1.000 0.625 1.000 0.526 0.000 1.000 0.000 0.248 −0.946 3

KNN 0.000 1.000 0.874 0.000 1.000 0.689 1.000 1.000 −3.162 4

GPR 0.911 0.245 0.063 0.881 0.391 0.115 0.040 0.209 1.308 2

MLP 0.832 0.000 0.000 1.000 0.418 0.000 0.549 0.000 1.603 1

Category 2

RF 0.311 0.455 1.000 0.670 0.000 0.867 0.688 0.196 −0.652 3

KNN 0.000 1.000 0.914 0.000 0.628 1.000 0.665 1.000 −3.012 4

GPR 0.304 0.227 0.186 0.856 0.262 0.188 1.000 0.026 0.859 2

MLP 1.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 1.195 1
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4.2. Prediction Using ML Regression

The ML prediction model calculated the DE of the right lung and left lung for the 17-
generation model. The DE was calculated for a wide range of flow rates and particle sizes,
which was unavailable from the CFD measurement. The overall DE was calculated for the
left and right lung and the five different lobes for the large-scale model. The schematic in
Figure 5 shows the areas for the different parts of the 17-generation model.
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the air streamline. At high flow conditions, once the particles are displaced from the orig-
inal pathline, they touch the airway wall and become trapped on the highly viscous sur-
face of the airway wall. However, aerosols can follow the air streamline at low flow inlet 
conditions, minimising the overall DE at the upper airways. The right lung anatomical 
diameter is higher than the left lung, and the right lung consists of three airway lobes 

Figure 5. Definition of the local regions of the 17-generation airway model: (a) left and right lung,
and (b) five different lobes.

Figure 6a shows the DE for 1 µm diameter particles at different flow rates. The overall
DE of 1 µm particle in the right lung is higher than in the left, irrespective of the flow
rates. For micron-sized particles, inertia plays an important role in overall transport and
deposition. At high flow rates, larger particles cannot follow the air path line and deviates
from the air streamline. At high flow conditions, once the particles are displaced from the



Future Internet 2022, 14, 247 11 of 16

original pathline, they touch the airway wall and become trapped on the highly viscous
surface of the airway wall. However, aerosols can follow the air streamline at low flow inlet
conditions, minimising the overall DE at the upper airways. The right lung anatomical
diameter is higher than the left lung, and the right lung consists of three airway lobes
while the left contains two lobes. The complex anatomical shape and branching structure,
higher flow distribution to the right lung, flow rates and particle inertia influence the
overall DE at the right lung. The DE for the right and the left lung increased with the
flow rates, which closely aligns with the CFD data, and it also satisfies the general aerosol
deposition hypothesis in airways. Figure 6b–f show a similar trend of DE for different
diameter particles. Figure 6d–f show the DE for 7 µm, 8.5 µm and 10 µm diameter particles,
which is significantly higher than the smaller particles. Larger diameter particles mean
the particle inertia will be higher, and the impaction mechanism is dominant for larger
particles. At high flow condition, the inertial impaction became more dominant for the
larger diameter particles and influenced the overall DE.
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The comparison of DE in different lobes with respect to flow rate and particle diameter
for particle sizes of 2.5 µm and 7.5 µm is shown in Figure 7. For a 2.5 µm diameter particle,
the DE is higher at the right lower lobe and lower at the left upper lobe irrespective of
the deposition parameter. It is also noticed that the DE of 2.5 µm particles at the right
lower lobe increased with the flow rate. The overall DE at the right and left upper lobes
is lower than the right and left lower lobes. The upper lobes’ branches are in the upward
direction and opposite to the gravitational force, while the lower lobes are in the downward
direction. Micron-sized particles mostly travel downward due to the high inertia, which
transports fewer aerosols to the upper lobes of the airways, and less deposition occurs at
the upper lobes. Figure 7b shows the 7.5 µm aerosol DE at different lobes, and a similar
trend is observed at various lobes. At the flow rate (15 L/min), DE at the left upper lobe is
different from other lobes. The overall DE at the left upper lobe is higher for low flow rate
and lower for high flow rate. At a high flow rate, larger diameter particles deviate from
the streamline and transport to the lower airways, while at a low flow rate, more particles
transport to the upper airways. The overall DE at the right middle lobe shows a similar
trend for 2.5 µm and 7.5 µm particles.
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A comprehensive lobe-specific DE was calculated for various diameter particles.
Figure 8 shows the DE at different lobes of the 17-generation model for 15 L/min, 30 L/min
and 60 L/min flow rates. The general trend shows higher DE at the lower lobes of the left
and the right lung for all cases. The DE at the left lower lobe is lower than the remaining
lobes in all cases. At the right upper lobe, the overall DE shows a fluctuating trend for
different diameter particles. These specific findings are crucial for the health risk assessment
of lung diseases and targeted drug delivery. The prediction model clearly indicates the
deposition hot spot of the different diameter particles at various flow rates, which could
potentially improve the efficiency of the targeted drug delivery. In conventional drug deliv-
ery tools, drug particles are mostly deposited in the upper airways. A minimum amount
of drugs can reach the targeted areas of the lower part of the airways. The ML prediction
model will improve the knowledge of the various diameter aerosol deposition hot spots
and DE in the lower airways. An innovative drug delivery device can be developed for
different lobes, and after diagnosis, a patient-specific drug delivery tool can be used, which
will improve overall drug delivery efficiency.
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Figure 9 presents the comparison of DE for the 17-generation model. The ML predic-
tion data is compared with the CFD measurements at a 25 L/min flow rate. The overall
DE from the ML model shows a good agreement with the CFD data. A second-order
polynomial equation is developed from the trendline of the CFD and ML DE curves. The
R2 value for the CFD and ML trendline is 0.9637 and 0.9751, respectively. The curve fitting
indicates the accuracy of the ML model.
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5. Conclusions

The present work advances the deposition analysis in the upper 17 generations of
the human respiratory tract. Previously, researchers used CFD analysis, while a novel
ML-based model is developed in the present work for the first-time. The present study
developed ML prediction models from the CFD data of a 17-generation large-scale model.
Different ML regression models are developed, and statistical analysis is performed to
determine the best ML model for predicting pulmonary aerosol transport and deposition
analysis in the upper 17 generations of the human respiratory tract. The ML models are
trained and tested with the CFD data. It is witnessed that the MLP model performed well,
with an overall GPI of 1.603 compared to other regression models. Furthermore, out of
eight statistical indicator values, the MLP model has significant values for six. Therefore,
the MLP regression model is used to predict the DE for a wide range of flow rates and
particle sizes.

The MLP model predicts the DE in both lungs. The prediction shows higher DE in the
right lung than in the left lung. The MLP model also reports higher DE at the left and the
right lung irrespective of the inlet conditions and particle diameter. It is also observed that
the MLP model gives excellent predictions with a similar trend of deposition efficiency as
observed in our CFD work.

A comprehensive lobe-specific DE is calculated by using the ML prediction model.
The overall DE at the right lower lobe is higher than the remaining lobes. The DE of various
diameter particles is different at the lobes for different flow rates. The MLP prediction
model analysed the deposition hot spot at various lobes for the first time, which would
improve the knowledge of the aerosol deposition in the lower airways. These specific
findings would improve the knowledge of the field and could potentially improve the
efficiency of the targeted drug delivery to the lower airways. Thus, the MLP model can
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be used to predict deposition efficiency for flow rates and particle sizes not considered in
CFD analysis, resulting in considerable savings in time and cost. The developed prediction
model will save a significant amount of computational time. The present study, along with
a physics-informed ML modelling for the airflow and particle transport in airways, would
improve the knowledge of the field.
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