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Abstract: Traditional movie recommendation systems are increasingly falling short in the contem-
porary landscape of abundant information and evolving user behaviors. This study introduced the
temporal knowledge graph recommender system (TKGRS), a ground-breaking algorithm that ad-
dresses the limitations of existing models. TKGRS uniquely integrates graph convolutional networks
(GCNs), matrix factorization, and temporal decay factors to offer a robust and dynamic recommenda-
tion mechanism. The algorithm’s architecture comprises an initial embedding layer for identifying
the user and item, followed by a GCN layer for a nuanced understanding of the relationships and
fully connected layers for prediction. A temporal decay factor is also used to give weightage to recent
user–item interactions. Empirical validation using the MovieLens 100K, 1M, and Douban datasets
showed that TKGRS outperformed the state-of-the-art models according to the evaluation metrics,
i.e., RMSE and MAE. This innovative approach sets a new standard in movie recommendation
systems and opens avenues for future research in advanced graph algorithms and machine learning
techniques.

Keywords: recommendation systems; matrix factorization; temporal dynamics; graph convolu-
tional networks

1. Introduction

The digital age has ushered in a revolutionary change in how humans interact with a
broad spectrum of content. Social media platforms, streaming services, and e-commerce
websites have grown in terms of their user base and have diversified the type of content
they offer [1]. This proliferation has escalated the need for robust personalized movie
recommendation systems to an unprecedented level, a need that is increasingly becoming
a cornerstone for enhancing users’ engagement and satisfaction [2]. While traditional
algorithms based on collaborative filtering and matrix factorization have set foundational
standards, they come with inherent limitations. Most notably, they struggle with scalability
and fail to adapt to dynamically evolving user preferences [3,4]. These limitations have
prompted both the academic and industrial sectors to explore emerging technologies.

The integration of knowledge graphs (KGs) and graph neural networks (GNNs) into
recommendation systems has become a recent focus [1,5]. Techniques such as hierar-
chical attentive knowledge graph embedding have shown promise in delivering more
contextually relevant recommendations by capturing the semantic nuances and intricate
relationships between users and items [6]. These advancements capture the semantic
nuances and intricate relationships between users and items, which are usually overlooked
in conventional systems.

Despite these advancements, a comprehensive solution that effectively combines these
technologies while incorporating temporal dynamics remains elusive. This study aimed to
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fill this gap by introducing a novel algorithm that addresses user–item interactions’ static
and dynamic aspects. As underscored by recent studies [7,8], the static nature of these
advanced models hampers their ability to adapt to the dynamic shifts in users’ prefer-
ences. These shifts can be influenced by real-time events, seasonal changes, or trending
topics, making the integration of temporal dynamics into recommendation algorithms an
imperative rather than a luxury.

In addressing the identified gaps in the existing literature, this study introduced the
temporal knowledge graph recommender system (TKGRS), an innovative algorithm that
synergistically integrates matrix factorization, graph convolutional networks (GCNs), and
temporal dynamics. TKGRS aims to overcome the limitations of the current algorithms
while establishing a new benchmark in personalized recommendation systems [7,9]. Ini-
tially, TKGRS uses matrix factorization techniques to create initial embeddings for users and
items, capturing their linear relationships. These embeddings serve as the foundation upon
which GCNs act to update them, adding a layer of complexity by considering non-linear
relationships and semantic connections in the user–item graph. To bring in the temporal
aspect, a time decay factor is applied to user–item interactions, giving more weight to re-
cent interactions while diminishing the impact of older ones. This multi-layered approach
enables TKGRS to understand both the static and dynamic aspects of user–item interactions.
The final recommendations are generated through a sequence of fully connected layers that
map these updated embeddings to output the predictions.

The algorithm’s mathematical and computational foundations were explored rigor-
ously. We validated its effectiveness using empirical evaluations, particularly focusing on
the MovieLens 100K, 1M, and Douban datasets, and showed the best performance based
on the evaluation metrics, i.e., RMSE and MAE. In addition, we used the t-test to show
the significant difference between TKGRS and the best benchmark to justify the proposed
algorithm. By harmonizing diverse technological advancements in matrix factorization,
GCNs, and temporal modeling, TKGRS emerged as a versatile, robust solution for modern
recommendation scenarios. Whether it captures the foundational user–item relationships,
enriches these through semantic understanding via knowledge graphs, or adapts to real-
time changes in users’ behavior, TKGRS provides a holistic perspective to the complex
challenges faced by current movie recommendation systems.

The remainder of this study is organized as follows. Section 2 offers a detailed literature
review, Section 3 delves into the intricacies of the TKGRS algorithm, Section 4 describes
the experimental design and methodology, Section 5 presents the results and their broader
implications, and Section 6 provides the concluding remarks.

2. Literature Review

As personalized recommendation systems have become more integral across various
sectors, understanding their historical development, current capabilities, and limitations
is crucial. This literature review aimed to offer an exhaustive overview of these facets. It
started by tracing the evolution of personalized recommendation systems and then delved
into their application in specific domains. We also discussed the current challenges and
prospective directions in this field.

2.1. Personalized Recommendation Systems

The domain of personalized recommendation systems has undergone a significant
transformation since its inception. What began as rudimentary algorithms have evolved
into complex computational models that leverage machine learning, data analytics, and
neural networks. This shift has fundamentally changed users’ interactions with digital
platforms, making personalized recommendations pervasive in today’s digital experience.
In the initial stages, recommendation systems largely relied on simple algorithms using
user–item filtering techniques. These rudimentary methods, however, were quickly found
to be lacking in scalability and adaptability. This led to the incorporation of machine
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learning algorithms that were adept at capturing the non-linear patterns in users’ behavior,
providing a nuanced approach to personalization.

The utility of recommendation systems has spread across various sectors, from e-
learning to crowdfunding platforms. In educational settings, algorithms analyze a mul-
titude of factors, such as student engagement and performance metrics, to deliver per-
sonalized course suggestions [10]. In financial platforms such as crowdfunding, machine
learning algorithms evaluate market conditions, investment risks, and historical behaviors
to tailor investment suggestions [11].

Recent advancements in machine learning techniques, particularly deep learning, have
enabled these systems to analyze users’ historical behavior and predict their future actions
with greater accuracy [12]. Additionally, the rise of big data technologies has empowered
these systems to process enormous datasets in real time, enhancing the efficiency and
effectiveness of recommendations [13].

However, the increasing capabilities of personalization also bring forth challenges
related to data privacy. Given the sensitive nature of users’ data, there is an urgent need
for robust encryption methods and decentralized data storage solutions to safeguard
privacy [14]. Ethical considerations around users’ consent and data usage are also gaining
prominence in research. Evaluation metrics for recommendation systems have undergone
a paradigm shift. They are no longer solely focused on accuracy but now encompass
fairness and interpretability, providing a more comprehensive assessment of a system’s
performance. Fairness addresses algorithmic biases, while interpretability focuses on the
explainability of the recommendations.

While advances have been made, challenges remain, notably in scalability and real-
time recommendations. Potential solutions could include adopting more efficient algo-
rithms, particularly those based on deep learning, and using high-performance computing
resources.

2.2. GNNs for KG

The integration of GNNs with knowledge graphs has revolutionized the field of
recommendation systems, offering a sophisticated approach to understanding the complex
relationships among various entities. Traditional recommendation systems have limitations
when capturing these complexities, a gap that GNNs have efficiently filled.

The advent of time-sensitive GNNs has been a significant step forward, particularly
in dynamic sectors such as e-commerce. These models adapt to the ever-changing rela-
tionships between entities by incorporating time-based decay functions, providing a more
nuanced approach to personalization [15]. Beyond recommendation systems, GNNs have
found a myriad of applications, including (but not limited to) legal case recommenda-
tions [16], analyzing art through knowledge graphs [17], and even in the biomedical sector
for the extraction of events [18].

Challenges remain in the realm of scalability and handling high-dimensional data.
Scalability issues often arise in processing large graphs, necessitating increased compu-
tational resources. Emerging solutions such as DistDGL promise to scale GNNs across
multiple GPUs [19]. These challenges set the stage for our study, which aimed to address
both scalability and adaptability through the TKGRS algorithm. The interaction between
GNNs and knowledge graphs has introduced innovative approaches in recommendation
systems. These approaches include hybrid models that can harness both structured and
unstructured data. Future research will likely focus on developing more efficient graph
traversal and analysis algorithms, which could pave the way for more robust and versatile
recommendation systems.

2.3. Considering Temporal Aspects in Recommendation Systems

Temporal dynamics have emerged as an essential factor in the development of recom-
mendation systems. A recent comprehensive survey by [20] described how these dynamics
can influence the system’s performance. For instance, time-weighted algorithms can adjust
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the recommendations on the basis of seasonality or users’ activity cycles, ushering in a
new era of personalized and context-aware recommendations. These insights are particu-
larly relevant to our study, which aimed to integrate temporal dynamics into the TKGRS
algorithm for enhanced performance.

The methodology for incorporating temporal aspects into recommendation systems
has seen remarkable evolution. Early work by [21] used matrix factorization techniques to
treat different temporal aspects individually, paving the way for more nuanced models. In
contrast, recent advancements such as hierarchical temporal convolutional networks [22]
have ushered in capabilities of dynamic learning. These models can adapt to short-term
and long-term changes in users’ behavior, offering a more comprehensive solution.

Multi-aspect models such as MAPS [23] have also gained attention, fusing categorical,
temporal, social, and spatial aspects into a single recommendation model. These holistic
models ensure that all potential influences on users’ preferences are considered, adding
complexity and effectiveness to recommendation systems. Research by [24] has further
explored time- and session-aware diversification, adding another layer of complexity and
effectiveness to recommendation systems.

Scalability and high dimensionality continue to pose challenges, especially when
processing large volumes of temporal data. A systematic review by [25] emphasized these
challenges and suggested future avenues such as efficient data structures and parallel
processing techniques. These challenges and suggestions are directly relevant to the current
study, which aimed to address issues of scalability through the TKGRS algorithm.

Potential future research avenues include exploring the concept of temporal bias in
point-of-interest recommendations, as suggested by [26]. Additionally, examining how
temporal processes such as information gathering and decision-making impact users’ inter-
actions could offer valuable insights [27]. These research questions are particularly relevant
to our study, which aimed to address similar challenges through the TKGRS algorithm.

3. The Temporal Knowledge Graph Recommender System

The increasing complexity of user–item interactions has necessitated more sophisti-
cated recommendation systems in recent years. Conventional methods have been found
to fall short, especially in accounting for temporal dynamics and intricate user–item re-
lationships. This need for advancement has been emphasized in seminal studies such as
those by [20,21]. Our study aimed to address these limitations by introducing the TKGRS
algorithm, which makes novel contributions to capturing both temporal and contextual
nuances.

The TKGRS algorithm uses a multi-faceted approach to enhance movie recommen-
dations’ accuracy and contextual relevance. Specifically, it starts with matrix factorization
techniques for the initial embeddings of the user and item. This captures the linear relation-
ships effectively. The algorithm then utilizes GCNs to update these embeddings, offering a
nuanced understanding of complex, non-linear relationships. Additionally, a time decay
factor is incorporated to prioritize more recent interactions, adding a temporal dimension
to the recommendation process. The TKGRS algorithm aims to provide robust movie
recommendations by combining these diverse techniques. It is uniquely positioned to
address the static and dynamic aspects of user–item interactions, setting a new benchmark
in personalized movie recommendation systems.

Data preprocessing serves as a foundational step in the TKGRS algorithm. One key
aspect is the incorporation of a temporal decay factor, set at 0.9, to emphasize more recent
user–item interactions. This value was chosen on the basis of preliminary testing and aligns
with best practices in the field. The decay factor modifies the original ratings, thereby
allowing the model to prioritize newer interactions over older ones.

Mathematically, the updated rating r′ is computed as follows:

r′ = r× decay_factor(max_timestamp−timestamp) (1)

The model’s architecture is a neural network with three primary components:
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1. Embedding layer (matrix factorization): This converts the users’ and movies’ IDs into
fixed-size vectors (Eu and Em).

2. GCN layer: This updates the embeddings using GCN. The mathematical representa-
tion for a single-layer GCN is:

H(1)
u = GCN(Eu(u), Gu) and H(1)

m = GCN(Em(m), Gm)

3. Fully connected layers: A fully connected layer sequence maps the updated embed-
dings to the output prediction.

The model is trained using the Adam optimizer with a learning rate and weight decay.
The loss function is RMSE and is defined as

RMSE =
√

1/N ∑N
i=1(ri − r̂i)

2 (2)

where ri is the real rating and r̂i is the predicted rating.
Next, we can depict our algorithm as shown in Figure 1.
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(Temporal Dynamics) 

Embedding Layer 

(Matrix Factorization) 

GCN Layer 

Fully Connected Layer 

Output Prediction 

Figure 1. The processes of the proposed algorithm.

Next, we detail each component of the proposed algorithm as follows.

1. Embedding layer: The embedding layer uses matrix factorization through embed-
dings for users and movies. The embeddings are then used to predict the rating a
user would give to a movie. Let R be the original user–item interaction matrix, where
Rij represents the rating given by user i to item j. The neural collaborative filtering
step aims to approximate R by learning two matrices, U and M, for users and movies,
respectively. Each row in U and M represents the latent factors of a user and a movie
to satisfy the equation:
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R ≈ U×MT (3)

More specifically, given a user u or a movie m, their corresponding embeddings Eu(u)
and Em(m) are looked up from the embedding matrices U and M, respectively, such that

Eu(u) = U[u, :] (4)

Em(m) = M[m, :] (5)

where U is a nusers × d matrix, M is a nmovies × d matrix, and d is the dimensionality of the
embedding space.

2. GCN layer: The GCN layer updates the initial embeddings Eu(u) and Em(m) by
incorporating the topology and features of the respective graphs Gu and Gm, denoting
the graph structures for users and movies, respectively. The initial embeddings Eu(u)
for users and Em(m) for movies serve as the initial node features H(0) for the GCN
layer, where a single GCN layer can be represented as

H(l+1) = σ
(

D−
1
2 AD−

1
2 H(l)W(l)

)
(6)

where H(l) is the matrix of the node features at the lth layer, A is the adjacency
matrix, D is the degree matrix, W(l) is the weight matrix at the lth layer, and σ is the
activation function, which is ReLU here. The GCN layer calculates the weighted sum
of its neighbors’ features for each node. The aggregated features are transformed
by a weight matrix and passed through an activation function. The embeddings are
updated for subsequent layers or the final prediction.

3. Fully connected layers: The updated embeddings Hu
(l) and Hm

(l) are concatenated
along the feature dimension. This results in a new feature vector F for each (user,
movie) pair, such that:

F = Concat
(

Hu
(l) ; Hm

(l)
)
∈ R2d (7)

Before feeding F into the fully connected layers, it is often subject to dropout layers and
non-linear activations to introduce regularization and complexity. F is then passed through
one or more fully connected layers. Each layer can be represented mathematically as

Yl+1 = σ
(

W(l)F + b(l)
)

(8)

where Yl+1 is the output of the fully connected layer l + 1, W(l) is the weight matrix, b(l) is
the bias term, and σ(·) is an activation function.

The final layer is a single unit with a sigmoid activation function, scaled to the range
of the ratings, to make the final prediction, and is represented as

r̂ = σ
(

W(L)YL + b(L)
)

(9)

where r̂ is the predicted rating and L is the final layer.
The pseudo-codes of the proposed Algorithm 1 can be described as follows.
The TKGRS model addresses the static and dynamic aspects of user–item interactions,

setting a new standard in personalized recommendation systems. The model prioritizes
more recent interactions by applying a decay factor to historical ratings. The GCN layer
enhances the quality of recommendations by capturing complex relationships and depen-
dencies between users and movies.
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Algorithm 1: Pseudo-codes

Input:

• User IDs
• Movie IDs
• User graph data
• Movie graph data
• Stopping criterion (maximum epochs, patience for early stopping)

Output:

• Predicted ratings

Initialize:

• Best Loss←∞
• No Improvements←0

Steps:

1. Initial embedding

• User_Embeddings = Embedding(nusers,nfactors)(User_IDs))
• Movie_Embeddings = Embedding(nmovies,nfactors)(Movie_IDs)

2. GCN layer

• Updated_User_Embeddings =
GCNConv(nfactors,gcn_output)(User_Embeddings,User_Graph_Data.edge_index)

• Updated_Movie_Embeddings =
CNConv(nfactors,gcn_output)(Movie_Embeddings,Movie_Graph_Data.edge_index)

3. Concatenation of updated embeddings

• Concatenated_Embeddings =
Concatenate([Updated_User_Embeddings,Updated_Movie_Embeddings])

4. Fully connected layers

• Hidden_Layer_Outputs = σ(Concatenated_Embeddings)

5. Final output layer

• Predicted_Ratings = σ(Hidden_Layer_Outputs)

6. Compute loss

• Current_Loss = LossFunction(Predicted_Ratings,True_Ratings)

7. Stopping criterion

• If Current_Loss < Best Loss

• Best Loss←Current_Loss
• No Improvements←0

• Else

• No Improvements+=1

• If No Improvements ≥ Patience or Epoch = Max Epochs

• Stop and return Best Loss

4. Experiments

Movie recommendation systems are indispensable tools in today’s digital world,
particularly in the era of information overload. While traditional recommendation methods
such as collaborative filtering and content-based filtering have their merits, they lack the
sophistication to adapt to the dynamic and evolving nature of users’ preferences and
interactions with items. The present study aimed to address these limitations by evaluating
the TKGRS, an innovative algorithm that synergistically integrates matrix factorization,
GCNs, and temporal decay factors.

The experiments utilized three well-established movie datasets: MovieLens 100K,
MovieLens 1M, and the Douban Conversation Corpus. The MovieLens 100K and 1M
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datasets consist of 100,000 and 1 million movie ratings by users, respectively. These datasets
stand as seminal benchmarks in the movie recommendation systems domain. In contrast,
the Douban Conversation Corpus was purpose-built for retrieval-based chatbots, and
encompasses 1 million session–response pairs in the training set, 50,000 in the validation
set, and 10,000 in the test set. Each dataset offers unique challenges and complexities,
making them ideal for evaluating the TKGRS algorithm, which notably incorporates a
temporal decay factor to adapt to dynamic user–item interactions.

Table 1 outlines the selected hyperparameters, determined through extensive prelimi-
nary testing to optimize the performance.

Table 1. Model parameters.

Parameter Value

Number of factors 50
Hidden layers 50
Dropout rate 0.2

Batch size 4096
Learning rate 1× 10−3

Weight decay 1× 10−5

Number of epochs 30
Optimizer Adam

Loss Function RMSE, MAE

The datasets were divided into 80% for training and 20% for the validation subset.
We used the Adam optimizer for training, which spanned 30 epochs. An early-stopping
criterion was also implemented to prevent overfitting.

Next, with the dataset MovieLens 100K dataset as an example, the training and
validation’s RMSE can be shown as in Figure 2. As depicted in Figure 2, the training and
validation RMSE for the MovieLens 100K dataset showed consistent improvement over
epochs, validating the effectiveness of the TKGRS algorithm.
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We benchmarked TKGRS against the existing state-of-the-art models, i.e., LFM-
SPE [28] GHRS [29], Glocal-K [30], MG-GAT [31], T-ULVD [32], JK-DMC [33], SparseFC [34],
and CF-NADE [35], as shown in Table 2. As indicated in Table 2, TKGRS not only validated
the efficacy of integrating GCNs and temporal decay factors but also set a new performance
standard. In addition, we also used the t-test to compare the difference in the mean RMSE
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between the best benchmark and the proposed algorithms with 10 runs. The P-values were
all below the significance level, i.e., 0.05, and hence confirmed that TKGRS performs best,
according to the RMSE criterion.

Table 2. The comparison of different algorithms.

MovieLens 100K Model RMSE MAE p-Value

LFM-SPE 0.795 0.661
GHRS 0.887 0.685

GLocal-K 0.889 0.690
MG-GAT 0.890 0.692
T-ULVD 0.892 0.701

Proposed model 0.757 0.590 0.000

MovieLens 1M Model RMSE MAE p-value

LFM-SPE 0.736 0.638
GLocal-K 0.823 0.640
SparseFC 0.824 0.643
CF-NADE 0.829 0.645
T-ULVD 0.848 0.669

Proposed model 0.722 0.565 0.0174

Douban Model RMSE MAE p-value

JK-DMC 0.718 0.517
GLocal-K 0.721 0.521
MG-GAT 0.737 0.541
SparseFC 0.745 0.551

Proposed model 0.712 0.511 0.000

TKGRS demonstrated competitive performance when compared with state-of-the-art
models. Its true potential, however, lies in its capacity to integrate GCNs and tempo-
ral decay factors effectively. This opens up avenues for further enhancements, such as
incorporating more advanced graph algorithms and exploring additional optimization
techniques.

Table 3 presents a theoretical assessment of each algorithm’s advantages and disadvantages.
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Table 3. Comparison between different algorithms.

Models Pros Cons

GHRS
The hybrid approach combines

multiple features, providing robust
recommendations

Lacks a temporal component,
thereby not accounting for users’

recent behavior

GLocal-K
Focuses on both local and global

patterns, providing balanced
recommendations

Not as sophisticated in capturing
complex relationships

MG-GAT Captures complex relationships
through multiple graphs

Does not account for
temporal dynamics

SparseFC
Requires fewer parameters than

traditional fully connected layers,
making it computationally efficient

The performance is highly
dependent on the choice of the

kernel function, which may require
expertise to select appropriately

CF-NADE

Specifically designed for
collaborative filtering tasks where
data sparsity is a common issue,

providing a more nuanced model

The algorithm’s time complexity
can be high, especially when the

hidden representation’s dimensions
and the number of possible ratings

are large

TKGRS

Incorporates a time decay factor,
thus adding a temporal dimension.

Utilizes graph convolutional
networks (GCNs) for a

sophisticated understanding of the
complex relationships between

users and items

The complexity may be higher due
to the incorporation of GCNs,

which could make it slower for
larger datasets

In summary, TKGRS distinguished itself through its incorporation of a time decay
factor and the use of GCNs, enabling the capture of complex non-linear relationships
between users and items. Although computationally more intensive than some alternatives,
its performance metrics justify its resource requirements, especially when juxtaposed with
fully connected graph-based models such as MG-GAT. It remains a compelling option for
systems where a balance between accuracy and computational efficiency is paramount.
Nonetheless, the computational demands may escalate for exceedingly large graphs, a
challenge that is not unique to TKGRS but is intrinsic to graph-based models.

5. Discussion

Recent research in movie recommendation systems has made significant strides, ex-
ploring various domains such as IoT scenarios [36], multi-task learning [37], and deep
learning [38]. While these studies offer substantial advances, they frequently overlook the
importance of temporal dynamics in user–item interactions. TKGRS fills this research gap
by seamlessly integrating a temporal decay factor alongside GCNs and matrix factorization.

The TKGRS makes a transformative contribution to the field of recommendation
system. By uniquely incorporating temporal dynamics through a decay factor, it adds a
dynamic layer to the process of recommendation. This feature, validated through RMSE
and MAE metrics on the MovieLens and Douban datasets, surpassed existing models and
provided a more robust alternative for research into recommendation systems. TKGRS not
only outperformed the others in terms of the RMSE and MAE metrics but also stood strong
when qualitatively compared with existing state-of-the-art models. The algorithm uniquely
incorporates temporal dynamics through a decay factor, adding a dynamic layer to the
recommendation process.

Despite its strengths, TKGRS has limitations. The computational complexity associated
with GCNs might limit its scalability, especially for large datasets. Future research could
focus on enhancing the algorithm’s robustness against adversarial attacks and exploring
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its scalability. Moreover, while the choice of hyperparameters has been optimized, it has
not been exhaustively explored, leaving room for potential improvements. Studies could
also focus on addressing data sparsity issues and extending its applicability across diverse
sectors such as healthcare, e-commerce, and smart cities.

TKGRS not only outperformed the others in terms of RMSE and MAE metrics but
also stood strong when qualitatively compared with existing state-of-the-art models, such
as those discussed in the survey on knowledge graph-based recommendation systems
by [39]. Unlike these models, TKGRS addresses the challenges of users’ dynamic preference,
offering a more comprehensive solution. In conclude, TKGRS provides a more holistic
solution that takes the temporal changes in users’ behavior into account, thereby standing
strong both quantitatively and qualitatively when compared with existing models.

6. Conclusions

In an era of information overload and rapidly evolving user behavior, the shortcomings
of traditional movie recommendation systems have become increasingly glaring. This study
introduced TKGRS, an innovative algorithm that effectively addresses these challenges
by incorporating GCNs, matrix factorization, and temporal dynamics. TKGRS exhibits a
unique capability to capture both the static and dynamic aspects of user–item interactions. It
revolutionizes the recommendation process by adding a dynamic layer through a temporal
decay factor, ensuring that recent interactions hold greater weight. Further, integrating
GCN layers significantly enhances the model’s understanding of the complex relationships
between users and items. Empirical validation on the MovieLens 100K, 1M, and Douban
datasets confirmed its robust performance, outperforming existing state-of-the-art models.

In conclusion, TKGRS marks a significant advancement in personalized recommen-
dations. It offers a comprehensive solution to the multi-faceted challenges of user–item
interactions, setting a new benchmark in the field. As such, it provides a robust foundation
for future research, including exploring more advanced graph algorithms and machine
learning techniques to advance recommendation system’s capabilities continually.
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