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Abstract: With the development of computationally intensive applications, the demand for edge
cloud computing systems has increased, creating significant challenges for edge cloud computing
networks. In this paper, we consider a simple three-tier computational model for multiuser mobile
edge computing (MEC) and introduce two major problems of task scheduling for federated learning
in MEC environments: (1) the transmission power allocation (PA) problem, and (2) the dual decision-
making problems of joint request offloading and computational resource scheduling (JRORS). At the
same time, we factor in server pricing and task completion, in order to improve the user-friendliness
and fairness in scheduling decisions. The solving of these problems simultaneously ensures both
scheduling efficiency and system quality of service (QoS), to achieve a balance between efficiency
and user satisfaction. Then, we propose an adaptive greedy dingo optimization algorithm (AGDOA)
based on greedy policies and parameter adaptation to solve the PA problem and construct a binary
salp swarm algorithm (BSSA) that introduces binary coding to solve the discrete JRORS problem.
Finally, simulations were conducted to verify the better performance compared to the traditional
algorithms. The proposed algorithm improved the convergence speed of the algorithm in terms of
scheduling efficiency, improved the system response rate, and found solutions with a lower energy
consumption. In addition, the search results had a higher fairness and system welfare in terms of
system quality of service.

Keywords: edge cloud computing; Internet of things; dingo optimization algorithm; salp swarm
algorithm; federated learning

1. Introduction

With the arrival of the era of the Internet of things (IoT), there is an emerging demand
for various types of portable smart devices and IoT services. In modern society, IoT
technology has greatly facilitated the development of healthcare, autonomous driving,
social entertainment, etc. and has become a necessity in people’s lives, which has gradually
transformed traditional cities into smart cities [1–3]. Federated learning (FL) has received
attention recently for its cutting-edge uses in industries like health, finance, and Industry
4.0. FL makes it possible for numerous mobile devices to work together in training machine
learning models without transferring raw data, safeguarding the privacy of users. FL is
limited, though, because it must rely on mobile devices having the appropriate CPU power
to solve the challenges faced by the millions of parameters in machine learning models in
real applications [4]. FL has a substantial number of client nodes—possibly millions—each
with a significantly varied data distribution. High communication latency and instability
between the client and the central server are present at the same time [5].

Currently, mobile devices produce a lot of data every day, and the available local
computation and storage resources are scarce. There are numerous IoT applications that
simultaneously have strong criteria for high accuracy and low latency. Utilizing remote
clouds with high-speed processing and abundant storage resources to offload activities
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and data from compute-intensive applications, the potential of mobile devices can be more
fully exploited [6]. Data storage and compute demands are growing rapidly as a result of
people’s growing reliance on IoT. The conventional approach of directly offloading to the
cloud may result in network congestion, accompanied by unavoidable response delays, and
a lower overall quality of service (QoS) [7]. In addition, these resource-intensive computing
and storage tasks come at a significant cost.

Distributed edge computing makes full use of distributed resources at the edge of
the network, including routers, network gateways, and base stations, to provide real-time
and context-aware services, which perform better when processing tasks with low latency
or complex computation. The application of edge computing can effectively alleviate the
problem of network delays, share the load of local devices, and improve the overall perfor-
mance. However, it is important to point out that edge computing has some limitations in
terms of resource and functional scalability compared to cloud computing [8].

Therefore, edge cloud computing was introduced to solve latency-sensitive computing
tasks, in place of cloud computing [9]. Edge cloud computing shows a better balance
between overcoming the limited computational speed of mobile devices on the one hand
and reducing the too-long computational latency when offloading to remote clouds on the
other hand [10,11]. However, determining which tasks are suitable for running locally or
offloading to a node is a very challenging NP-hard dilemma [12].

To solve this problem, Hu and Li [13] used a subgradient-based non-cooperative
game model to solve the transmission power allocation problem and the MO-NSGA
algorithm to solve the joint request offloading and computational resource scheduling
problems. However, the non-cooperative game model usually lacks global coordination,
and each device only focuses on maximizing its own interests, resulting in insufficient
overall system performance. Meanwhile, the system involves the edge system cost when
considering the JRORS problem, but does not take into account the cost of cloud servers,
which affects the overall cost of the system operation. In this study, when we study the task
scheduling of a federated mobile edge computing (MEC) three-layer computing model, we
not only consider the decisions regarding request offloading and computational resource
scheduling, but also incorporate the budget constraints of the users, to improve the QoS. In
addition, we consider the degree of completion of the computational request offloading
task, which makes the system network fairer, and introduce a scheduling dominance
degree to determine the fairness metrics. Such improvements can simultaneously improve
user-friendliness and fairness.

The main contributions of this paper are as follows:

• We propose an adaptive dingo optimization algorithm (DOA) based on greedy strate-
gies to search for the optimal solution to the PA problem, called AGDOA. The DOA
incorporates a greedy algorithm, to optimize the initial value of the DOA, which
improves the convergence speed. It also makes its parameters adaptively adjusted
according to the convergence speed of the algorithm, to prevent it from falling into a
local optimum;

• We advocate utilizing a binary salp swarm algorithm (SSA) method, known as BSSA,
for the JRORS problem. We can use our approach for federated learning tasks in edge
cloud computing environments;

• Simulations showed that the individual improvements of AGDOA significantly im-
proved on the original algorithm, in terms of optimization results and convergence
speed, while the search results outperformed the traditional algorithm. BSSA had a
superior performance compared to the conventional algorithm for different numbers
of mobile users, different workloads, and different configurations.

The rest of this study is organized as follows: Section 2 reviews related work on task
allocation in edge cloud computing. Section 3 introduces the network architecture and
problem analysis. Section 4 describes the original structure and construction process of
the BSSA algorithm and the AGDOA algorithm. Section 5 details the configuration of the
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experiment, and Section 6 presents the results and a discussion of the experiment. Finally,
Section 7 presents our conclusions and makes recommendations for future research.

2. Related Work

In this section, we summarize the latest research related to our proposed algorithm.
The International Data Corporation (IDC) predicts that spending within the IoT ecosystem
will exceed USD 1 trillion in 2060, with an expected compound annual growth rate (CAGR)
of 10.4% from 2023 to 2027 [14]. One of the key elements determining the price of mobile
computing in FL is communication overheads. Therefore, a major concern when implement-
ing joint learning for IoT and mobile computing scenarios is how to lower the computation,
storage, and communication costs of joint learning privacy protection approaches and
how to improve the efficiency of joint learning [15]. In order to reduce the cost of the IoT
ecosystem, the key issue is how to optimize the task computation strategy based on the
specific user requirements of mobile devices. Based on the process of task allocation, we
can categorize most of the existing research on edge cloud computing scheduling problems
into two groups. In one category, we need to consider the decision problem for joint
request offloading and resource scheduling (JRORS) before task execution, and in the other
category, we need to consider the transmission power allocation problem (PA) during task
communication.

The rational allocation of computational resources prior to the start of a task, in order
to achieve optimal performance or efficiency during execution, is the focus of JRORS.
This involves the task scheduling arrangement, resource allocation, offloading strategy,
etc. Tran and Pompili [16] integrated the problems of co-optimizing the task offloading
strategy, transmission capacity of mobile users, and resource allocation of edge servers into
two separate problems of joint task offloading (TO) and resource allocation (RA), which
they solved using convex and quasi-convex optimization techniques. However, making
the entire system bandwidth available to a mobile device to transmit data may lead to
network congestion and increase the energy consumption of the mobile device. Du and
Tang [17] constructed a data placement model that dynamically allocates newly generated
datasets to appropriate data centers and removed exhausted datasets during workflow
execution. Ra [18] proposed a greedy staged offloading algorithm to solve the problem of
task offloading. Although Odessa is fast, its offloading strategy is not optimal. Chen [19]
developed a simple architecture for offloading information-centric IoT applications based
on task classification and computation functions. However, the architecture does not
consider communication latency. Chang and Niu [20] provided a task offloading approach
using power as a constraint, emphasizing the energy consumption and measurement
latency factors in the optimization problem. Alazab et al. [21] proposed an optimal routing
algorithm that determines the optimal route by modifying Dijkstra’s algorithm under
real-time dynamic traffic flow conditions, allowing the users to interactively determine
the optimal path and identify destinations efficiently. Pham et al. [22] proposed a method
for allocating resources in wireless networks using the whale optimization algorithm
(WOA) and improving it as a binary version based on specific scenarios. ABdi et al. [23]
proposed a modified particle swarm optimization algorithm (MPSO) for task scheduling,
in order to achieve the goal of shortening the completion time of a task in cloud computing.
Mao et al. [24] and Shojafar et al. [25] studied the joint computation offloading and resource
scheduling (RS) problem; however, they only considered a base station (BS), to accomplish
the computational tasks in IoT systems.

During the task of carrying out the communication process, PA mainly solves the
problem of how to allocate the transmission power appropriately to optimize the com-
munication quality, energy consumption, and other factors during the communication
process.

Haxhibeqiri [26] reported a study of LoRaWAN uplink traffic, in which the packet
delivery rate decreased exponentially with the increase in the number of end nodes in
the network. Mikhaylov et al. [27] presented an estimation of the throughput of the
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LoRa technology taking into account the broadcast time of the packet transmission. As
a result, the maximum number of end nodes that could communicate with the gateway
could be determined. Tang et al. [28] proposed an efficient coordinate-based indexing
mechanism to solve the fast lookup problem, using a superposition jump to minimize
the index lookup delay. Rajab et al. [29] considered a dense network deployment of
IoT devices and propose a time scheduling algorithm and a distance spreading factor
algorithm to reduce the probability of collisions, thus achieving higher throughput and
lower transmission power. Rodrigues et al. [30] proposed a deployment strategy for 6 G IoT
environments utilizing the machine learning algorithms particle swarm optimization (PSO)
and k-means clustering (KMC), and considering processing, transmission, and backhaul
communication to improve the transmission power. All of the above studies considered
the system operational efficiency without taking into account factors such as fairness, user
friendliness, and user budget related to QoS.

Hu and Li [13] considered a system with one macro BS and several micro BSs
and solved the transmission power allocation problem using a subgradient-based non-
cooperative game model and solved the dual decision-making problem of request offload-
ing and computational resource scheduling using MO-NSGA. The system operation cost
was minimized and QoS improved by solving both PA and JRORS in the same network
system. However, a non-cooperative game model usually lacks global coordination, and
each device only focuses on maximizing its own interest, which may lead to the degradation
of the overall system performance. Meanwhile, the system involves the edge system cost
when considering the JRORS problem but does not consider the cost of cloud servers, and
the overall cost of system operation is not sufficiently involved.

Many heuristic algorithms are suitable for solving the edge cloud computing schedul-
ing problem. Kishor [3] proposed a nature-inspired meta-heuristic scheduler smart ant
colony optimization (SACO) task offloading algorithm for offloading IoT sensor application
tasks in a foggy environment. Vispute et al. [31] proposed particle swarm optimization
(EETSPSO) for fog computing for energy efficient task scheduling. Xia et al. [32] used
ant colony optimization (ACO) and the genetic algorithm (GA) to maximize the system
utility and to meet various quality requirements of latency sensitive and computationally
intensive applications for mobile users.

Referring to the above related works, in this paper, we focus on taking into account
the whole process of task scheduling when solving PA and JRORS problems. In order to
improve QoS, the pricing and task completion of cloud servers are added to the JRORS
problem, which ensure the system efficiency and consider the budget constraints and
fairness of users. Meanwhile, we propose AGDOA and BSSA to better solve the PA and
JRORS problems, respectively. In addition, we introduce a scheduling dominance degree
(SDD) to measure the fairness of the algorithm.

3. Preliminaries and Definitions

This section introduces the network structure and related definitions, and describes
the specific construction of the JRORS problem and the PA problem.

3.1. Network Architecture

In this paper, we consider a simple three-layer edge cloud computing model for multi-
user MEC, as shown in Figure 1. The first layer is the IoT layer, which consists of a set of
mobile devices. After the user decides the request offloading and computational resource
scheduling, the IoT layer sends the request from mobile devices to the second edge layer
or the third cloud layer. The edge layer is closer to the IoT layer and consists of a set of
miniature base stations with edge servers. The cloud layer is further away from the IoT
layer and consists of a macro base station with one deep cloud for processing large amounts
of data and storing them for future use.
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We assume that there is one macro base station with a cloud server, n micro base
stations (BSs) with edge servers, and that the total number of mobile users is n. The
locations and heights of all BSs are fixed. The average power consumption Pma and
computational power Rma of the macro base station are two times the average power
consumption Pmi and computational power Rmi of the micro base station, respectively.
The maximum transmission power of a mobile user is Pmax. Each mobile user u generates
one computational request at a time, and the request includes Qu = <Wq, Sg, Prg, Tgq,
Tbq>, where Wq represents the workload of request q, i.e., the amount of computation
required to fulfill the request, and Sg represents the size of the request input data. We use
Prg to denote the request priority that represents the importance of different requests. Tgq
and Tbq are the desirable latency threshold and tolerable latency threshold, respectively.
The average delay Tavg = (Tgq + Tbq)/2 for request q. The location of the mobile user is
denoted by put and the location of the base station is denoted by pnt.

3.2. Definition of JRORS

The JRORS problem is integrated as a system welfare maximization problem, and the
goodness of solutions to the resource offloading and computational resource scheduling
problems is summarized as the system welfare (W). In order to optimize the system
efficiency, W takes into account the request response time, edge system utility, edge system
cost, and extra cost. Moreover, to improve QoS, we add application completion and cloud
server pricing to the considerations. We formulate the PA problem as in Equations (1) and
(2). Request q is obtained from all request queues Q, and the base station n belongs to all
BSs. Where xqn denotes an indication whether request q is assigned to the base station
or not, where 0 denotes assignment to a macro base station and 1 denotes assignment
to a micro base station. Rn represents the computing power of base station n, and Rqn
represents the computing resources allocated by base station n to request q, kq denotes
the edge system utility, cq denotes the edge system cost of processing request q, and eq
denotes the additional cost of offloading request q to the macro base station. In Equation (3),
c_r denotes the computation of the application completion rate, and in Equation (4), cost
denotes the server pricing, which consists of the edge server pricing costMi and the cloud



Future Internet 2023, 15, 357 6 of 23

server pricing costMa. λ1 and λ2 are the weights of the program completion rate and the
server pricing.

s.t.
maxW

∑
n∈N

xqn ≤ 1 , ∀q ∈ Q

xqn ∈ {0, 1} ∀q ∈ Q, n ∈ N

∑
q∈Q

Rqn ≤ Rn ∀n ∈ N

Rqn > 0, ∀q ∈ Q, n ∈ N.

(1)

W =

N

∑
n

Q

∑
q

[
xqn
(
kq − cq

)
−
(
1− xqn

)
eq
]
+ λ1 × c_r− λ2 × cost (2)

c_r =
∑n∈N xqn

cost
(3)

cost = costMa + costMi (4)

3.3. Definition of PA

The PA problem is a key issue in IoT that involves rationally distributing the limited
transmission power to different users to maximize the system performance. To minimize
the energy E consumed by the entire system in transmitting data, we formulate the PA
problem as Equation (5). Where, pun (t) represents the transmission power from mobile
user u to base station n, and this is limited by the upper power limit pmax.

minE = ∑N
n ∑U

u Etra
u (t) (5)

Etra
u (t) = pun(t)·tq

up
s.t. 0 ≤ pun (t) ≤ pmax ∀n ∈ N, ∀u ∈ U

(6)

where Etra
u (t) is the transmission energy consumption for each data offload from mobile

user u to the BS n, described by Equation (6). The constraint on pun (t) guarantees the
transmission power of each mobile user. tq

up represents the uplink transmission time from
request q to base station n.

The solution of the power allocation problem can help optimize network performance
and improve communication quality and energy efficiency. However, due to the complex
channel characteristics, interference, and power constraints involved, the problem is a
nonconvex, nonlinear, and multidimensional optimization problem that requires the use of
appropriate optimization algorithms to find the optimal solution.

4. Proposed Approach

This section describes the detailed construction process of the two proposed algorithms
AGDOA and BSSA.

4.1. BSSA Algorithm
4.1.1. SSA Model

SSA is an optimization algorithm inspired by the migratory and collaborative be-
haviors of a salp swarm in nature, and solves optimization problems by simulating these
behaviors. After initializing the population, each bottlenose sea squirt is evaluated for
fitness and ranked in the chain according to its fitness value. The top ranked bottlenose
sea squirts in the chain are called leaders, and the remaining part are called followers [33].
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They update their positions according to different principles, and the position xi
j of the

leader is updated using Equation (7).

xi
j =

{
Fj + c1

((
ubj − lbj

)
·c2 + lbj

)
c3 ≥ 0

Fj − c1
((

ubj − lbj
)
·c2 + lbj

)
c3 < 0

, (7)

where Fj is the position of the food source in the jth dimension; ubj is the upper bound
of the jth dimension; lbj is the lower bound of the jth dimension; and c1, c2, and c3 are
random numbers.

The updating of the follower’s position is borrowed from the idea of Newtonian
motion and is represented by Equation (8).

xi
j =

1
2 at2 + v0t,

a = vfinal
v0

,
v = x−x0

t .
(8)

where i ≥ 2 denotes the position of the ith follower bottle sea squirt in the jth dimension,
and t is the time. v stands for velocity, where v0 is the initial velocity, vfinal is the final
velocity, x and x0 represent the current and initial locations, respectively. The pseudo-code
for SSA is shown in Algorithm 1.

Algorithm 1: Salp Swarm Algorithm (SSA)

Input: ub, lb
Output: fitness

1: xi←initial salp population considering ub and lb
2: function SSA()
3: while end condition is not satisfied do
4: Calculate the fitness of each search agent (salp)
5: Set F as the food source
6: for each salp (xi) do
7: if The salp population is in the top half then
8: Update the position of the leading salp using Equation (7)
9: else
10: Update the position of the follower salp using Equation (8)
11: end if
12: end for
13: end while
14: return F
15: end function

The movement and interaction of virtual sheaths in the search space give SSA a strong
global search capability; meanwhile, the diversity characteristics of SSA make it perform
well in dealing with multi-peak optimization problems, which is suitable for searching for
the optimal workload allocation scheme.

4.1.2. Proposed BSSA Algorithm

SSA has wide applicability and can solve continuous or discrete optimization problems.
The load allocation problem we are going to solve is also a discrete optimization problem,
this problem requires finding a set of binary schemes for power allocation that maximizes
the fairness of the whole system. When we decide to allocate or not to allocate a certain
workload to a particular base station, this is represented by 1 or 0. If this decision variable
is represented using binary, it can be better adapted to the characteristics of the problem
and the problem complexity can be reduced, to improve the performance of the algorithm.
Therefore, we introduce binary coding into SSA, as in BSSA.
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The pseudo-code for the key parts of the BSSA algorithm is reported in Algorithm 2.
The fval_BSSA is the optimal fitness value, i.e., the maximum welfare value for searching
for load assignments using BSSA. BSSA uses the pseudo-code of the binary modified
procedure for Algorithm 2.

Algorithm 2: BSSA

Input: user_profile , na_min, na_max, max_lter, N
Output: fval_BSSA
Initialize parameters

1: lb← 0
2: ub← 1
3: thres← 0.5
4: max_lter← 600
5: convlter← 0
6: dim← length(user_profile)
7: Q← 0.7
8: beta1←−2 + 4 × rand()
9: beta2←−1 + 2 × rand()
10: nalni← 2
11: na← round(na_min + (na_max − na_min) × rand())
12: while t <= max_lter do
13: for i← 1 to N do
14: Calculate fitness fit(i) using JRORS function
15: Negate fit(i)
16: if fit(i) > fitF then
17: Set Xf = X(i,:) and fitF = fit(i)
18: End if
19: End for
20: Update X as Leader Salp or Follower Salp
21: Set curve(t)← fitF
22: Increment t
23:End while
24: Convert binary positions to feature subsets
25: Determine Sf, Nf based on Xf
26: Calculate sFeat from user_profile and Sf
27: return fval_BSSA← fitF

According to Algorithm 2, the detailed steps of BSSA are as follows:

1. Initialize the population. Within the upper bound 1 and lower bound 0 of the search
space, a salp swarm of size N × D whose position is binary is randomly initialized;

2. Calculate the initial fitness. According to Equation (1), the fitness values of N salps in
the JRORS problem are calculated;

3. Choose food. The salp swarm is sorted according to the fitness value, and the position
of the salp swarm with the best fitness in the first place is set as the current food
position;

4. Choose leaders and followers. After the food location is selected, there are N − 1
remaining salps in the group, and according to the ranking of the salp groups, the
salps in the first half are regarded as leaders and the rest as followers;

5. Location update. First, the position of the leader is updated according to Equation (7),
and then the position of the follower is updated according to Equation (8);

6. Calculate the fitness. Compute the fitness of the updated population. The updated
fitness value of each individual salp sheath is compared with the fitness value of the
current food. If the fitness value of the updated salp sheath is higher than that of
the food, the salp sheath position with the higher fitness value is taken as the new
food position;
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7. Repeat steps 4–6 until a certain number of iterations is reached, and the current food
position is output as the estimated position of the target.

4.2. AGDOA Algorithm
4.2.1. DOA Model

The DOA is a group intelligence optimization algorithm inspired by the hunting
strategy of the Australian dingo, and the algorithm implements three strategies based on
the dingo’s social behaviors, which are group hunting, individual attack, and scavenging
behavior. Meanwhile, considering the species endangerment of the Australian dingo, a
survival probability strategy is added to this algorithm [34].

The trajectory of the group hunting is modeled by Equation (9):

→
x i(t + 1) = β1

na

∑
k=1

[→
ϕk(t)−

→
xi(t)

]
na

− →x∗(t), (9)

The trajectories of individual attacks are modeled by Equation (10):

→
x i(t + 1) =

→
x∗(t) + β1 ∗ eβ2 ∗

[ →
xr1(t)−

→
xi(t)

]
, (10)

The trajectory of the sweeping behavior is simulated by Equation (11):

→
x i(t + 1) =

1
2

[
eβ2 ∗ →xr1(t)− (−1)σ ∗→xi(t)

]
, (11)

When in low survival, Equation (12) will be used to update the position:

→
x i(t) =

→
x∗(t) +

1
2

[ →
xr1(t)− (−1)σ ∗ →xr2(t)

]
, (12)

Table 1 summarizes the key notations of DOA. The dingo in the algorithm chooses the
strategy for updating the position based on a specific probability. The DOA relies on its
strategy for updating the diversity of strategies to have an advantage in solving NP-hard
puzzles to find a globally optimal solution.

Table 1. Key Notations of DOA.

Symbol Description
→
x i(t + 1) New location for dingoes
→
ϕk(t) Subset of search agents
→
xi(t) Current search agent, i.e., subset of wild dogs being attacked
→
x∗(t) Iteration of the best subset of dingoes so far

→
xr1 (t),

→
xr2 (t)

Randomly selected r1, r2 search agent, i.e., subset of dingoes,
where r1 6= i

SizePop Total size of the dingo population
σ Randomly generated binary numbers, σε{0, 1}

β1, β2 Randomly generated scale factor

r1, r2
Random numbers generated from [1, maximum search agent size]

with r1 6= r2;
→
xr1 (t)

4.2.2. DOA Considering Greedy Strategies

A population intelligence optimization algorithm’s optimization performance is, in
part, determined by how well it is initialized. The initialization of the population position of
the DOA is generated in a random way. It is quite challenging to find the optimal solution
around the feasible solution when the objective value is modest in relation to the data and
the first solution chosen at random is considerably far from the ideal solution. The usual
methods of optimization initialization are greedy algorithm initialization [35], sampling
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initialization [36], and heuristic rules initialization [37]. In practice, sampling initialization
and heuristic rules initialization are often used in combination. Sampling initialization can
provide diversity and help the algorithm better explore the search space, while heuristic
rules initialization can provide better quality initial solutions, which helps accelerate the
convergence of the algorithm and improves the quality of the final solution. The greedy
algorithm constructs the solution step by step in a locally optimal way and tries to satisfy
the constraints as much as possible. This method can obtain a better initial solution. We
will use the greedy principle to optimize the initialization process of DOA. The pseudocode
for the greedy strategy is shown in Algorithm 3.

Algorithm 3: Greedy Initialization

Input: alloted_bs, U, punt
Output: initial_profile
Initialize parameters:

1: initial_profile← Create a matrix of size (|U| × |n|) with initial values as pmax
2: function greedy_initialization(alloted_bs, U, punt)
3: for each user u in U do
4: Get the current allocated base station index n for user u
5: Set initial_profile[u,n] to punt[u,n]
6: end for
7: return initial_profile
8: end function

This greedy initialization procedure receives some input parameters: alloted_bs, gunt,
U, punt, and pmax. These parameters denote the assigned base station for each user, the
channel power gain, the set of mobile users, the transmission power, and the maximum
transmission power, respectively. The allocation assigns the user power allocation scheme
to the nearest base station, while the initial power of the other base stations remains
unchanged. Finally, the initial power allocation scheme for each user to each base station is
returned.

The greedy algorithm, as a concise method for optimizing the initial value, can provide
an initial solution closer to the global optimal solution for the PA problem, reduce the
number of iterations of the DOA, speed up the convergence of the algorithm, and improve
the search performance of the DOA on the PA problem.

4.2.3. Proposed AGDOA Algorithm

The PA problem is a complex non-convex problem, and as it requires nonlinear
computation, taking into account the data demand, channel gain, noise level, etc., this
optimization method is more likely to find a local optimum. Therefore, in order to reduce
the possibility of DOA falling into local optimality, we introduce the convergence speed
adaptive adjustment mechanism.

We judge the convergence speed of the algorithm by monitoring the change in the
optimal fitness, and then dynamically adjust the parameter na of the number of wild dogs
involved in the attack strategy in DOA to balance the exploration and exploitation strategies
of the algorithm. When the continuous change in the optimal fitness is small, this indicates
that the algorithm may be converging, at which time, na is multiplied by 0.9 to reduce
the number of dingoes participating in the attack, thus slowing down the search speed,
with a view to better converging in the local search space; when the continuous change
of the optimal fitness is large, na is multiplied by 1.1 to increase the number of dingoes
participating in the attack, thus speeding up the search speed, with a view to better search
the global space.

The pseudo-code for the adaptive tuning scheme is reported in Algorithm 4. Where tol
is the convergence criterion, max_counter is the maximum number of convergence counts,
and na_min and na_max are the minimum and maximum values of na, respectively. In
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each iteration, the optimal fitness change diff_vMin is computed, based on which the value
of na is adaptively adjusted.

Algorithm 4: Adjust Parameters Adaptively

Input: Max_iter, Curve, tol, max_counter, vMin
Output: Adjusted value of na based on adaptive mechanism
1: tol_counter← 0
2: for t← 1 to Max_iter do
3: Calculate vMin for current iteration
4: if t > 1 then
5: Calculate diff_vMin = abs(Curve(t) − Curve(t + 1))
6: if diff_vMin < tol then
7: Increase tol_counter by 1
8: else
9: Reset tol_counter to 0
10: if tol_counter >= max_counter then
11: Decrease na
12: else
13: Increase na
14: end for
15: return na

The pseudo-code for the key parts of the AGDOA algorithm is reported in Algorithm 5.
SearchAgents_no is the number of search agents, Max_iter is the maximum number of
iterations, fobj is the fitness function, positions is the initial individual position matrix,
ub and lb are the upper and lower bounds of the solution space, and vMin is the optimal
fitness value. In order to facilitate an intuitive understanding, Figure 2 shows an algorithm
flow chart. Figure 2 shows the process of the DOA algorithm integrating the greedy
strategy to obtain the initial solution and dynamically changing the parameter adaptive
strategy according to the degree of convergence, thus forming the operation flow of the
AGDOA algorithm.

According to Algorithm 5 and Figure 2, the specific steps of AGDOA are as follows:

1. Use Algorithm 3 to initialize the dingo population position through the greedy strategy;
2. Calculate the survival probability;
3. If the survival probability is greater than the set point, jump to step 4, otherwise jump

to step 9;
4. If the random value is less than P, jump to step 5, otherwise jump to step 8;
5. If the random value is less than Q, jump to step 6, otherwise jump to step 7;
6. Perform a group attack according to Equation (9) to update the agent location;
7. Perform individual persecution according to Equation (10) to update the agent location;
8. Perform the clearance strategy according to Equation (11) to update the agent location;
9. Update the position of the group with low survival rate according to Equation (12);
10. Update the fitness value and the agent location;
11. If the maximum number of iterations is not reached, update the adaptive parameters

according to Algorithm 4 and repeat steps 2–10, otherwise output the optimal fitness;
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Algorithm 5: AGDOA

Input: Max_iter, Curve, conver_tol, conver_counter, na_min, na_max
Output: vMin
Initialize parameters

1: threshold← 0.005
2: converged← false
3: consecutive_iterations← 10
4: iteration_count← 0
5: convlter← 0
6: P← 0.5
7: Q← 0.7
8: beta1←−2 + 4 × rand()
9: beta2←−1 + 2 × rand()
10: nalni← 2
11: na← round(na_min + (na_max − na_min) × rand())
12: Positions← initialize from Algorithm 3
13: for each position i in Positions do
14: Calculate Fitness(i)
15: end for
16: for each iteration t from 1 to Max_iter do
17: for each agent r from 1 to SearchAgent_no do
18: sumatory← 0
19: if random number() < P then
20: Calculate sumatory using Attack function
21: if random number() < Q then
22: Update Agent position using strategy for group attack by Equation (9)
23: else
24: Update agent position using strategy for persecution by Equation (10)
25: end if
26: else
27: Update agent position using strategy for scavenging by Equation (11)
28: end if
29: if survival rate is below 0.3 then
30: Execute survival process to update agent position by Equation (12)
31: end if
32: Calculate Fnew
33: if Fnew <= Fitness(r) then
34: Update agent position and fitness value
35: end if
36: if Fnew <= vMin then
37: Count and update convlter
38: Update theBestVct and vMin
39: end if
40: end for
41: Update na by Algorithm 4
42: end for
43: return vMin
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5. Experimental Setup

In this section, computer simulations were used to evaluate the performance of the
proposed AGDOA algorithm and BSSA algorithm. The performance of the proposed
algorithms was evaluated under different system parameters in comparison with the
existing schemes.

5.1. Simulation Settings

To evaluate the performance of the algorithms, we ran the AGDOA algorithm and
the BSSA algorithm using MATLAB R-2021a. The simulation device PC was configured
with 16 GB of memory, and a 2.6 GHz Intel Core i7. The simulation parameters are
shown in Table 2.
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Table 2. Simulation Parameters.

Parameter Value

Number of Mobile Users u {12,20,32,40,52,60,72,80,92,100}
Number of Micro-BSs n {3,5,8,10,13,15,18,20,23,25}
The fixed bandwidth B 20 (MHz)

The fixed height of BSs H 10 (m)
Workload of request wq 600–1000 (MHz)
Input data of request lq 300–1500 (KB)

Ideal delay of request q Tgq 0.5 ± 0.1 (s)
Tolerable delay of request q Tbq Tgq + [0.1, 0.15] (s)

Maximum transmission power for mobile users Pmax 5 (w)
Background Gaussian noise power Sig −100 (dBm)

Average power consumption of microbase station Pmi 7500 (w)
Average power consumption of macrobase station Pma 15,000 (w)

The computing power of edge servers Rmi 70 (GHz)
Computing power of the cloud server Rma 140 (GHz)

5.2. Comparative Experiments
5.2.1. Comparative Experiments of BSSA

We compared the performance of the BSSA algorithm with the following methods:

1. Northern Goshawk Algorithm (NGO): NGO is a relatively new algorithm that has
the advantage of diverse search strategies that may help to better explore the solution
space [13];

2. Genetic Algorithm (GA): The GA performs well in dealing with discrete problems
and can effectively represent and manipulate discrete decision variables through the
use of binary or integer coding [38].

3. Binary Particle Swarm Optimization Algorithm (BPSO): BPSO is suitable for discrete
optimization problems and it can represent the decision variables of the problem in
binary [39].

5.2.2. Comparative Experiments with AGDOA

We compared the performance of the AGDOA algorithm with the following methods:

1. Greedy Particle Swarm Optimization (GPSO): The PSO application has advantages
for multivariate problems and is suitable for solving PA problems involving power
allocation decisions among multiple mobile users and multiple base stations. Mean-
while, the initialization of the particle swarm was optimized using a greedy strategy
to obtain GPSO [40];

2. Simulated Annealing PA: Simulated annealing (SA) is suitable for complex problems
and can effectively solve discrete NP-hard problems [41];

3. Subgradient-based non-cooperative game model (NCGG): the NCGG algorithm is
usually used to solve the problem of optimal decision making for multiple participants
in a game, and is suitable for optimizing the multi-user PA problem [42].

5.3. Performance Metrics
5.3.1. Convergence Speed

To evaluate the convergence speed of the algorithm, we used the successive absolute
change magnitude to determine whether the change in the objective function value was
stabilizing or not. The absolute change in the objective function value between adjacent
iterations was calculated, i.e., r = |f(i) − f(i − 1)|, and the magnitude threshold e was set
to 0.005. The algorithm was judged to have stabilized when the absolute change in the
magnitude of r was less than the magnitude threshold e. The algorithm was also evaluated
to prevent the algorithm from falling into a local optimum. At the same time, in order to
prevent the algorithm from being misjudged as converging when it fell into a local optimum,
when the algorithm’s r was less than e for 10 consecutive iterations, we considered that the
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algorithm had reached convergence, and the mobile user was considered to have found the
best solution.

5.3.2. System Response Rate

To evaluate the efficiency and performance of the system, we considered the number
of tasks completed within a tolerable delay time for the request versus the total number of
requested tasks, defined as the system response rate.

5.3.3. Scheduling Dominance Degree (SDD)

In order to evaluate the task completion degree, i.e., the fairness, we used SSD in the
performance evaluation. SSD is a metric used to evaluate the fairness of a task resource
allocation scheme, and there is an inverse relationship between it and the fairness metric.
SSD is expressed by Equation (13). F is the fairness metric, and ri indicates the resource
allocation for user i. In general, a larger SSD value indicates better fairness, while a smaller
SSD value indicates worse fairness. We calculated SSD based on the fairness indicator Jain’s
fairness index.

SSD =
1
F

F =
(∑N

i=1 ri)
2

N×∑N
i=1 ri

2

s.t. ri ∈ {0, 1}

(13)

6. Performance Evaluation and Analysis

In this section, we performed a simulation and analyzed the results of the experiment.

6.1. Performance of BSSA
6.1.1. Impact of the Number of Mobile Users

In this section, we set the base station with the same computational power, i.e.,
Rn = 70 GHz, and all mobile user offloading tasks were configured with the same re-
quest conditions, wq = 1500 (Megacycles), lg = 700 KB, Tgq = 0.5 (s), Tbg = 0.65 (s). We
output the welfare of the system after it had run, in order to assess the effectiveness of the
solution to the resource offloading and computational resource scheduling problem; that
is, the performance of the fitness function JRORS, under the influence of various numbers
of mobile users. To assess the efficiency and performance of the system, we took into
account the system response rate, and to assess the fairness of the system, we took into
account the SSD. NGO, BPSO, GA, and BSSA are all suitable algorithms for solving discrete
optimization problems.

From Figure 3a, we can observe that NGO and GA showed an overall increasing
trend in welfare with the increase in the number of mobile users, but there was oscillating
instability. BPSO and BSSA showed a flat increase in welfare with the increase in the
number of mobile users. This was because, as the number of users increased, more requests
may be generated in the system, and when these requests are reasonably handled and
satisfied, the total utility of the system may increase. In terms of welfare performance,
NGO performed poorly, which means that NGO cannot achieve good results for the JRORS
problem. BSSA had a larger welfare with a different number of mobile users, which means
that BSSA can obtain a better solution when multiple factors are considered for scheduling
computational resources. Compared to GA, the proposed BSSA improved by about 100%
for welfare when the number of mobile users was 12 and by about 20% when the number
of mobile users was 100. The complexity of the problem grows exponentially as the number
of users increases. Both BSSA and GA needed to search the large-scale solution space, and
hence the size of the BSSA boost became smaller. However, due to the addition of binary,
the complexity of BSSA decreased on the discrete problem JRORS, so it was easier to search
for a better resource allocation scheme for welfare. Figure 3b illustrates that BPSO and BSSA
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had a larger system responsiveness, and BPSO’s system responsiveness did not change
much for different numbers of mobile users. Compared with BPSO, BSSA had almost a 1x
improvement in the corresponding rate when the number of mobile users was 12. BSSA’s
response rate naturally decreased slightly with the increase in the number of mobile users,
due to the consequent increase in the search space and the complexity of the problem, but it
still managed to maintain a higher response rate, which also reflects the scalability of BSSA.
Compared with BPSO, at a mobile user number of 100, BSSA improved in its response rate
by about 40%, which was due to the fact that the search strategy of BSSA is more suitable
for the JRORS problem. From Figure 3c, it can be seen that the SSD of BSSA and GA was
larger in most of the cases in the comparison experiments, which proved that the fairness of
BSSA was better. Moreover, the SSD of BSSA decreased smoothly with the increase in the
number of mobile users, which proved that BSSA had the best fairness when the number
of mobile users was small. This is due to the fact that competition among a large number
of users may lead to more competitive resource allocation. This may result in certain users
always having a dominant position, while other users are unable to obtain a fair share,
thus reducing the fairness. At the same time, since the SSA algorithm has the unique
advantage that the group tends to move in the direction of greater comfort, this leads to a
smooth, progressive search process that avoids drastic fluctuations, and the experiments
yielded smooth changes for each of the performance metrics as the number of mobile users
was varied.
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6.1.2. Impact of Request Workloads

In this section, we set the base station with the same computational power, i.e.,
Rn = 70 GHz, and all mobile users had offloading tasks configured with the same re-
quest conditions lg = 700 KB, Tgq = 0.5 (s), Tbg = 0.65 (s), except for the workload wq being
set to a different request q. The performance of the BSSA was evaluated at wq = 1500,
2000, 2500.

From Figure 4a, it can be observed that the system welfare decreased as the request
workload increased. When the workload increased from 1500 to 2000, welfare decreased
by about 4% on average; when the workload increased from 2000 to 2500, the welfare
decreased by about 2% on average. This is due to the fact that when the computational
task requests from the BS exceed the scheduling load that the base station can handle, it
becomes under-resourced and reduces the system welfare value. Figure 4b shows that
when the number of mobile users is small, different request workloads have essentially
no effect on the SSD. When the number of mobile users was high, the SSD decreased by
3% on average as the request workload increased; i.e., an appropriate request workload
had a benign effect on the system fairness. At high loads, the system’s resources became
saturated and resource allocation delays increased, leading to a decrease in fairness when
the system performed offloading tasks.
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6.1.3. Impact of Request Workload Configuration

In this section, different workload requests (wq) and different amounts of work input
data requests (Iq) were configured, to evaluate the performance of the BSSA and compare
the experiments with other optimization algorithms. The following figure shows the system
welfare and SSD used for evaluating the system with different wq when the number of
mobile users (u) was 40 and 100, respectively.

From Figure 5a,b, it can be observed that the welfare of the BSSA was consistently
higher than other methods at different wq values when the number of mobile users was
small. When the number of mobile users was 40, the proposed BSSA improved the welfare
of GA by 36.2% on average. For SSD, the values of BSSA and GA were significantly larger
than the other methods, and BSSA was inferior to GA for smaller wq. This implied that, at
this point, BSSA sacrificed part of the system fairness to maintain a higher system welfare
during the optimization process. From Figure 6a,b, it can be seen that the welfare of BSSA
and GA became larger as the number of mobile users u increased, and the proposed BSSA
improved the welfare of GA by only 29.4% on average, while at this time, the SSD of BSSA
had a significant advantage at different wq. Meanwhile, the SSD of BSSA showed an overall
decreasing trend with the increase in wq. Obviously, as the number of mobile users u
increased with the increase in wq, more and more tasks could not be completed in time,
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resulting in a decrease in the fairness of the system. Similarly, as shown in Figure 7a,b,
BSSA consistently performed the best in terms of system welfare for different amounts
of Iq. The proposed BSSA’s welfare improved by 35.7% and 16.0% on average under the
conditions of 40 and 80 mobile subscribers, respectively. Thus, we can say that BSSA
showed the best performance for the system welfare problem, even under different request
work configurations.
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6.2. Performance of AGDOA
6.2.1. Ablation Experiments

The following figure shows a comparison of the energy consumption of DOA, GDOA,
ADOA, and AGDOA for the same number of mobile users, number of server base stations,
and maximum power. We can see from Figure 8a that a using greedy strategy to optimize
the initial value of DOA, the initial energy consumption was significantly reduced, which
was conducive to faster convergence. We can see from Figure 8b that after making the
parameter na adaptive change, the iteration frequency was perturbed, and the speed of
each descent became faster, which helped to prevent the DOA from falling into a local
optimum. We can see from Figure 8c that after using the greedy strategy to optimize
the initialization process of DOA and making the parameter na change adaptively, the
optimized DOA algorithm obtained a better initial value, while descending faster. The
overall ablation experiment results in Figure 8d showed that the greedy algorithm and the
adaptive strategy improved the DOA significantly, bringing about a lower initial value,
speeding up the iteration speed, and preventing from falling into a local optimum.
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In order to assess the convergence properties of the AGDOA in the ablation experi-
ments, we used the number of iterations required for the algorithm to reach the converged
state as the convergence rate for comparison. The number of convergence iterations for
the different numbers of mobile users in DOA, GDOA, ADOA, and AGDOA are listed in
Table 3. As shown in Table 3, the greedy strategy contributed more to the convergence
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speed of DOA than parameter adaptation, and AGDOA exhibited the maximum conver-
gence speed in the ablation experiments. In terms of the quantity of iterations required to
obtain convergence, AGDOA was at least 11.2% faster than GDOA. This was the result of
the joint involvement of the greedy strategy and the adaptive tuning parameter strategy.

Table 3. The converged iteration of each algorithm under different numbers of mobile users.

Algorithm
Number of Mobile Users

12 20 32 40 52 60 72 80 92 100

DOA 166 75 62 91 94 119 95 159 165 127
ADOA 125 69 97 69 76 111 90 110 142 142
GDOA 71 66 78 77 82 80 125 99 102 146

AGDOA 57 53 51 66 34 66 71 89 80 74

6.2.2. Energy Consumption vs. Number of Mobile Devices

We set the maximum transmission power Pmax for mobile users uniformly at
5 W. Figure 9 shows a comparison of the energy consumption of the proposed AGDOA
compared to GPSO and NCGG for different numbers of mobile users. It is clear that
the energy consumption increased as the number of mobile users increased. The energy
consumption of AGDOA was always smaller than that of GPSO and NCGG for different
numbers of mobile users, and the gap between the energy consumption of AGDOA and
the comparison algorithms gradually increased as the number of mobile users increased.
The proposed AGDOA increased the degree of improvement in energy consumption from
8.3% to 163.9% compared to the GPSO. This suggests that the AGDOA outperforms GPSO
and NCGG in the PA problem and performs better when there are a lot of mobile users.

Future Internet 2023, 15, x FOR PEER REVIEW 21 of 24 
 

 

6.2.2. Energy Consumption vs. Number of Mobile Devices 
We set the maximum transmission power Pmax for mobile users uniformly at 5 W. 

Figure 9 shows a comparison of the energy consumption of the proposed AGDOA com-
pared to GPSO and NCGG for different numbers of mobile users. It is clear that the energy 
consumption increased as the number of mobile users increased. The energy consumption 
of AGDOA was always smaller than that of GPSO and NCGG for different numbers of 
mobile users, and the gap between the energy consumption of AGDOA and the compari-
son algorithms gradually increased as the number of mobile users increased. The pro-
posed AGDOA increased the degree of improvement in energy consumption from 8.3% 
to 163.9% compared to the GPSO. This suggests that the AGDOA outperforms GPSO and 
NCGG in the PA problem and performs better when there are a lot of mobile users. 

 
Figure 9. The energy consumption of different algorithms with different numbers of mobile users. 

6.2.3. Convergence Properties of AGDOA 
To determine the convergence characteristics of AGDOA, we similarly compared the 

number of iterations required for the algorithms to reach a converged state. The conver-
gence characteristics of AGDOA were evaluated by setting the maximum transmission 
power Pmax of mobile users to 5w with the same number of mobile users u and the num-
ber of base stations of edge servers n. The convergence characteristics of AGDOA were 
evaluated by setting the maximum transmission power Pmax of mobile users to 5 w. As 
shown in Figure 10a, when u was 12 and n was 3, AGDOA needed only 61 iterations to 
converge, while NCGG and GPSO needed 107 and 200 iterations, respectively; as shown 
in Figure 10b, when u was 40 and n is 10, AGDOA needed only 61 iterations to converge, 
while NCGG and GPSO needed 107 and 200 iterations, respectively; AGDOA required 
only 72 iterations to converge, while NCGG and GPSO required 168 and 229 iterations, 
respectively. As can be seen from Figure 10a,b below, AGDOA reached convergence in 
fewer iterations, even with larger initial values. This indicates that our proposed AGDOA 
has good convergence properties. 

Figure 9. The energy consumption of different algorithms with different numbers of mobile users.

6.2.3. Convergence Properties of AGDOA

To determine the convergence characteristics of AGDOA, we similarly compared the
number of iterations required for the algorithms to reach a converged state. The conver-
gence characteristics of AGDOA were evaluated by setting the maximum transmission
power Pmax of mobile users to 5 w with the same number of mobile users u and the
number of base stations of edge servers n. The convergence characteristics of AGDOA
were evaluated by setting the maximum transmission power Pmax of mobile users to 5 w.
As shown in Figure 10a, when u was 12 and n was 3, AGDOA needed only 61 iterations to
converge, while NCGG and GPSO needed 107 and 200 iterations, respectively; as shown
in Figure 10b, when u was 40 and n is 10, AGDOA needed only 61 iterations to converge,
while NCGG and GPSO needed 107 and 200 iterations, respectively; AGDOA required
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only 72 iterations to converge, while NCGG and GPSO required 168 and 229 iterations,
respectively. As can be seen from Figure 10a,b below, AGDOA reached convergence in
fewer iterations, even with larger initial values. This indicates that our proposed AGDOA
has good convergence properties.
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7. Conclusions

In this paper, we studied a MEC network consisting of a macro BS, a set of micro
BSs, and a large number of mobile users, aiming to solve two main problems in task
scheduling with federated learning in a network. For the JRORS dual decision problem, we
incorporated the consideration of server pricing and task completion factors to improve
user-friendliness and fairness. Meanwhile, a BSSA was proposed to solve this problem
based on the discrete nature of JRORS, to reduce the problem complexity. Then, for the PA
problem, an AGDOA was proposed to find the optimal power allocation scheme.

The simulation results validated the proposed algorithm, in which the BSSA main-
tained a good performance for welfare, response rate, and SSD for the JRORS problem.
Compared with the heuristic algorithms NGO, BPSO, and GA, the proposed BSSA could
find better solutions and obtained a higher welfare under different numbers of mobile
users, workloads, and input data amounts. This was due to the addition of binaries, which
reduced the complexity of the BSSA on discrete problems such as JRORS. In addition, the
BSSA had a higher system response rate, and the number of tasks completed within a
tolerable delay time of the request was more than the total number of requested tasks.
Moreover, compared with the other heuristics compared, the BSSA paid more attention to
fairness in task offloading.

In addition, compared with the other algorithms, on the PA problem, each improved
module of AGDOA showed a significant improvement in convergence speed and initial
performance over the DOA. Compared with the optimization algorithms GPSO and NCGG,
the energy consumption of the AGDOA was significantly lower under different numbers
of mobile users. At the same time, the AGDOA could reach a convergence state in fewer
iterations for different numbers of mobile devices.

In the future, we will conduct experiments using real data, make improvements based
on real applications, and apply the proposed algorithms to real applications to improve the
MEC scheduling efficiency and the comprehensive level of QoS.
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