
Citation: Li, Z.; Ju, H.; Ren, Z. A

Learning Game-Based Approach to

Task-Dependent Edge Resource

Allocation. Future Internet 2023, 15,

395. https://doi.org/10.3390/

fi15120395

Academic Editor: Antonio Esposito

Received: 8 November 2023

Revised: 1 December 2023

Accepted: 4 December 2023

Published: 7 December 2023

Corrected: 22 April 2024

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Learning Game-Based Approach to Task-Dependent Edge
Resource Allocation
Zuopeng Li 1,2,*, Hengshuai Ju 1 and Zepeng Ren 1

1 School of Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China;
ju1540717348@outlook.com (H.J.); zren6065@gmail.com (Z.R.)

2 School of Information Engineering, Handan University, Handan 056038, China
* Correspondence: lizuopeng@hebeu.edu.cn

Abstract: The existing research on dependent task offloading and resource allocation assumes that
edge servers can provide computational and communication resources free of charge. This paper pro-
poses a two-stage resource allocation method to address this issue. In the first stage, users incentivize
edge servers to provide resources. We formulate the incentive problem in this stage as a multivariate
Stackelberg game, which takes into account both computational and communication resources. In
addition, we also analyze the uniqueness of the Stackelberg equilibrium under information sharing
conditions. Considering the privacy issues of the participants, the research is extended to scenarios
without information sharing, where the multivariable game problem is modeled as a partially ob-
servable Markov decision process (POMDP). In order to obtain the optimal incentive decision in this
scenario, a reinforcement learning algorithm based on the learning game is designed. In the second
stage, we propose a greedy-based deep reinforcement learning algorithm that is aimed at minimizing
task execution time by optimizing resource and task allocation strategies. Finally, the simulation
results demonstrate that the algorithm designed for non-information sharing scenarios can effectively
approximate the theoretical Stackelberg equilibrium, and its performance is found to be better than
that of the other three benchmark methods. After the allocation of resources and sub-tasks by the
greedy-based deep reinforcement learning algorithm, the execution delay of the dependent task is
significantly lower than that in local processing.

Keywords: edge computing; Stackelberg game; deep reinforcement learning; dependent task;
resource allocation

1. Introduction

With the rapid advancement of hardware and software technologies, there is an
increasing demand for computationally intensive real-time applications, such as facial
recognition, virtual reality, and augmented reality [1–3]. These applications often require
lower response times to meet user experience expectations. However, due to the limitations
of device hardware and available resources, the devices cannot complete task computations
in the required time [4–6]. Cloud computing is one of the candidate technologies to
solve this problem, but the distance between the cloud and the devices is considerable.
Transferring a large number of tasks to the cloud imposes a significant communication
burden on the entire network. Edge computing (EC) deploys resources closer to devices,
thereby enabling devices to offload tasks to a nearby edge server (ES) with less overhead,
thus further reducing the time used for computational tasks [7].

Although edge servers (ESs) can provide the necessary resources for devices, the
behavior of ESs and the user in practice is usually driven by interests [8,9]. In order to
offset operational costs, ESs charge a certain fee for processing tasks, while the user needs
to pay for the costs incurred from using these resources, thus ensuring a satisfactory quality
of experience (QoE). On the other hand, dependent tasks differ from tasks that can be
arbitrarily divided (such as atomic tasks). The order of scheduling of its sub-tasks and

Future Internet 2023, 15, 395. https://doi.org/10.3390/fi15120395 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15120395
https://doi.org/10.3390/fi15120395
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0007-1892-5051
https://doi.org/10.3390/fi15120395
https://www.mdpi.com/journal/futureinternet
http://www.mdpi.com/1999-5903/15/12/395?type=check_update&version=3

Future Internet 2023, 15, 395 2 of 21

the amount of resources allocated to each sub-task are important factors that affect the
execution time of the dependent task [10,11]. Therefore, motivating ESs to engage in task
computation and the effective allocation of resources and tasks are key issues in edge
computing (EC).

Game theory is a mathematical apparatus that studies the decision-making process
of players in a competitive environment. It involves exploration of the interactions be-
tween participants, as well as their selection of strategies and expected outcomes [12–14].
Using the strengths of game theory, numerous studies in recent years have applied it
to the research of edge resource allocation strategies. For example, Roostaei et al. [15]
employed a Stackelberg game for the dynamic allocation and pricing of communication
and computational resources in networks, in which they proposed a joint optimal pricing
and resource allocation algorithm based on game theory. Chen et al. [16] investigated
multiple resource allocation and pricing issues by modeling the problem as a Stackelberg
game. Kumar et al. [17] introduced a game model for edge resource allocation with the aim
of maximizing the utilization of computational resources. However, these studies all rest
on a strong assumption that the game participants should share their information, such
as the user needing to disclose resource preference parameters and the edge servers (ESs)
required to reveal their cost parameters. Yet, game participants are rational, and they are
typically reluctant to disclose such private information.

This paper presents a two-stage resource allocation method designed for task-dependent
scenarios. In the first stage, an incentive mechanism is proposed and modeled as a multivariate
Stackelberg game. We then analyze the uniqueness of the Stackelberg equilibrium (SE) in
an information sharing scenario, as well as design an iterative optimization algorithm that
can approximate the SE solution. The research is then extended to non-information-sharing
scenarios, where the game problem is formulated as a POMDP. A reinforcement learning
algorithm based on a learning game is then proposed, which can learn from the participants’
historical decisions while ensuring the privacy of game participants. The second stage aims
to allocate the resources purchased by users under the incentive mechanism in a rational
manner. A greedy-based deep reinforcement learning algorithm is designed to minimize task
execution time. Specifically, edge server resources are allocated using a greedy method, and a
sequence-to-sequence neural network-based reinforcement learning algorithm is employed to
obtain optimal task allocation decisions. The S2S neural network is a deep learning model
that is implemented using multiple layers of a recurrent neural network. It is capable of
transforming an input sequence into a corresponding output sequence. Furthermore, these
two approaches are then combined to minimize task execution time. The main contributions
of this paper are as follows.

• We propose a two-stage resource allocation method in the context of dependent tasks.
• In the first stage, we model the problem of incentivizing users to request resources

from edge servers as a multivariate Stackelberg game. We analyze the uniqueness
of SE under the scenario of information sharing. Furthermore, we investigate the
incentive problem in the absence of information sharing, and we transform it into a
partially observable Markov decision process for multiple agents. To solve the SE in this
situation, we design a learning-based game-theoretic reinforcement learning algorithm.

• In the second stage, to allocate resources effectively, we design a greedy-based deep
reinforcement learning algorithm to minimize the task execution time.

• Through experimental simulation, it is demonstrated that the reinforcement learning
algorithm proposed in this paper, which is based on learning games, can achieve SE in
scenarios without information disclosure, and that it outperforms the conventional
A2C algorithm. The reinforcement learning algorithm, grounded in the principle of
greediness, can significantly reduce the execution time of tasks.

The rest of the paper is structured as follows. Section 2 describes related works.
Section 3 presents our system model. Section 4 discusses the design of incentives in
information sharing scenarios. Section 5 presents our game-theoretic learning algorithm in
the context of non-information sharing. Section 6 details how greedy methods are used in

Future Internet 2023, 15, 395 3 of 21

the design of reinforcement learning algorithms. Section 7 evaluates the performance of the
proposed algorithm through simulations. Finally, in Section 8, we provide a comprehensive
summary of the article.

2. Related Work and Preliminary Technology
2.1. Related Work

Existing research on the problem of task offloading and resource allocation falls into
two main categories. The first assumes that ESs can provide resources at no cost [18–23]. The
other assumes that ESs provide resources under some form of incentive mechanism [24–33].
Zhang et al. [18] performed a joint optimization of channel allocation and dependent
task offloading, as well as designed an algorithm based on genetic algorithms and deep
deterministic policy gradients. Liang et al. [19] studied the problem of optimal offloading
and optimal allocation of computational resources under dependent task constraints and
proposed a heuristic algorithm to solve the problem. Xiao et al. [20] optimized a task
offload strategy, communication resources, and computing resources under the constraints
of task processing delay and device energy consumption, and they went on to analyze the
optimal solution from the perspectives of slow fading channels and fast fading channels.
Jiang et al. [21] proposed an online framework for task offloading and resource allocation
issues in edge computing environments. Chen et al. [22] transformed the optimal resource
allocation problem into an integer linear programming problem, and they proposed a
distributed algorithm based on Markov approximation to achieve an approximately optimal
solution within polynomial-time complexity. Chen et al. [23] described the auxiliary
caching-assisted computation offloading process, which is characterized as a problem of
maximizing utility while considering the quality of experience (QoE). In addition, the
problem was decomposed into two sub-problems for separate solutions.

The aforementioned literature implicitly assumes that ESs can provide resources
freely. However, in reality, ESs are driven by profit. Therefore, it is necessary to consider
how to incentivize ESs. Based on whether the edge servers have sufficient resources,
the study of incentive mechanisms can be divided into two aspects: First, when ESs
lack adequate resources, the energy consumption of ESs acts as a counter incentive for
users [24,25]. Second, when the ESs have sufficient resources, the energy consumption
of ESs becomes an incentive for users [26–29]. Avgeris et al. [24] studied the offload-
ing problem involving multiple users and multiple edge nodes, where the energy con-
sumption of the ESs was considered a constraining factor in finding the optimal solution.
Chen et al. [25]. investigated the task offloading and collaborative computing problem in
mobile edge computing (MEC) networks, and they proposed a two-level incentive mecha-
nism based on bargaining games. Additionally, to address the issue of edge node overload,
the energy consumption of edge nodes was treated as a disincentive in the second stage of
problem analysis. The aforementioned paper considered the possibility of ES overload, but
its research problem and scenario differ from the context of this paper.

The energy consumption of ESs serves as a positive incentive. Liu et al. [26] studied
resource allocation and pricing problems in an EC system, then formulated them as mixed-
integer linear programming and proved the problem to be NP-hard. To solve this problem,
auction-based mechanisms and linear programming-based approximation mechanisms
were proposed and developed. Tao et al. [27] studied the server resource pricing and
task offloading problem by establishing a Stackelberg game model, as well as used a
differential algorithm to solve for the optimal solution. Seo et al. [28] aimed to increase
the utilization rate of ESs’ computing resources, and they formulated the optimization
problem as a Stackelberg game. Supervised learning was designed to obtain equilibrium
strategies. However, the Stackelberg games used in [27,28] were based on a single variable
and did not consider the dependencies between tasks. Kang et al. [29] introduced an
auction mechanism to encourage ESs to offer services for tasks with dependencies, as
well as designed an algorithm based on multiple rounds of truthful combinatorial reverse

Future Internet 2023, 15, 395 4 of 21

auctions to solve the problem of maximizing social welfare. However, the multi-round
auction process in this algorithm may lead to high waiting latency.

The algorithmic designs in the aforementioned literature are all centralized. However,
in reality, much of the information from users and ESs is difficult to control globally. Over
the recent years, certain literature has also explored the design of incentive mechanisms
under distributed systems. Bahreini et al. [30] proposed a learning-based distributed re-
source coordination framework which transforms the computation offloading and resource
allocation problems into dual timescale problems, and it then solves them using game
theory and distributed reinforcement learning algorithms. Liu et al. [31] described the
computational offloading mechanism with resource allocation in EC networks as a stochas-
tic game, and they designed a Q-learning algorithm to achieve NE. Li et al. [32] jointly
optimized offloading decisions and resource pricing, as well as designed a learning
game method to obtain optimal decisions. Despite these methods being based on a dis-
tributed approach, the aforementioned studies did not consider the dependencies of tasks.
Song et al. [33] proposed a multi-objective offloading optimization algorithm based on rein-
forcement learning, which was aimed at minimizing execution time, energy consumption,
and the cost of dependent task offloading. However, that work did not dive into the cost
aspect. This paper investigates the problem of incentive mechanisms in dependent task
scenarios, as well as proposes two distributed reinforcement learning algorithms to find
optimal solutions.

2.2. Preliminary Technology

Reinforcement learning (RL) is an approach used to tackle problems involving uncer-
tainty and decision making. In RL, an agent generates corresponding actions by observing
the state of the environment. After executing the action, the agent receives feedback from
the environment in the form of reward signals. Subsequently, the agent continually adjusts
its strategy based on this feedback so as to maximize cumulative rewards.

The Markov decision process (MDP) is a formal modeling of the interaction between
an agent and the environment in RL. MDP assumes that the agent can fully observe the state
of the environment, and that the current system state can be described by a state variable.
The transitions of the system states satisfy the Markov property, thus meaning that future
states depend only on the current state and are independent of past states. By defining the
available actions, transition probabilities between states, and reward functions associated
with each state–action pair, the optimal decision policy can be found for a given MDP.
However, in real-world scenarios, we often encounter decision problems with incomplete
observations, where the complete state of the system cannot be directly observed. To
address this situation, the Markov decision process is extended to a partially observable
Markov decision process (POMDP). In a POMDP, the agent can only infer the system’s
state based on partially observed information, and they utilize the inferred state to interact
with the environment and obtain maximum rewards.

3. System Model

As shown in Figure 1, in this paper, we investigate an EC system composed of a single
user and multiple ESs. In this system, the set of ESs is defined asM = {1, 2, ..., m, ...M},
where each ES is equipped with an access point (AP). The user can select a designated AP to
upload its dependent task to the corresponding ES. Moreover, these ESs are interconnected
via wired connections. At a specific time slot, the user generates a dependent task. Given
the limited resources and energy of the user’s device, it is infeasible to complete the task
execution within the desired time and energy consumption ranges. Consequently, the user
offloads this dependent task to a proxy node. This proxy node then assigns the dependent
task to other ESs that are incentivized to participate in task computation. Notably, this
proxy node could be the ESs closest to the user.

Future Internet 2023, 15, 395 5 of 21

Figure 1. System architecture diagram.

The working architecture of the system in this article is shown in Figure 2, in which the
user and the ESs construct an incentive mechanism through the Stackelberg game. Within
this mechanism, the user takes the role of leader and proposes an incentive strategy, which
is designed to encourage the ES to participate in task computation by offering a reward.
The proxy node publicizes the user’s incentive strategy, and, if the ES (follower) responds
to the user’s incentive strategy, it informs the proxy node of the amount of resources it
can contribute. The proxy node then informs the user of the ES’s response strategy. Next,
the user offloads the dependent task to the proxy node, which, by assuming a greedy
strategy, calculates that each ES needs to compute i ∈ [

⌈
C
N

⌉
, C] sub-tasks, where C is the

number of sub-tasks in the dependent task and N is the number of ESs encouraged to
participate in task computation. The proxy node iterates through the values of i to distribute
resources. Following this, based on each resource allocation strategy, a task distribution
plan is obtained using reinforcement learning that is based on S2S neural networks. Upon
completion of the task, the proxy node returns the results to the user. If the user verifies
the results as correct, the reward is given to the proxy node, which then distributes the
reward according to each ES’s ratio of resource contribution. This process can be repeated
if extended to a multi-user scenario.

Figure 2. System work architecture diagram.

Future Internet 2023, 15, 395 6 of 21

3.1. Local Computation

Although our study’s task offloading strategy involves completely offloading the
dependent task to the ES, the time it takes for the dependent task to execute locally still
serves as a baseline for comparison, thus necessitating their modeling. In terms of the task
model, we emulated most of the existing literature [18–21] by modeling a dependent task
as a directed acyclic graph (DAG) G = {V, E}, where V = {vn|n = 1, 2, ..., N} denotes
the set of sub-tasks of the current dependent task. Each sub-task vn is represented by
a binary group, i.e., vn = {dn, rn}, where dn denotes the size of the current task and rn
denotes the size of the computation result. E = {e(vi, vn)|i, n ∈ 1, 2, ..., N} denotes the
dependency relationship between the sub-tasks, and when vi depends on vn, vi can start
the computation only after vn finishes and the result of the computation is transmitted
to vi.

If fl is used to represent the computing capacity of the local device, and ηu is the
computing capacity required to process unit bit data, then the number of CPU cycles
required to complete the task calculations locally is expressed as cn,loc = dnηu. Therefore,
the time Tn

loc required to execute vn locally can be written as follows:

Tn
loc =

cn,loc

fl
. (1)

Then, the local completion time of vn is the following:

FTn
loc = max{ATn

loc, max
i∈pre(vn)

{FTi
loc}}+ Tn

loc, (2)

where ATn
loc = max{ATn−1

loc , FTn−1
loc } is the earliest available time of the local processor and

pre(vn) is the set of direct predecessor tasks of vn.

3.2. Edge Computation

When a dependent task is offloaded to a proxy node, in order to fully utilize the
resources purchased by the user, the proxy node uploads the sub-tasks of the dependent
task to other ESs to achieve a collaborative execution of the task. When taking, as an
example, a dependent task in ES j with the allocated sub-task vn, as well as when a target
server is assigned to ES m, the execution of this task can be divided into three stages: the
transmission phase, the execution phase, and the feedback phase of the result. When
recording the completion time of sending as FTn

up, the transmission time is Tn
up; then,

we have
FTn

up = max{ATn
up, max

i∈pre(vn)∧ai 6=m
{FTi

down}}+ Tn
up, (3)

Tn
up =

dn

rj
, (4)

where ATn
up = max{ATn−1

up , FTn−1
up } is the earliest available time of the uplink, i ∈ pre(vn) ∧

ai 6= m means that vi is a direct predecessor of vn and vn when they are not executing on
ES m, FTn

down is the result of the backhaul time of the parent task of vn, and rj is the size of
the communication resources allocated for vn.

In the execution phase, we let FTn
m, Tn

m , and f n
m represent the completion time of vn on

ES m, the computation time, the computational resources allocated by ES m for vn, and the
arithmetic power required by ES m to process the data per unit number of bits, respectively.
Then, the computation completion time of the task is written as follows:

FTn
m = max{ATn

m, max
i∈pre(vn)∧ai=m

{FTi
m}}+ Tn

m, (5)

Tn
m =

cn,m

f n
m

, (6)

Future Internet 2023, 15, 395 7 of 21

where ATn
m = max{ATn−1

m , FTn−1
m } is the earliest available time of the ES m processor,

i ∈ pre(vn) ∧ ai = m denotes that vi is a direct precursor of vn and executes on ES, m,
cn,m = dnηm is the number of CPU cycles required by ES m to process vn, and ηm is the
arithmetic power required by ES m to process one unit of bit data.

We let Tn
down represent the return time of the result after vn computes the result on ES

m. Then, the result return completion time FTn
down can be written as follows:

FTn
down = max{ATn

down, FTn
m}+ Tn

down, (7)

Tn
down =

rn

rn
m

, (8)

where ATn
down = max{ATn

down, FTn
down} is the earliest available time for the downlink and

rn
m is the communication resource allocated to vn by ES m for the return result.

4. Incentives under Information Sharing Conditions

In order to incentivize the participation of ESs in task computation, this section
establishes an incentive mechanism based on the Stackelberg game, wherein the user is the
leader and the ESs are the followers.

4.1. Participant Utility Functions

This subsection first discusses the utility function of ESs (the followers). We let fm
denote the resources contributed by ES m, and let R1 represent the funds spent by the user to
calculate the current dependent task. Given that ESs incur additional energy consumption
when processing external tasks, this extra energy consumption is considered to be the
inconvenience that is caused by handling these tasks. Therefore, for each ES, its utility is the
reward gained from the contributing resources subtracted by its internal inconvenience [34].
Consequently, the utility of ES m by selling computational resources is as follows:

u1,m =
R1 fm

∑M
m=1 fm

− αmDηmκm f 2
m, (9)

where αm is the unit cost expense of computing energy consumption, D is the average data
size for each sub-task, and κm is the effective switching capacitance.

For communication resource rm, this paper uses communication speed as a measure.
If the user purchases communication resources with amount R2, then the utility of ES m by
selling communication resources is as follows:

u2,m =
R2rm

∑M
m=1 rm

− βmrm, (10)

where βm is the unit transmission rate cost. From this, the total utility of ES m can be
obtained as follows:

um = u1,m + u2,m. (11)

When designing utility functions for the user, two factors need to be considered: price
satisfaction and resource acquisition satisfaction. Since these two aspects are in conflict with
each other, the satisfaction gained from resource acquisition follows a law of diminishing
returns. This principle can be represented by a continuously differentiable, concave, strictly
increasing function [35]. Therefore, a user’s utility can be modeled as follows:

U = δln(∑M
m=1 fm + 1) + (1− δ)ln(∑M

m=1 rm + 1)− R1 − R2, (12)

where δ is the compromise factor.

Future Internet 2023, 15, 395 8 of 21

4.2. Problem Formulation

The goal of this paper is to incentivize ES participation in task computations under the
premise of maximizing user utility, as well as to rationally allocate the resources purchased
by users under the incentive mechanism to minimize the task execution time. Therefore,
the objectives of this research can be defined as two sub-optimization problems.

Given user strategy R = {R1, R2}, each ES competes for the rewards offered by the
user. As a result, a non-cooperative game is formed among these ESs, with the goal of
reaching a state that all ESs find satisfactory. Once this state is achieved, the user adjusts
their strategy to maximize their utility. Thus, the optimization objective at this stage can be
stated as follows:

P1 : max
R1,R2

U,

st.C1 : R1 + R2 ≤ Rmax,

C2 : max
(fm ,rm , f−m ,r−m)

um,

(13)

where C1 indicates the funds used for purchasing resources, which must not exceed the
maximum funds available from the user; and C2 represents the state of satisfaction from
the perspective of the party involved.

Under the designed incentive mechanism, the user purchases the resources needed
to process the current dependent task. Thus, the objective of the second sub-problem
is to effectively allocate the purchased computing resources and obtain the optimal task
allocation strategy to minimize the task completion time. Therefore, the optimization
objective at this stage can be written as

min(T(G)),
st. (13),

(14)

where T(G) = maxvn∈end(G){FTn
j , FTn

down}, end(G) is the set of exit tasks that depend on
task (G).

4.3. Stackelberg Equilibrium Analysis under Information Sharing Conditions

In this paper, we first analyze the existence and uniqueness of the SE under information
sharing conditions, in which each participant in the game can obtain all the information
from other participants, such as the preference factor δ reflecting the user’s preference for
communication and computing resources, and the inconvenience factors αm , βm reflecting
the ES m’s reception and processing tasks. The objective of the Stackelberg game model
proposed by the user and ESs is to find a unique SE that maximizes user utility. In this
equilibrium, neither the user nor the ESs have the motivation to unilaterally change their
strategy. The SE is defined in this paper as follows:

Definition 1. If the leader’s strategy is denoted by R = {R1, R2} and the followers’ strat-
egy is denoted by Zm = { fm, rm}, then there exist optimal strategies R∗ = {R∗1 , R∗2} and
Z∗ = {Z∗1 , Z∗2 , ..., Z∗m} that are the respective Stacklberg equilibria for the leader and the follower if
the following conditions are satisfied:

∀R, U(R∗, Z∗) ≥ U(R, Z∗),
∀Z, um(R∗, Z∗) ≥ um(R∗, Z).

Next, the Nash equilibrium (NE) of the non-cooperative game between the follower
parties is analyzed, first to analyze the follower’s best response for the computational
resources, as well as to differentiate Equation (9) with respect to fm to obtain the following:

∂u1,m

∂ fm
=

∑M
n=1,n 6=m fn

(∑M
m=1 fm)2

R1 − 2αmDηmκm fm, (15)

Future Internet 2023, 15, 395 9 of 21

∂2u1,m

∂ f 2
m

= −2
(∑M

n=1,n 6=m fn)(∑M
m=1 fm)

(∑M
m=1 fm)4

R1 − 2αmDηmκm < 0. (16)

Clearly, utility function u1,m with respect to fm is concave; as such, there exists a maxi-
mum value for u1,m. This implies that a non-cooperative game concerning the allocation
of computational resources has an NE. Therefore, by making ∂u1,m

∂ fm
= 0, we can obtain

the following:
∑M

n=1,n 6=m fn

(∑M
m=1 fm)2

R1 − 2αmDηmκm fm = 0. (17)

By summing both sides of Equation (17), we obtain

∑M
m=1(

∑M
n=1,n 6=m fn

(∑M
m=1 fm)2

R1) = 2∑M
m=1 γm fm, (18)

where γm = αmDηmκm , and, since the difference between any two γm is extremely small,
the right side of Equation (18) can be approximated as 2γ̄∑M

m=1 fm. As such, Equation (18)
is further computed as follows:

|M| − 1

∑M
m=1 fm

R1 = 2γ̄∑M
m=1 fm. (19)

Thus, it can be derived that √
|M| − 1

2γ̄
R1 = ∑M

m=1 fm. (20)

By substituting Equation (20) back into Equation (17), we obtain the closed-form solution
for the optimal response of fm:

fm =

0 if |M|< 2√
(|M|−1)R1γ̄

2((|M|−1)γm+γ̄)2 otherwise.
(21)

Given user’s strategy R1, each ES always has its own optimal response fm. Due to the
concavity of the utility function of the ES u1,m, the optimal response is unique. Therefore,
the NE of the non-cooperative game between the ESs regarding computational resources is
also unique.

For communication resource Equation (10), the derivative with respect to rm can be
obtained as follows:

∂u2,m

∂rm
=

−R2rm

(∑M
m=1 rm)2

+
R2

∑M
m=1 rm

− βm, (22)

∂2u2,m

∂r2
m

= −
2R2∑M

n=1,n 6=m rn

(∑M
m=1 rm)3

< 0. (23)

Since Equation (23) is a constant and less than zero, utility function u2,m is a concave
function; thus, there is an NE in the non-cooperative game between the follower parties
over communication resources.

From reference [36], if the game of communication resources satisfies Theorem 1, the
uniqueness of the non-cooperative game’s NE can be demonstrated.

Theorem 1. Given strategy R2 and set S̄ = {m ∈ M|r̄m > 0} of follower parties, we let
r̄ = (r̄1, r̄2, ..., r̄n) be a Nash equilibrium (NE) strategy if the following four conditions are satisfied.
If so, then the NE is proven to be a unique NE as follows:

(1). |S̄| ≥ 2,

Future Internet 2023, 15, 395 10 of 21

(2). r̄m =

0 i f m /∈ S̄
(|M|−1)R2

∑M
m=1 βm

(1− (|M|−1)βm

∑M
m=1 βm

) otherwise ,

(3). If βm ≤ maxj∈S̄{β j}, then m ∈ S̄,
(4). Suppose the unit rate transmission cost of the edge server satisfies β1 ≤ β2 ≤ ... ≤ βn,

and let h be the largest integer in [2,n] such that βh <
∑h

j=1β j

h−1 , then S̄ = {1, 2, ..., h}.

Clearly, the non-cooperative game between parties over communication resources
satisfies these four conditions.

Proof of Theorem 1. When assuming |S| = 0, no ES participates in the game and the game
is not established. Therefore, it can be inferred that S ≥ 1 . Now, we suppose S = 1; this
implies that k ∈ M, r̄k > 0. According to Equation (10), the utility of ES k is R2 − r̄kβk ,
which means that ES k can unilaterally modify its strategy to increase its utility, thereby
contradicting the NE. Thus, Condition 1 is proved. To next prove Condition 2 and to
accumulate Equation (22), we obtain the following:

∑M
m=1rm =

(|M| − 1)R2

∑M
m=1βm

. (24)

By substituting Equation (24) back into Equation (22), as well as by setting the result to zero
while considering r̄j = 0 for any j ∈ M\ S̄, we obtain the following:

r̄m =

0 i f m /∈ S̄
(|M|−1)R2

∑M
m=1 βm

(1− (|M|−1)βm

∑M
m=1 βm

) otherwise . (25)

The proof of Condition 2 is thus complete.
For (3) given |S̄| for any i ∈ S̄, we can deduce that r̄i > 0. According to Equation (25),

r̄i > 0 implies (|M|−1)βm

∑M
m=1 βm

< 1, and hence we can obtain the following:

βi <
∑j∈S̄ β j

|S̄| − 1
, ∀i ∈ S̄. (26)

This tells us

max
i∈S̄

βi <
∑j∈S̄ β j

|S̄| − 1
. (27)

Assuming that there is βq < maxj∈S̄{β j}, but q /∈ S̄, then—according to Equation (25)—we
have r̄q = 0. Hence, Equation (22) can be rewritten as follows:

R2

∑j∈S̄ r̄j
− βq =

∑j∈S̄ r̄j

|S̄| − 1
− βq > max

i∈S̄
{βi} − βq. (28)

This implies that ESs can unilaterally modify their strategy to increase their utility, which
contradicts the NE definition. Thus, Condition 3 is proven.

Next, we prove Condition 4. From Condition 1 and 3, we have S̄ = 1, 2, ..., q, where
q ∈ [2, n]. According to Inequality (26), we can conclude that q ≤ h. This implies that

βq+1 <
∑

q+1
j β j

q , which means that when r = r̄, the derivative of utility function uq+1,m

with respect to rq+1 is
∑

q+1
j β j

q − βq+1 > 0. This suggests that q = h, and thus Condition 4
is proven. Therefore, the NE of the non-cooperative communication resources between the
follower parties is unique.

Future Internet 2023, 15, 395 11 of 21

Theorem 2. In the proposed multivariate Stackelberg game, there is a unique Stackelberg equilib-
rium between the user and the edge servers.

Proof of Theorem 2. By substituting Equations (20) and (24) into Equation (12), we obtain
the following:

U = δln(σ1
√

R1 + 1) + (1− δ)ln(σ2R2 + 1)− R1 − R2, (29)

where σ1 =
√
|M|−1

2γ̄ ,σ2 = (|M|−1)

∑M
m=1βm

. The Hessian matrix of Equation (29) is obtained

as follows: ∂2U
∂R2

1

∂2U
∂R1R2

∂2U
∂R2R1

∂2U
∂R2

2

 =

− δσ1(σ1+
1

2
√

R1
)

2(σ1R1+
√

R1)2 0

0 − (1−δ)σ2
2

(σ2R2+1)2

.

Since the eigenvalues of this matrix are all less than zero, the matrix is negative definite,
implying that the original function is concave and hence possesses a maximum value.
As the best response strategy of the square is unique, the value that maximizes U is also
unique. Therefore, the equilibrium of this Stackelberg game is unique.

According to the analysis above, this article develops a centralized algorithm that is
capable of calculating the SE under information sharing conditions, the details of which
are presented in Algorithm 1 . This algorithm achieves an approximate equilibrium for the
multivariable Stackelberg game. The approximation precision depends on ε. When ε is
smaller, the result is highly accurate but the algorithm converges slowly. When ε is larger,
the accuracy is low but the algorithm converges quickly.

Algorithm 1 Coordinate Alternation Method

Input: initialization D, α, β, κ, I, ε, R, xi

Output: optimal strategy R[k], x[k]i
1: while ||R[k] −R[k−1]|| > ε do
2: while ||x[k]i − x[k−1]

i || > ε do
3: for i = 1, 2, ..., I do
4: calculation of the followers’ utility u1,m, u2,m by equations (9) and (10)

5: save the strategy that maximizes u1,m and u2,m as x[k]i
6: end for
7: calculation of the leader’s utility U by equation (12)
8: save the strategy that maximizes U as R[k]

9: end while
10: end while

5. Study of the Incentives under Non-Information-Sharing Conditions

In the previous section, we focused on analyzing NE under the conditions of complete
information transparency. However, each participant in the game is rational and may be
unwilling to disclose their private parameters. This situation precludes the use of central-
ized algorithms to solve the NE. Deep reinforcement learning (DRL) achieves a balance
between exploration and exploitation, thereby learning from the accumulated experience
through environmental exploration to maximize rewards. Inspired by reference [37], we
designed a reinforcement learning algorithm based on the learning game to solve the SE
without sharing information. In the sections that follow, we first provide an overview of
the entire framework for the incentive mechanism based on DRL. Subsequently, the NE
solving problem is expressed as a DRL learning task.

Future Internet 2023, 15, 395 12 of 21

5.1. Overview

To achieve the NE with respect to privacy preservation, each participant becomes an
agent in the DRL, as shown in Figure 3.

Figure 3. DRL-based incentive mechanism framework.

In the above figure, the user is viewed as Agent 0, ES m is viewed as Agent m, and
the user cannot issue new incentives until the ES makes a new decision; this is because the
learning state of each agent is updated according to each participant’s decision. The agent
training process is divided into T iterations, and in each iteration t, the user interacts with
the environment as the leader of the game and determines action at

0 through acquired state
St

0; furthermore, ES m determines action at
m by interacting with the environment as the

follower of the game through the acquisition of state St
m, as well as calculates incentives Rt

0
and Rt

m for all participants by collecting, respectively, their strategies, which then creates the
state of the next moment based on the collected strategies. Meanwhile, the agent saves the
historical data of all actions in a buffer queue of size L. After D time slots, the experience in
the buffer queue is re-played to compute the rewards, which are then utilized to update the
network parameters. Since in each iteration of training the agent’s state is generated based
on the action decisions and no privacy information is acquired, this allows the finding of
the NE without privacy leakage.

5.2. Design Details

In this paper, the interaction between the game participants is formulated as a multi-
intelligence POMDP. The details of its state space, action space, and reward function are
as follows.

State space: For the current iteration at time t, the state of each participant in the game
is composed of its previous experiences and the experiences of all the other participants in
the most recent training sets L. Specifically, St

0 = {ωt−L, ωt−L+1, ..., ωt−1} is expressed as
the state of the user, and St

m = {vt−L
0 , ωt−L

−m , vt−L+1
0 , ωt−L+1

−m ,..., vt−1
0 , ωt−1

−m} is expressed as
the state of ES m.

Action space: According to the game decision variables, the user’s action at iteration
time t is defined as at

0 = vt
0 = {R1, R2}, and the action of ES m at time t is defined as

at
m = ωt

m = { fm, rm}. And, in order to increase the learning efficiency, the action values of
each agent are restricted to the range of 0–1 using the Min–Max normalization method.

Reward function: Based on the utility function and constraints, the agent reward
function is designed since the maximum amount that the user can offer is Rmax. Thus, a

Future Internet 2023, 15, 395 13 of 21

penalty factor µ must be added to the reward function when the total price exceeds Rmax.
Then, the reward function of the user at the moment of iteration t is set to be

Rt
0 =

{
U i f R1 + R2 ≤ Rmax

U − µ(R1 + R2) otherwise
. (30)

The reward function of ES m at time t is

Rt
m = um. (31)

5.3. Optimization of Learning Objectives and Strategies

In this paper, an actor network πθ and a critic network vσ are designed for each
agent. The agent learns to approximate the policy function with πθ and the value function
with vσ, where θ and σ represent the parameters of the networks. Furthermore, for agent
m, we express the state value function as V(St

m; πθm) and the action value function as
Q(St

m, at
m; πθm). The learning objective of the agent m is defined as Lm. Therefore, its

learning objective can be described as follows:

θ∗m = arg max
θm
Lm(πθm)

= arg max
θm

E(V(St
m; πθm))

= arg max
θm

E(Q(St
m, at

m; πθm)).

(32)

The training process in this study uses the proximal policy optimization (PPO) algo-
rithm that was introduced in reference [38]. Specifically, the policy gradient and the policy
gradient clipping term were defined as follows:

∇θmLm = Eπm
θ
[∇θm log πm

θ (Sm, am)Am
πθ
(Sm, am)]

≈ Eπm
θ
[∇θm log πm

θ (Sm, am)Cm
πθ
(Sm, am)],

(33)

Cm
πθ
(Sm, am) = min[Pm Am

πθ
(Sm, am),F (Pm)Am

πθ
(Sm, am)], (34)

where Pm =
πm

θ (Sm|am)

π̂m
θ (Sm|am)

is the scale factor of the old and new policies, which is used to

control the magnitude of the gradient update of the policy. Am
πθ
(Sm, am) = Qm

πθ
(Sm|am)−

Vm
πθ
(Sm) represents the advantage function that adjusts the direction of the updates of the

policy gradient.
The clipping function in Equation (34) is defined as follows:

F (Pm) =

1 + ε Pm > 1 + ε
Pm

1− ε
1− ε < Pm < 1 + ε

Pm < 1− ε
,

where ε is an adjustable parameter deployed to prevent policy updates from becoming
excessively large (which could lead to unstable training). Following this, the actor–critic
network model is updated using stochastic gradient ascent and gradient descent, respec-
tively. As the training process progresses, the agent incrementally learns the optimal policy.
Upon convergence of the training process, the agent determines the policy based on the
output of the actor network.

6. Task Allocation for DRL Based on Greedy Thinking

Motivated by the user, edge servers participate in task computations. To efficiently
allocate the resources purchased by user under the incentive mechanism, we design a deep
reinforcement learning algorithm inspired by the work presented in reference [39]. This
algorithm first employs the concept of greediness to distribute resources, and it then applies

Future Internet 2023, 15, 395 14 of 21

sequence-to-sequence (S2S) neural network reinforcement learning to assign dependent
tasks with the aim of minimizing task execution time. The specifics of S2S neural network
reinforcement learning are detailed below.

6.1. Overview

During the task assignment and scheduling process, each edge server (ES) deploys an
S2S neural network. The details of the network are shown in Figure 4.

Figure 4. S2S neural network framework.

The vector embedding of the DAG is denoted as V = [v1, v2, . . . , vn], the function of
the encoder network is represented as fenc, and by feeding the embedding vector into the
encoder the hidden state of encoding step i is represented as

ei = fenc(ei−1, vi; θenc), (35)

where θenc denotes the parameters of the encoder network. Upon completion of the
encoding, the hidden-state representation of the original sequence is obtained. We let fdec
be the function of the decoder network, then output dj of decoding step j is calculated
as follows:

dj = fdec(dj−1, aj−1, cj−1; θdec), (36)

where aj−1 is the predicted value at the previous moment, θdec is the network parameter of
the decoder network, and cj is the context vector of the attention mechanism. According to
reference [40], cj is defined as follows:

cj =
n

∑
i=1

αj(i)ei, (37)

where αj is defined as

αj(i) =
vTtanh(Wa[ei; dj])

n
∑

k=1
vTtanh(Wa[ek; dj])

, (38)

where [ei; ej] and [ek; ej] are the concatenations of row vectors, and Wa and v are the
learnable parameters. In addition, two fully connected layers are added to output dj of the
decoder, wherein one serves as the output distribution of the action network π(aj|sj) and
the other serves as the output state value of value network v(sj). When the training of the
S2S neural network is completed, the output of the network is the task assignment decision
to be obtained.

Future Internet 2023, 15, 395 15 of 21

6.2. Design Details

In order to solve the task offloading problem by using DRL, this paper modeled the
task assignment problem as a Markov decision process (MDP), and the specific description
of this process is as follows.

State space: When scheduling task vn, the current state of the system depends on
the scheduling results of the tasks preceding vn; therefore, the state space is defined as a
combination of the directed acyclic graph (DAG) information and a partial offloading plan,
that is, S = {G, A1,i}, where G is the embedding vector of the DAG (including the index
number of task vn), the estimated transmission and execution cost of the task, and the task
numbers of the direct predecessor and direct successor. Furthermore, in this paper, we set
the upper limit of the number of tasks of the direct predecessor and the direct successor to
six, and A1,i represents the sequence of decisions about task assignment from v1 to vi.

Action space: After a user passes over the dependent task to the edge server (ES) j, the
edge server cooperates to execute, and this is based on the resources purchased by the user.
Therefore, the action space can be defined as A = {1, 2, . . . , j, . . . , M}.

Reward function: Since the goal of this paper is to minimize the task completion
time, in order to reach this goal, this paper defines the learned reward function as the
time increment saved. Therefore, the offloading sub-task vn reward function is defined
as follows:

rn =
T̄j − ∆Tn

m

T̄j
, (39)

where T̄j represents the average execution time of the sub-task on ES j, and ∆Tn
m = Tm

A1:n
−

Tm
A1:n−1

represents the actual time spent executing the task.
Since the purchased resources are limited, a penalty factor is set for situations where

the usage exceeds the purchased resources. By taking the dependent task on ES j as an
example, a counting function C(j) is defined under the final decision on task assignment
A1:N . This then provides the count of action j in decision set A1:N . This function can be
represented as C(j) = |{A1:N in x : x = j}|. Then, reward R, for executing the current
dependent task, can be written as follows:

R =

N

∑
n=1

rn i f C(j) f n
j ≤ f j and C(j)rn

j ≤ rj

N

∑
n=1

(rn − φ) otherwise
, (40)

where φ is the penalty factor.

6.3. Optimization of Learning Objectives and Strategies

Assuming the training objective is L, the goal is to find an optimal policy that maxi-
mizes cumulative rewards; as such, the learning goal of this section is written as follows:

maxL(θ) = E[max
θ

πθ(A1:N|G)R], (41)

where θ is the parameters of the S2S neural network, N represents the sub-task number, and
R represents a reward function with a penalty factor. The network is also trained using the
PPO method in this section. During the training process, the agent uses a discount factor γ,
and the S2S neural network is updated with the discounted cumulative rewards according
to every T iterations. As the training process progresses, the network gradually converges.
Subsequently, the ESs can obtain the optimal unloading decision and resource allocation
scheme that minimizes the execution time of dependent tasks based on the predicted results
of the S2S neural network.

Future Internet 2023, 15, 395 16 of 21

7. Simulation Results

In this paper, we evaluate the performance of algorithms through numerical simu-
lations, which were implemented in a Python 3.7 environment using TensorFlow. The
efficacy of the two algorithms was verified under conditions where the number of the ESs
was two, three, or four. Each nonproxy ES possesses the same computational capacity,
but their communication capabilities differ. The dependent tasks used were generated
using the DAG generator provided in reference [39]. The specific parameters are shown in
Table 1 below:

Table 1. Main Simulation Parameters.

Parameters Value

User device computational power fl 1 GHz
Effective switching capacitance κm 10−27

Transmit/receive task size di/ri 5∼50 Kb
CPU cycles per bit of data processed η 500∼1500 cycles/bit

Unit cost of calculating energy consumption α 10−6∼10−5

Incentive mechanism penalty factor µ 20
Task assignment penalty factor φ 5

Unit cost of communication rate β 10−4∼10−3

7.1. Performance Analysis of the Incentive Mechanism Algorithm Based on Learning Games

This section presents the convergence analysis of the reinforcement learning algorithm
based on learning games using two edge servers as an example. Additionally, a comparison
is made between the proposed algorithm and the A2C algorithm proposed in reference [41].
A2C estimates the goodness of agent actions using an advantage function, and it updates
network parameters using policy gradients to learn strategies that result in higher rewards.
Furthermore, we introduce the greedy algorithm and random method as baselines through
which to evaluate the performance of the proposed algorithm.

The convergence plots of the user and edge server utilities are shown in Figure 5a–c.
From the graphs, it can be observed that the proposed algorithm in this paper achieves a
complete convergence at approximately 600 rounds, whereas the A2C algorithm converges
at around 800 rounds, thus indicating a performance improvement of approximately
22.4 percent by the proposed algorithm. In terms of stability, when the proposed algorithm
converges, the utilities of the participants are particularly close to the theoretical maximum
social welfare (SE), whereas the A2C algorithm still exhibits a significant gap from the
theoretical SE at convergence. On the other hand, the greedy and random methods oscillate
without converging during the solving process. These results highlight the significant
advantages of the proposed algorithm in terms of utility convergence and stability.

Based on the analysis in Figure 5, it can be concluded that the greedy algorithm
and random method are unable to solve for the maximum social welfare (SE). Therefore,
in order to enhance the readability of the result graphs, the subsequent strategy and
convergence plots do not include the results of these two methods. Figure 6a–c are the
convergence graphs of the user price strategy, ES computing resource strategy, and the
ES communication resource strategy, respectively. For the user, their price strategy is a
reward offered to incentivize ESs to participate in task computation, and this corresponds
to both computing resources and communication resources. In the algorithm designed
in this paper, as the number of iterations increases, the participants’ strategy gradually
approaches the theoretical Nash equilibrium, which finally converges to a position that is
exceedingly close to equilibrium. Although the A2C algorithm can also converge, its policy
after convergence still has a certain distance from the theoretical Nash equilibrium strategy.
Therefore, in terms of convergence speed or convergence accuracy, the method designed in
this paper is generally superior to the traditional A2C method.

Future Internet 2023, 15, 395 17 of 21

(a) (b)

(c)
Figure 5. Utility convergence graph. (a) User unity convergence graph; (b) ES1 unity convergence
graph; and (c) ES2 unity convergence graph.

(a) (b)

(c)

Figure 6. Strategy convergence graph. (a) Convergence graph of user reward strategy; (b) conver-
gence graph of ES computing resource strategy; and (c) convergence graph of the user communication
resource strategy.

Future Internet 2023, 15, 395 18 of 21

7.2. Analysis of the Effectiveness of the Greedy-Based DRL Algorithm

In this subsection, we validate the effectiveness of the greedy-based DRL algorithm
using two different dependency structures with identical task sizes and quantities. One
dependency structure primarily consists of two parallel structures, while the other primarily
consists of three parallel structures, and the depth of the dependency tasks in the two
parallel structures is greater than that in the three parallel structures.

Figure 7a reflects the usage of computing resources under different numbers of edge
servers. As shown in the figure, when the number of ESs is fixed, the dependency struc-
tures may vary, but the amount of computing resources consumed remains the same.
This is because, regardless of the dependency structure in this case, the number of sub-
tasks processed by the proxy ES in the optimal scenario is the same, the number of fur-
ther distributed sub-tasks is the same, and the computing capability of each non-proxy
ES is the same. Therefore, the amount of computing resources consumed is the same.
Figure 7b shows the usage of communication resources in different situations. When the
number of edge servers is two, regardless of the main parallel structure of the dependent
task, the proxy ES distributes five sub-tasks externally; as such, the communication re-
sources used in this case are the same. However, as the number of edge servers increases,
the number of tasks assigned to each edge server under different dependent task structures
varies, thus resulting in different usages of communication resources. Furthermore, the
changes in total resources as shown in Figures 7a,b indicate that the more edge servers
that are motivated to participate in the computation, the less resources each edge server
contributes to, on average.

(a) (b)

Figure 7. Resource usage graph. (a) Computing resource usage graph and (b) communication
resource usage graph.

Figure 8 presents the impact of dependency structures and the number of ESs on
the execution time of dependent tasks. When dependent tasks are fully executed locally,
the dependency structure has no impact on the task, and thus its local execution time
remains constant. For tasks primarily based on two parallel dependency structures, the
execution time with three ESs is slightly less than with two edge servers. This is due to the
waiting time for sub-tasks in the dependent tasks being greater than the communication
time between edge servers. When the number of ESs is four, since the computing resources
of each non-proxy ES are the same compared to when there are three ESs, the offloading
optimal decision remains the same regardless of the parallel structure. However, as each
edge server’s average resource contribution decreases and less resources are allocated to
each task, the execution time increases. But, overall, the execution time of the dependent
task under the incentive mechanism is lesser than the total local execution time.

Future Internet 2023, 15, 395 19 of 21

Figure 8. Task execution time.

8. Conclusions

This paper investigated a game-based incentive mechanism that is based on multiple
Stackelberg variables. In this mechanism, the users act as leaders proposing incentive
strategies, while the ESs respond as followers by providing available resources in response
to user incentives. Subsequently, we analyzed the uniqueness of SE under information
sharing conditions. Considering that participants are unwilling to disclose privacy parame-
ters, we proposed a reinforcement learning method based on learning games to solve the
Nash equilibrium under non-information sharing conditions. Upon obtaining the optimal
decision, we used a greedy approach to allocate the resources provided by the ES. We
employed a reinforcement learning method based on S2S neural networks to obtain the
optimal decision on task allocation to minimize task execution time. The effectiveness
of the model was finally demonstrated through empirical validation. Future work will
consider more efficient resource allocation methods and will aim to further optimize the
task allocation process with the goal of maximizing the utility of task execution.

Author Contributions: Conceptualization, Z.L. and H.J.; writing—original draft, H.J.; writing—review
and editing Z.L.; methodology, H.J. and Z.L.; formal analysis H.J. and Z.R.; validation Z.L. and H.J.;
software, H.J.; funding acquisition, Z.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
number 62101174). This research was funded by the Hebei Natural Science Foundation (grant number
F2021402005).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Future Internet 2023, 15, 395 20 of 21

References
1. Lin, H.; Zeadally, S.; Chen, Z.; Labiod, H.; Wang, L. A survey on computation offloading modeling for edge computing. J. Netw.

Comput. Appl. 2020, 169, 102781. [CrossRef]
2. Islam, A.; Debnath, A.; Ghose, M.; Chakraborty, S. A survey on task offloading in multi-access edge computing. J. Syst. Archit.

2021, 118, 102225. [CrossRef]
3. Patsias, V.; Amanatidis, P.; Karampatzakis, D.; Lagkas, T.; Michalakopoulou, K.; Nikitas, A. Task Allocation Methods and

Optimization Techniques in Edge Computing: A Systematic Review of the Literature. Future Internet 2023, 15, 254. [CrossRef]
4. Liu, B.; Xu, X.; Qi, L.; Ni, Q.; Dou, W. Task scheduling with precedence and placement constraints for resource utilization

improvement in multi-user MEC environment. J. Syst. Archit. 2021, 114, 101970. [CrossRef]
5. Zhang, Y.; Chen, J.; Zhou, Y.; Yang, L.; He, B.; Yang, Y. Dependent task offloading with energy-latency tradeoff in mobile edge

computing. IET Commun. 2022, 16, 1993–2001. [CrossRef]
6. An, X.; Fan, R.; Hu, H.; Zhang, N.; Atapattu, S.; Tsiftsis, T.A. Joint task offloading and resource allocation for IoT edge computing

with sequential task dependency. IEEE Internet Things J. 2022, 9, 16546–16561. [CrossRef]
7. Deng, X.; Li, J.; Liu, E.; Zhang, H. Task allocation algorithm and optimization model on edge collaboration. J. Syst. Archit. 2020,

110, 101778. [CrossRef]
8. Ma, L.; Wang, X.; Wang, X.; Wang, L.; Shi, Y.; Huang, M. TCDA: Truthful combinatorial double auctions for mobile edge

computing in industrial Internet of Things. IEEE Trans. Mob. Comput. 2021, 21, 4125–4138. [CrossRef]
9. Huang, X.; Zhang, B.; Li, C. Incentive Mechanisms for Mobile Edge Computing: Present and Future Directions. IEEE Netw. 2022,

36, 199–205. [CrossRef]
10. Chen, J.; Yang, Y.; Wang, C.; Zhang, H.; Qiu, C.; Wang, X. Multitask offloading strategy optimization based on directed acyclic

graphs for edge computing. IEEE Internet Things J. 2021, 9, 9367–9378. [CrossRef]
11. Jia, R.; Zhao, K.; Wei, X.; Zhang, G.; Wang, Y.; Tu, G. Joint Trajectory Planning, Service Function Deploying, and DAG Task

Scheduling in UAV-Empowered Edge Computing. Drones 2023, 7, 443. [CrossRef]
12. Zhang, X.; Debroy, S. Resource Management in Mobile Edge Computing: A Comprehensive Survey. Acm Comput. Surv. 2023, 55,

1–37. [CrossRef]
13. Mitsis, G.; Apostolopoulos, P.A.; Tsiropoulou, E.E.; Papavassiliou, S. Intelligent dynamic data offloading in a competitive mobile

edge computing market. Future Internet 2019, 11, 118. [CrossRef]
14. Zhang, K.; Yang, J.; Lin, Z. Computation Offloading and Resource Allocation Based on Game Theory in Symmetric MEC-Enabled

Vehicular Networks. Symmetry 2023, 15, 1241. [CrossRef]
15. Roostaei, R.; Dabiri, Z.; Movahedi, Z. A game-theoretic joint optimal pricing and resource allocation for mobile edge computing

in NOMA-based 5G networks and beyond. Comput. Netw. 2021, 198, 108352. [CrossRef]
16. Chen, Y.; Li, Z.; Yang, B.; Nai, K.; Li, K. A Stackelberg game approach to multiple resources allocation and pricing in mobile edge

computing. Future Gener. Comput. Syst. 2020, 108, 273–287. [CrossRef]
17. Kumar, S.; Gupta, R.; Lakshmanan, K.; Maurya, V. A game-theoretic approach for increasing resource utilization in edge

computing enabled internet of things. IEEE Access 2022, 10, 57974–57989. [CrossRef]
18. Zhang, H.; Yang, Y.; Shang, B.; Zhang, P. Joint resource allocation and multi-part collaborative task offloading in MEC systems.

IEEE Trans. Veh. Technol. 2022, 71, 8877–8890. [CrossRef]
19. Liang, J.; Li, K.; Liu, C.; Li, K. Joint offloading and scheduling decisions for DAG applications in mobile edge computing.

Neurocomputing 2021, 424, 160–171. [CrossRef]
20. Xiao, H.; Xu, C.; Ma, Y.; Yang, S.; Zhong, L.; Muntean, G.M. Edge intelligence: A computational task offloading scheme for

dependent IoT application. IEEE Trans. Wirel. Commun. 2022, 21, 7222–7237. [CrossRef]
21. Jiang, H.; Dai, X.; Xiao, Z.; Iyengar, A.K. Joint task offloading and resource allocation for energy-constrained mobile edge

computing. IEEE Trans. Mob. Comput. 2022, 22, 4000–4015. [CrossRef]
22. Chen, H.; Deng, S.; Zhu, H.; Zhao, H.; Jiang, R.; Dustdar, S.; Zomaya, A.Y. Mobility-aware offloading and resource allocation for

distributed services collaboration. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2428–2443. [CrossRef]
23. Chen, S.; Rui, L.; Gao, Z.; Li, W.; Qiu, X. Cache-Assisted Collaborative Task Offloading and Resource Allocation Strategy: A

Metareinforcement Learning Approach. IEEE Internet Things J. 2022, 9, 19823–19842. [CrossRef]
24. Avgeris, M.; Mechennef, M.; Leivadeas, A.; Lambadaris, I. A Two-Stage Cooperative Reinforcement Learning Scheme for

Energy-Aware Computational Offloading. In Proceedings of the 2023 IEEE 24th International Conference on High Performance
Switching and Routing (HPSR), Albuquerque, NM, USA, 5–7 June 2023; pp. 179–184.

25. Chen, G.; Chen, Y.; Mai, Z.; Hao, C.; Yang, M.; Du, L. Incentive-Based Distributed Resource Allocation for Task Offloading and
Collaborative Computing in MEC-Enabled Networks. IEEE Internet Things J. 2022, 10, 9077–9091. [CrossRef]

26. Liu, Z.; Zhao, Y.; Song, J.; Qiu, C.; Chen, X.; Wang, X. Learn to coordinate for computation offloading and resource allocation in
edge computing: A rational-based distributed approach. IEEE Trans. Netw. Sci. Eng. 2021, 9, 3136–3151. [CrossRef]

27. Tao, M.; Ota, K.; Dong, M.; Yuan, H. Stackelberg game-based pricing and offloading in mobile edge computing. IEEE Wirel.
Commun. Lett. 2021, 11, 883–887. [CrossRef]

28. Seo, H.; Oh, H.; Choi, J.K.; Park, S. Differential Pricing-Based Task Offloading for Delay-Sensitive IoT Applications in Mobile
Edge Computing System. IEEE Internet Things J. 2022, 9, 19116–19131. [CrossRef]

http://doi.org/10.1016/j.jnca.2020.102781
http://dx.doi.org/10.1016/j.sysarc.2021.102225
http://dx.doi.org/10.3390/fi15080254
http://dx.doi.org/10.1016/j.sysarc.2020.101970
http://dx.doi.org/10.1049/cmu2.12454
http://dx.doi.org/10.1109/JIOT.2022.3150976
http://dx.doi.org/10.1016/j.sysarc.2020.101778
http://dx.doi.org/10.1109/TMC.2021.3064314
http://dx.doi.org/10.1109/MNET.107.2100652
http://dx.doi.org/10.1109/JIOT.2021.3110412
http://dx.doi.org/10.3390/drones7070443
http://dx.doi.org/10.1145/3589639
http://dx.doi.org/10.3390/fi11050118
http://dx.doi.org/10.3390/sym15061241
http://dx.doi.org/10.1016/j.comnet.2021.108352
http://dx.doi.org/10.1016/j.future.2020.02.045
http://dx.doi.org/10.1109/ACCESS.2022.3175850
http://dx.doi.org/10.1109/TVT.2022.3174530
http://dx.doi.org/10.1016/j.neucom.2019.11.081
http://dx.doi.org/10.1109/TWC.2022.3156905
http://dx.doi.org/10.1109/TMC.2022.3150432
http://dx.doi.org/10.1109/TPDS.2022.3142314
http://dx.doi.org/10.1109/JIOT.2022.3168885
http://dx.doi.org/10.1109/JIOT.2022.3233026
http://dx.doi.org/10.1109/TNSE.2021.3136942
http://dx.doi.org/10.1109/LWC.2021.3138938
http://dx.doi.org/10.1109/JIOT.2022.3163820

Future Internet 2023, 15, 395 21 of 21

29. Kang, H.; Li, M.; Fan, S.; Cai, W. Combinatorial Auction-enabled Dependency-Aware Offloading Strategy in Mobile Edge
Computing. In Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC), Scotland, UK,
26–29 March 2023; pp. 1–6.

30. Bahreini, T.; Badri, H.; Grosu, D. Mechanisms for resource allocation and pricing in mobile edge computing systems. IEEE Trans.
Parallel Distrib. Syst. 2021, 33, 667–682. [CrossRef]

31. Liu, X.; Yu, J.; Feng, Z.; Gao, Y. Multi-agent reinforcement learning for resource allocation in IoT networks with edge computing.
China Commun. 2020, 17, 220–236. [CrossRef]

32. Li, S.; Hu, X.; Du, Y. Deep reinforcement learning and game theory for computation offloading in dynamic edge computing
markets. IEEE Access 2021, 9, 121456–121466. [CrossRef]

33. Song, F.; Xing, H.; Wang, X.; Luo, S.; Dai, P.; Li, K. Offloading dependent tasks in multi-access edge computing: A multi-objective
reinforcement learning approach. Future Gener. Comput. Syst. 2022, 128, 333–348. [CrossRef]

34. Huang, X.; Yu, R.; Pan, M.; Shu, L. Secure roadside unit hotspot against eavesdropping based traffic analysis in edge computing
based internet of vehicles. IEEE Access 2018, 6, 62371–62383. [CrossRef]

35. Zhou, H.; Wang, Z.; Cheng, N.; Zeng, D.; Fan, P. Stackelberg-Game-Based Computation Offloading Method in Cloud–Edge
Computing Networks. IEEE Internet Things J. 2022, 9, 16510–16520. [CrossRef]

36. Yang, D.; Xue, G.; Fang, X.; Tang, J. Incentive mechanisms for crowdsensing: Crowdsourcing with smartphones. IEEE/ACM
Trans. Netw. 2015, 24, 1732–1744. [CrossRef]

37. Huang, X.; Zhong, Y.; Wu, Y.; Li, P.; Yu, R. Privacy-preserving incentive mechanism for platoon assisted vehicular edge computing
with deep reinforcement learning. China Commun. 2022, 19, 294–309. [CrossRef]

38. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

39. Wang, J.; Hu, J.; Min, G.; Zhan, W.; Zomaya, A.Y.; Georgalas, N. Dependent task offloading for edge computing based on deep
reinforcement learning. IEEE Trans. Comput. 2021, 71, 2449–2461. [CrossRef]

40. Li, Z.; Cai, J.; He, S.; Zhao, H. Seq2seq dependency parsing. In Proceedings of the 27th International Conference on Computational
Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 3203–3214.

41. Chen, Y.; Zhang, S.; Xiao, M.; Qian, Z.; Wu, J.; Lu, S. Multi-user edge-assisted video analytics task offloading game based on
deep reinforcement learning. In Proceedings of the 2020 IEEE 26th International Conference on Parallel and Distributed Systems
(ICPADS), Hong Kong, China, 2–4 December 2020; pp. 266–273.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPDS.2021.3099731
http://dx.doi.org/10.23919/JCC.2020.09.017
http://dx.doi.org/10.1109/ACCESS.2021.3109132
http://dx.doi.org/10.1016/j.future.2021.10.013
http://dx.doi.org/10.1109/ACCESS.2018.2868002
http://dx.doi.org/10.1109/JIOT.2022.3153089
http://dx.doi.org/10.1109/TNET.2015.2421897
http://dx.doi.org/10.23919/JCC.2022.07.022
http://dx.doi.org/10.1109/TC.2021.3131040

	Introduction
	Related Work and Preliminary Technology
	Related Work
	Preliminary Technology

	System Model
	Local Computation
	Edge Computation

	Incentives under Information Sharing Conditions
	Participant Utility Functions
	Problem Formulation
	Stackelberg Equilibrium Analysis under Information Sharing Conditions

	Study of the Incentives under Non-Information-Sharing Conditions
	Overview
	Design Details
	Optimization of Learning Objectives and Strategies

	Task Allocation for DRL Based on Greedy Thinking
	Overview
	Design Details
	Optimization of Learning Objectives and Strategies

	Simulation Results
	Performance Analysis of the Incentive Mechanism Algorithm Based on Learning Games
	Analysis of the Effectiveness of the Greedy-Based DRL Algorithm

	Conclusions
	References

