
Citation: Bocciarelli, P.; D’Ambrogio,

A. A TOSCA-Based Conceptual

Architecture to Support the

Federation of Heterogeneous MSaaS

Infrastructures. Future Internet 2023,

15, 48. https://doi.org/

10.3390/fi15020048

Academic Editor: Iwona Grobelna

Received: 16 December 2022

Revised: 16 January 2023

Accepted: 23 January 2023

Published: 26 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A TOSCA-Based Conceptual Architecture to Support the
Federation of Heterogeneous MSaaS Infrastructures †

Paolo Bocciarelli *,‡ and Andrea D’Ambrogio *,‡

Department of Enterprise Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
* Correspondence: paolo.bocciarelli@uniroma2.it (P.B.); dambro@uniroma2.it (A.D.)
† This paper is an extended version of our paper ”ArTIC-M&S: An Architecture for TOSCA-based Inter-Cloud

Modeling and Simulation” published in the Proceedings of 2020 Winter Simulation Conference, Orlando, FL,
USA, 14–18 December 2020; pp. 2018–2029.

‡ These authors contributed equally to this work.

Abstract: Modeling and simulation (M&S) techniques are effectively used in many application
domains to support various operational tasks ranging from system analyses to innovative training
activities. Any (M&S) effort might strongly benefit from the adoption of service orientation and
cloud computing to ease the development and provision of M&S applications. Such an emerging
paradigm is commonly referred to as M&S-as-a-Service (MSaaS). The need for orchestrating M&S
services provided by different partners in a heterogeneous cloud infrastructure introduces new
challenges. In this respect, the adoption of an effective architectural approach might significantly help
the design and development of MSaaS infrastructure implementations that cooperate in a federated
environment. In this context, this work introduces a MSaaS reference architecture (RA) that aims to
investigate innovative approaches to ease the building of inter-cloud MSaaS applications. Moreover,
this work presents ArTIC-MS, a conceptual architecture that refines the proposed RA for introducing
the TOSCA (topology and orchestration specification for cloud applications) standard. ArTIC-MS’s
main objective is to enable effective portability and interoperability among M&S services provided
by different partners in heterogeneous federations of cloud-based MSaaS infrastructure. To show the
validity of the proposed architectural approach, the results of concrete experimentation are provided.

Keywords: MSaaS; M&S-as-a-service; reference architecture; FAIR; TOSCA

1. Introduction

Modeling and simulation (M&S) is a widely used approach to analyze systems, nat-
ural phenomena, and processes [1,2]. It encompasses the specification of a simulation
model describing the addressed system or process from the required perspective, and the
consequent implementation of the corresponding executable simulation system, which is
run to reproduce the behavior of the system or process under study [3].

M&S approaches are neither tied to any specific application domain nor constrained
to the adoption of a given development paradigm. Indeed, they have proven their effective-
ness in various application domains. Among others, the development of complex systems,
such as distributed systems, high-performance computing systems, or cyber–physical
systems (CPS) might benefit from the adoption of a M&S approach as it allows analysts
to evaluate different design alternatives before starting the actual system implementation.
Specifically, innovative approaches, such as those that exploit methods and standards form
the model-driven engineering (MDE) field, can be introduced to automate and ease the
generation of a simulation model from the design models of the system under study [4–6].

Moreover, M&S approaches might be effectively adopted to support the develop-
ment of digital twins (DTs) [7], which have recently gained great popularity among re-
searchers and practitioners in the simulation field. A DT is a dynamic digital representation
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(e.g., a simulation model) of a physical system, which is referred to as a physical twin (PT).
The fundamental aspect of this paradigm is that the DT and the related PT are constantly
aligned so that changes in the operational state of the PT are reflected in relevant changes
in the DT configuration parameters. In this context, M&S approaches might be introduced
to derive a DT from the design model of the addressed system, thus ensuring the initial
compliance of the DT with its physical counterpart [8].

In order to leverage the potential benefits of M&S, technologies such as cloud computing
and service-oriented architectures (SOAs) can be introduced to build and provide M&S
applications through the composition of services available in the cloud, according to
the emerging M&S-as-a-service (MSaaS) paradigm [9,10]. Thus, according to a MSaaS
perspective, an M&S application can be built by integrating and orchestrating existing M&S
services, to enhance the interoperability, composability, reusability, and cost-effectiveness
of the M&S effort [11].

That is, the delivery of service composition in the cloud is a non-trivial task that
requires the proper execution of the following activities:

1. Starting with the simulation requirements and objectives, a candidate set of component
M&S services has to be identified, with each component service providing an interface
that meets the composite service requirements;

2. A choreography-based or an orchestration-based composition model has to be specified
to handle the execution flow of several component services;

3. Each component service has to be configured and deployed onto an execution plat-
form, which, in turn, requires the integration of a set of hardware and software
resources, such as computational nodes, containers, applications, networks connec-
tions, databases, and middleware.

As discussed in Section 4.1, in this work, we use the term application orchestration
with reference to the aforementioned activities 1 and 2, while activity 3 is referred to as
infrastructure orchestration.

The development of a MSaaS application becomes even more complex when the
needed composition includes M&S services provided by different and heterogeneous cloud
implementations in a so-called MSaaS-federated infrastructure.

In this context, the paper introduces an architecture for TOSCA-based inter-cloud
modeling and simulation (ArTIC-MS), a conceptual architecture that aims to address the
fair principles (findability, accessibility, interoperability, and reusability) in the development
of a MSaaS platform.

Specifically, the contribution proposed in this paper, which extends our previous
work [12], can be summarized as follows:

• The detailed description of the conceptual approach through which ArTIC-MS is specified;
• The complete specification of the ArTIC-MS functional view, by identifying the build-

ing blocks composing the conceptual architecture and introducing the relevant capa-
bilities they provide;

• The specification of the ArTIC-MS operational view, which is outlined throughout the
description of actors and relevant use cases.

Regarding the conceptual approach at the basis of ArTIC-MS specification, this pa-
per introduces a MSaaS reference architecture (RA) that aims at identifying the abstract
components and related capabilities required for addressing the development of MSaaS
applications in a federated infrastructure. Then, the proposed RA derives the concep-
tual architecture. ArTIC-MS exploits TOSCA (topology and orchestration specification for
cloud applications) [13] as an enabling standard to effectively ease the development of
M&S applications by integrating simulation components provided by different partners,
and deployed onto heterogeneous cloud infrastructure, in order to maximize the reuse of
existing components.

Regarding the functional specification of ArTIC-MS, it should be underlined that,
from a general perspective, its capabilities allow simulation developers to cope with
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both the infrastructure and application orchestration. The latter has been investigated in
previous contributions, where approaches, tools, and standards in the MDE field have been
introduced to support the generation of executable simulations from abstract orchestrations,
such as [14]. Thus, this aspect is not further discussed in this work, which focuses on
infrastructure orchestration.

From a concrete point of view, this work also discusses an example application where
a MSaaS prototype implementation based on ArTIC-MS was developed to assess how the
proposed approach might effectively contribute to satisfying the FAIR principles of a MSaaS
application in a federation of heterogeneous cloud infrastructure. The experimentation
was carried out within the scope of the MSaaS Architectures and Services for training and
experimentation (MASTER) project, a research effort carried out under the National Program
for Defense Research. The MASTER project aims at identifying innovative solutions for
developing M&S applications in the cloud. Specifically, the addressed case focuses on
the investigation of approaches to promote the interoperability of M&S resources. In this
respect, the proposed example deals with the integration of the ArTIC-MS prototype with
the open cloud ecosystem application (OCEAN) [15], a MSaaS platform based on the
open-source OpenStack cloud infrastructure [16].

The rest of this paper is structured as follows. Section 2 revises the existing literature
and clarifies the novelty of the proposed contribution, Section 3 provides the concepts at the
basis of this work by briefly outlining the TOSCA standard and the OpenStack IaaS cloud
implementation, Section 4 outlines the adopted architectural approach and introduces the
MSaaS RA, Section 5 illustrates the ArTIC-MS conceptual architecture, Section 6 provides
an operational description of ArTIC-MS throughout the specification of relevant use cases,
Section 7 discusses the experimentation. Finally, Section 8 provides concluding remarks.

2. Related Work

Various contributions can be found that demonstrate how simulation-based techniques
have been successfully adopted for years in many application domains to support different
operational needs [17–21]. As an example, the roles of M&S technologies and the MSaaS
paradigm as key enablers to develop innovative training capabilities, support system
analysis, and decision-making were underlined in [22].

Regarding the investigation of abstract architectures which specifically aim at ad-
dressing the development of MSaaS infrastructure, relevant contributions can be found
in [10,12,23].

In [10,23] the outcomes of the NATO Modeling and Simulation Groups MSG-136 have
been presented. Such contributions identify the preliminary requirements of a possible
MSaaS reference architecture for supporting the NATO operational needs, specifically with
regard to interoperability issues. In this respect, this paper shares the common objective of
identifying a reference architecture for MSaaS applications. On the other hand, this work
goes beyond: along with the description of a conceptual framework, the TOSCA standard
is also introduced for ensuring interoperability and supporting the development of MSaaS
applications in federated cloud infrastructure. Moreover, unlike the above-mentioned
contributions, ArTIC-MS is not tied to any application domain and can be effectively
adopted in various operational contexts.

Regarding the development of MSaaS platforms, several contributions have been
proposed that address such an issue from different perspectives [17,24–26]. In [17,24], inter-
operability and composability have been identified as two of the most relevant challenges
for M&S systems. While interoperability is defined as the ability to exchange data among
simulation components, composability emphasizes the need for a conceptual alignment of
data among the components part of a simulation system. In this regard, the main objective
of the proposed architecture is two-fold, namely the provision of an approach for the speci-
fication of the simulation system conceptual model, to identify the available existing M&S
components, and the use of the TOSCA standard for describing both the M&S components
and the composed simulation, in order to address interoperability issues.
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In [25], it is argued that MSaaS-based applications should be easily composed by
integrating loosely coupled shared components (in other words, simulation services), in a
cloud-based environment. The pillars of the MSaaS ecosystem have been discussed in [26].
According to the proposed architecture, a MSaaS system should be constituted by M&S
services, which are the building blocks of simulation applications, registries, and repositories,
containing M&S services descriptions and implementations, respectively, processes, which
define how services are discovered, composed, deployed and executed, an infrastructure,
which describes the simulation environment and, finally, a portal, which constitutes the
entry point to start the MSaaS process. Such contributions have inspired the essential
building blocks at the basis of the ArTIC-MS’s architectural design, which also introduces a
step forward by addressing interoperability in the case of inter-cloud service composition.

Finally, existing literature also provides relevant examples of already available MSaaS
platforms, such as CloudSME [27], Simulation Platform [28], and OCEAN [15]. Due to their
architecture and rationale, CloudSME and the simulation platform are largely different
from ArTIC-MS. CloudSME [27] is a multi-cloud platform for developing and executing
commercial cloud-based simulations and its primary target audience includes commercial
software vendors and consultant companies in the IT domain, as well as small and medium-
sized enterprises (SMEs).

The simulation platform [28] consists of a cloud of virtual machines (VMs) upon which
a GNU/Linux OS runs. Various types of software, including scientific software, compilers,
libraries, and neural simulators are pre-installed on each VM. The platform allows users to
request the assignment of a set of VMs to build and run a scientific simulation, according
to specific requirements.

Differently, OCEAN [15] is a MSaaS platform based on OpenStack and specifically
designed and developed for supporting training and simulation-based exercises in the
context of NATO-funded military research programs. Similar to the ArTIC-MS platform,
OCEAN’s architecture includes a cloud infrastructure, a service repository, and a portal
that allows users to discover, select, compose, and deploy M&S components. Moreover,
it also shares the potential target audience. The main difference is that OCEAN is not
specifically designed to support inter-cloud interoperability. Its orchestration engine (i.e.,
OpenStack HEAT [29]) requires the use of an implementation-specific technology, namely
HOT (Heat Orchestration Template) [30], for the description of a simulation application,
while ArTIC-MS makes use of the TOSCA standard.

Regarding the orchestration of service composition, the architecture proposed in [14]
exploits MDE-based approaches and techniques to automate the application-level orches-
tration of M&S services according to an abstract composite service specified by use of
different standards and notations, e.g., the unified modeling notation (UML) and the busi-
ness process modeling and notation (BPMN). As already mentioned in Section 5, ArTIC-MS
deals with the infrastructure-level orchestration, e.g., the execution of actions required for
deploying and executing the several M&S services onto the required execution platform.

Finally, a preliminary version of ArTIC-MS was proposed in a previous work that this
paper extends [12]. It should be underlined that the novel contribution this paper provides
is not limited to a revision of ArTIC-MS building blocks. Differently, the two papers are
quite different from each other and they do not address the same objectives. Moreover, the
completeness of this work goes far beyond what we discussed in the previous contribution.
Specifically, the previous paper aims to provide a preliminary description of ArTIC-MS,
which focuses on the identification of architecture’s building blocks. Such a description
does not give any detailed view of the capabilities of each component and does not discuss
the conceptual approach used for its specification. Moreover, the previous paper discusses
an example application for assessing the feasibility and limitations of standards, principles,
and technologies at the basis of the proposed approach.

Differently, this work illustrates the complete methodological and architectural ap-
proach that has been used to specify ArTIC-MS, as discussed in Sections 4.2 and 4.3,
respectively. Moreover, this paper provides a complete description of ArTIC-MS from



Future Internet 2023, 15, 48 5 of 24

functional and operational points of view, as outlined in Sections 5 and 6, respectively.
Specifically, the architecture is described in terms of:

• The adopted conceptual architectural approach, clarifying how ArTIC-MS was derived
from a reference architecture, and how concrete implementations might be based on
ArTIC-MS;

• The capabilities of ArTIC-MS;
• The operational view of ArTIC-MS, which is described throughout the specification of

ArTIC-MS actors and use cases that specifically address the federation of heteroge-
neous infrastructure.

From a concrete point of view, this work discusses an example application carried out
as part of the MASTER research project, which addresses a federation of two heterogeneous
cloud infrastructure (OpenStack [16] and Alien4Cloud [31]) to show how ArTIC-MS can
be used for supporting the FAIR principles (findability, accessibility, interoperability, and
reusability) of a MSaaS platform.

3. Background

This section briefly outlines the standards and technologies on the basis of the pro-
posed contribution. Specifically, Section 3.1 illustrates the OASIS standard TOSCA, while
Section 3.2 briefly introduces the open-source cloud implementation OpenStack.

3.1. Topology and Orchestration Specification for Cloud Applications (TOSCA)

The description of a cloud application’s topology and its deployment and configura-
tion is a complex task that cloud vendors address by adopting different approaches and
technologies, such as the Amazon AWS CloudFormation [32] or the Heat Orchestration
Template (HOT)) [30], the template format based on the YAML (YAML Ain’t Markup
Language) [33] markup language, which is supported by Heat [29] the orchestration engine
of the OpenStack cloud platform [16].

In this context, in order to pursue the harmonization of existing approaches, the
Organization for the Advancement of Structured Information Standards (OASIS) has
proposed TOSCA (Topology and Orchestration Specification for Cloud Applications), a
standard language for describing cloud-based service orchestration [13,34].

TOSCA defines a YAML-based specification for describing an IT service in terms of
both its computing infrastructure and the required procedures for deploying, instantiating,
executing and managing the service. The standard also specifies a packaged file format,
namely Cloud Service Archive (CSAR), which allows one to store in the same package
the YAML service description and the set of software artifacts (e.g., OS virtual images,
libraries, scripts, DMBSs installation files, middleware, application software in executable
form, etc.) that actually implement the service. The CSAR package is given as input to the
TOSCA Engine, which is responsible for processing the YAML description so, overseeing the
deployment of several artifacts composing the IT service, and orchestrating the execution
of the related managing procedures.

In TOSCA a service is specified in terms of a Service Template, which is a YAML de-
scription, which completely specifies the service structure and its related characteristics. A
service template includes the following elements:

• Topology template, which is the most relevant component of a service template,
as it describes the structure of a service in terms of its building blocks. The service
structure is specified by the use of a direct graph in which nodes represent the building
blocks of a service (e.g., servers, network interfaces, virtual images, databases, etc.),
and edges represent the relationships between nodes (e.g., deployment relationship,
connection relationship, etc.). According to a hierarchical structure, in TOSCA nodes
and relationships are, in turn, further specified by the use of node templates and
relationship templates, respectively.

• Node type and relationship type, as in TOSCA each element must be associated with
a type. Indeed, node templates and relationship templates are typed by node type
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and relationship type, respectively, which provide the characterization of properties
and interfaces of each TOSCA topological element. The Service template contains a
separate description of node types and relationship types to facilitate their reuse.

• Life cycle operations, as TOSCA addresses the operational management of a service,
the Service Template also includes the specification of executable artifacts (e.g., scripts)
implementing the several operations executed by the TOSCA engine to handle the ser-
vice during its life cycle (deployment, execution, ’undeployment’, configuration, etc.).

As the use of TOSCA allows the specification of vendor-agnostic service orchestra-
tion, in this work, TOSCA is used as a reference notation for specifying reusable and
interoperable service descriptions.

A detailed description of the TOSCA standard is beyond the scope of this paper.
Interested readers are referred to the official documentation.

3.2. OpenStack

OpenStack [16] is an open-source project providing the implementation of an infrastructure-
as-a-Service (IaaS) cloud infrastructure. OpenStack provides the orchestration engine
HEAT [29] that allows the deployment and execution of composite cloud applications
described by use of topology templates specified in the YAML-based description format
HOT (Heat Orchestration Template) [30].

OpenStack also includes HEAT Translator [35,36], a component that allows the trans-
lation of TOSCA templates to semantically equivalent HOT templates. As clarified in
Section 7, ArTIC-MS exploits the HEAT Translator to enact the interoperability of services
provided by different vendors in a heterogeneous MSaaS federation. In this respect, it is
worth noting that the HEAT Translator was designed to be easily extended to enable the
translation of various input formats to HOT descriptions.

4. MSaaS Reference Architecture

This section illustrates the proposed reference architecture (RA) for MSaaS federated
infrastructure. In order to better frame this paper’s contribution and clarify the adopted
terminology, Section 4.1 outlines the addressed context: the development of a distributed
simulation as an orchestration of services in the cloud. Section 4.2 briefly outlines the
proposed approach in the frame of the enterprise architecture design. Finally, Section 4.3
introduces the proposed MSaaS RA.

4.1. Orchestration of MSaaS-Based Distributed Simulations

According to a MSaaS perspective, a distributed simulation is an application built
as an orchestration of existing M&S services available in the cloud. Specifically, the term
orchestration takes into consideration both the specification of how services have to cooperate
to provide the required functional behavior and the management of several components
that contribute toward providing the execution platform. Thus, the development of a
MSaaS application is typically undertaken through the following steps, as summarized in
Figure 1:

• Service discovery: In order to satisfy the MSaaS application requirements, a service
discovery is performed to identify the set of candidate M&S services providing the
required capabilities. Specifically, as detailed in Section 5.2 the functional and non-
functional services characteristics are described in terms of metadata-based descriptions
stored in a services registry, while the related services implementations are stored in a
services repository.

• Service composition: The service composition or, in other words, an application orches-
tration, refers to architectures, methods, and tools, used to coordinate the execution
flow and the messages exchange among the M&S services identified in the previous
step, in order to meet the functional requirements of the needed simulation.

• Service deployment: Each M&S service implementation requires to be deployed on
top of the given execution platform, which consists of computing nodes, systems and
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application software, databases, network connections, etc. The term infrastructural
orchestration includes those activities needed to set up the execution infrastructure
and deploy, configure and eventually start the required M&S services. In this context,
machine-readable formats for specifying the service deployment description, along
with an orchestration engine able to compute such descriptions, can be introduced for
easing the service infrastructural orchestration.

With regard to infrastructure orchestration, this work exploits the TOSCA standard to
improve the portability and interoperability of M&S services. This is achieved by specifying
YAML-based and vendor-independent orchestration descriptions that can be automatically
processed by any TOSCA-compliant engine.
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Figure 1. Application and Infrastructural orchestration for MSaaS applications.

4.2. Enterprise Architecture and Reference Architectures

The design and development of large and distributed systems built by integrating var-
ious components that cooperate by exchanging control information and data are non-trivial
tasks. Thus, the specification of a system architecture (which specifies the system structure,
the boundary of each component, the interfaces they provide, and the expected inputs and
outputs) is one of the most important steps to be taken in developing a complex system.

More generally, in order to make the system architecture suitable to provide different
stakeholders with the required information, various architectural layers have to be consid-
ered. Conceptual architecture models can be defined to describe the system from an abstract
or business-related perspective. Then, iteratively, more refined architectural models are
derived from abstract ones, until concrete architectures specifying the internal detail of each
system component are finally developed. Several Architectural framework exist that pro-
vide guidance for structuring, classifying, and specifying such architectural layers, among
others, NAF [37], DoDAF [38], and TOGAF [39].

In this context, the enterprise architecture discipline [40], introduces the concept of
reference architecture (RA): A RA is a part of the enterprise architecture that provides standards
and documentation for a particular type of capability throughout the enterprise [41].
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Thus, an RA is an abstract architectural template that provides guidance to support the
development of a concrete system in a given operational context. More specifically, a RA
addresses a given domain and describes an abstract architecture in terms of structural
building blocks, their relationships, and the capabilities each building block provides.

From the same RA, one or more concrete architectures can be derived, each used for
driving the implementation of actual systems, as summarized in Figure 2.

Reference Architecture

Concrete Architecture 1 Concrete Architecture n

System 
Implementation

#1

System 
Implementation

#1

derived fromderived from

conforms to conforms to

Application 
Domain

used in

specified for

Figure 2. Reference architecture, concrete architectures, and systems implementations.

4.3. Structure of the MSaaS Reference Architecture

The proposed MSaaS RA, shown in Figure 3, consists of the following building blocks:

• User interface: Provides a web-based visual interface that allows users to make use of
the capabilities provided by other RA building blocks.

• Discovery service: Provides the capability to perform a federated service discovery, in
order to retrieve the existing M&S services made available by the federation’s participant.

• Composition Service: Provides the capability to create a MSaaS application by com-
posing the needed services.

• Deployment service: Provides the capability to carry out the following activities:

– Configuration of each M&S service included in the composition;
– Specification of the computing nodes constituting the execution platform;
– Description of how the M&S services have to be deployed onto the execution

platform.

• Repository service: Provides the capability for storing actual M&S services imple-
mentations.

• Registry service: Provides the capability for storing M&S services descriptions.
• Orchestration service: Provides the capability to run the executable artifacts included

in the deployment description.
• Adaptation service: Provides the capability for adapting the deployment description,

in order to make it compliant with the Orchestration Service.
• Modeling and simulation services: Provide the capability for building a MSaaS

application. When a new M&S service is registered on the MSaaS infrastructure, the
corresponding entry, which includes the service description, is created in the concrete
registry managed by the registry service. Moreover, the service implementation is
made persistent due to the capability provided by the repository service.

• Simulation management and execution control (SMEC) Service: Provides the capa-
bility for overseeing the simulation execution.

• Infrastructure control service: Provides a set of cross-functional capabilities including
logging capability, infrastructure monitoring capability, resource monitoring capability, etc.
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As discussed in Section 1, along with the MSaaS RA, this paper’s contribution also
includes ArTIC-MS, a conceptual architecture derived from the RA, which specifically
introduces TOSCA as an enabling technology for ensuring the actual interoperability and
portability of M&S services in a federated infrastructure.

The next section introduces ArTIC-MS and clarifies how the proposed approach
ensures the interoperability of concrete architectures derived from ArTIC-MS or directly
from the RA.

User Interface

MSaaS Reference Architecture

Front-End Layer

Back-End Layer

Composition Service

Deployment Service Repository Service Registry Service

Discovery Service
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ru

ct
ur
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orchestrate
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Figure 3. MSaaS reference architecture.

5. Architecture for the TOSCA-Based Inter-Cloud M&S (ArTIC-MS)

As stated in Section 2, this work extends a preliminary version of ArTIC-MS [12].
Specifically, Section 5.1 outlines the rationale at the basis of the ArTIC-MS design, Section 5.2
provides a detailed description of ArTIC-MS building blocks, Section 5.3 clarifies the role
played by ArTIC-MS and TOSCA in a heterogeneous federation and, finally, Section 5.4
outlines how TOSCA features are exploited to build M&S services.

5.1. ArTIC-MS Rationale

In order to properly address the inter-cloud service orchestration scenario, the de-
sign of ArTIC-MS is based on principles and assumptions illustrated in [12] and hereby
summarized for the sake of completeness:

• Service descriptions: The interoperable integration of services deployed in different
infrastructures and implemented by the use of various technologies requires the
availability of an agnostic and technology-independent service description. ArTIC-MS
adopts service descriptions that specifically address:

– Metadata: This is used for describing services. Due to the availability of metadata,
users can identify the most suitable services that have to be integrated into the
MSaaS application. Metadata are stored in the service registry.

– Infrastructural orchestration description: This is used to deploy and execute a service.
ArTIC-MS assumes that such a description, which is stored in a Service repository:
This is provided as a TOSCA CSAR package. The scenario that clarifies how
an ArTIC-based MSaaS implementation can be federated with other MSaaS
infrastructure is discussed in Section 7.



Future Internet 2023, 15, 48 10 of 24

• Service discovery: In federated MSaaS infrastructure, a discovery service shall be
provided to enable users in identifying and retrieving services that each partner
made available on its cloud platform. In this respect, it is assumed that the service
registry provides an application program interface (API) for implementing inter-cloud
service discovery.

• Service availability: The provisioning of various MSaaS services is the responsibility
of the several federated infrastructure partners. In turn, each partner shall be provided
with features to retrieve and integrate such services to build more complex MSaaS
applications. In this respect, each service can be provided by a partner in two different
configurations, according to the preferred business model:

– Running services: A partner might provide a running service that is deployed
and configured under the responsibility of the providing partner. In this case,
the service metadata includes a service endpoint (e.g., a URI) and an interface
description (e.g., by use of web service definition language (WSDL));

– deployable services: A partner might provide an instance of the service specified in
terms of artifacts and an infrastructural orchestration description (e.g., a TOSCA
CSAR package). In this case, the service metadata includes a reference to the
service repository that stores the CSAR package.

• Service composability: The main objective of the ArTIC-MS platform is to support
users in executing the various activities required to build, describe and make available
M&S services, and to use such services for building complex MSaaS application. It
should be underlined how a MSaaS application can be treated as a (complex) M&S
service; thus, its description and implementation will be stored in the service registry
and the service repository, respectively. Moreover, it can be recursively used as a
building block of other compositions.

5.2. ArTIC-MS Conceptual Architecture

ArTIC-MS conceptual architecture, which is shown in Figure 4, consists of the follow-
ing building blocks:

• Web-based user interface: Provides a web-based visual interface that allows users to
make use of the capabilities provided by other ArTIC-MS building blocks.

• Composer: Provides a visual environment to create the MSaaS application by com-
posing the required services.

• Deployment handler: Provides the capability to carry out the following activities:

– The configuration of required parameters for each concrete M&S service included
in the MSaaS application;

– The configuration of each computing node that composes the execution platform;
– The specification of the required configurations specifying how M&S services

have to be deployed onto the execution platform.

• Repository interface: Provides an interface to access the repository service.
• Registry interface: Provides an interface for accessing the registry service.
• Federated service discovery: Provides a visual environment that allows users to

perform federated service discovery. This building provides the capability for execut-
ing inter-cloud M&S service discovery by exploiting the registry services API made
available by each federation’s participant.

• Cloud infrastructure interface: Provides the ability to interact with the underlying
cloud infrastructure.

• Services repository: Provides the capability for storing actual M&S services imple-
mentations.

• Services registry: Provides the capability for storing M&S services descriptions.
• TOSCA engine: Provides the capability for supporting the MSaaS deployment and its

execution. As mentioned in Section 3.1, the CSAR archive contains the YAML-based
service template specification and the executable artifacts which actually implement
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the service. In this respect, the TOSCA engine takes as input the CSAR description
of each concrete service composing the MSaaS application and computes the related
TOSCA service template in order to:

– Deploy the service implementation on top of the required execution platform,
according to the topology template specification;

– Start the service by invoking the required life-cycle operations provided by the
executable artifacts.

• Service description translator: Provides the capability for parsing and translating a
YAML-based TOSCA service template to make it compliant with non-TOSCA cloud
implementations, and vice versa.

To better clarify the relationship between the RA and ArTIC-MS it should be under-
lined that the RA specifies an abstract template for guiding the development of concrete
MSaaS infrastructure implementations, while ArTIC-MS is a conceptual architecture which
refines the RA in order to achieve the following objectives:

• The explicit adoption of TOSCA, which is acknowledged to be a promising standard for
supporting the interoperability of M&S services in heterogeneous MSaaS federation;

• The specification of appropriate use cases, in order to describe how the composition,
deployment and orchestration of M&S services in a federated MSaaS infrastructure
is dealt;

• The identification of abstract components constituting the backbone of any MSaaS
infrastructure implementation based on TOSCA.
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Figure 4. Conceptual architecture of ArTIC-MS.

Regarding the last point, it should be underlined that, in order to keep the proposed
solution as abstract as possible, the RA itself has been specified in terms of interacting
services that provide the required capability, according to the MSaaS paradigm. Differently,
ArTIC-MS identifies appropriate components which have to be included in any concrete
architecture deployed as part of the MSaaS infrastructure implementation. As an example,
the RA introduces a capability provided by the registry service which, from a MSaaS per-
spective, might be available in a catalog of existing M&S services. Differently, ArTIC-MS
includes a registry component that must be included in any compliant concrete architecture
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and, consequently, implemented as an actual repository capable of storing YAML-based
service templates.

Thus, the adoption of ArTIC refines the layered architecture principle introduced in
Section 4.2, as shown in Figure 5.
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Figure 5. Relationships among different architectural layers.

Three different layers have to be considered:

• Abstract architecture layer: Describes an abstract architecture, which has been specif-
ically defined to cope with a given application domain. In our approach this layer is
further specialized, to include the two following architectural layers:

– MSaaS reference architecture: As described in Section 4.3, the RA is the abstract
template which any MSaaS concrete architecture has to comply with.

– ArTIC-MS: A conceptual refinement of RA that introduces TOSCA.

• Concrete architecture layer: Includes any concrete architecture for implementing a
specific MSaaS Infrastructure. TOSCA-oriented architecture shall be compliant with
ArTIC-MS, while architectures based on different standards and technologies shall be
directly derived from the RA.

• Implementation layer: Includes any concrete implementation of MSaaS infrastructure.

The next section further clarifies how different MSaaS infrastructure implementations
might cooperate in a heterogeneous federation.

5.3. ArTIC-MS in a Federated MSaaS Infrastructure

The proposed architectural approach fosters the effective interoperability and porta-
bility of M&S services provided by different MSaaS infrastructures in a heterogeneous
federation. Specifically, the adoption of TOSCA and compliance with the proposed MSaaS
RA aims at effectively supporting such a scenario, as shown in Figure 6.
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Figure 6. Federated MSaaS infrastructure.

The pillars upon which the federation is built are the following:

• A registry service providing an API-based discovery capability;
• The adoption of a machine-readable deployment description;
• The availability of a service description translator building block that provides the

capability for translating deployment descriptions that are not specified by the use of
TOSCA (and vice-versa);

• Orchestration engine which provides the capability for processing the adopted de-
ployment description notation.

A detailed description that shows from an operational perspective how ArTIC-MS
might support federated MSaaS infrastructure implementations is provided in Section 6.

5.4. Service Description and Composition in TOSCA

One of the founding pillars of ArTIC-MS is the availability of a catalog of M&S services
that can be composed and orchestrated in order to build distributed MSaaS applications.
In this respect, as the provisioning of M&S services constitutes the basis of the ArTIC-MS
operational specification provided in Section 6, this section illustrates the TOSCA principles
on which the classification and composition are based.

According to TOSCA grammar, a service template is a composable item: indeed, an
existing topology template can be reused as the node template, which constitutes the
building block of a larger and more complex service.

That principle is actually enacted by the substitution mapping feature. TOSCA allows
the specification of abstract node templates, e.g., node templates that do not provide any
implementations for the life-cycle management operations. At execution time, the TOSCA
engine is provided with appropriate substituting templates. Such concrete templates
provide the same external faç̧ade (i.e., properties, capabilities, etc.) as the abstract node
template and also include a concrete specification for the remaining template elements, as
shown in Figure 7.
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Figure 7. Service substitution principle.

The substitution principle is introduced in order to help defining a conceptual classifi-
cation of available services and related capabilities. As explained in Section 6.1, ArTIC-MS
specializes the services repository by introducing a MSaaS-oriented type repository, which
stores abstract templates that any provider might use as building blocks for the concrete
services they want to make available.

5.5. Comparison with the Preliminary Version

As stated in Section 2, this work extends the preliminary version of ArTIC-MS that
has been proposed in [12]. In order to better point out the contribution proposed in this
work, this section summarizes how ArTIC-MS has been revised. The preliminary version is
depicted in Figure 8.
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Figure 8. Preliminary version of ArTIC-MS.

The proposed revision of ArTIC-MS does not aim to disrupt what has been proposed
in the previous work. Rather, in this work, the ArTIC-MS structure has been reorganized
and rationalized in order to make it able to provide the capabilities required for its use
in the addressed concrete experimentation. Moreover, since the previous work included
only preliminary identification of ArTIC-MS components, without describing the relevant
capabilities, this work provides a completely functional and operational specification of the
architecture. Specifically, compared to [12], this paper’s Section 5:

• Outlines the rationale of the architecture;
• Provides an extensive description of the capabilities that each component shall provide;
• Introduces new components (composer, deployment manager, federated service dis-

covery), which replace existing ones, revising and enriching the provided capabilities;
• Introduces new components (service description translator, infrastructure control and

simulation management and execution control), which have not been considered in
the preliminary version;
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• Revises the description and the provided capabilities of the repository manager and
the registry manager.

6. ArTIC-MS Use Case Specification

This section describes ArTIC-MS from an operational perspective. In this respect, the
UML use case diagram shown in Figure 9 outlines the responsibilities of the following
ArTIC-MS users.

• Simulation expert (SE): Responsible for the elicitation and specification of MSaaS
application requirements.

• Simulation service provider (SSP): Responsible for the development and the provi-
sioning of M&S services;

• Simulation developer (SD): Responsible for the development of MSaaS applications.
Specifically, the SD deals with the identification of appropriate M&S services and their
composition to build a MSaaS application compliant with the simulation requirements
provided by the SE;

• TOSCA expert (TE): Owns appropriate knowledge of the TOSCA standard. She/he
is also in charge of supporting other users for the specification of the required YAML-
based templates;

• Simulation user (SU): Final user of the simulation application;
• ArTIC-MS administrator (ADM): The user who possesses the required skills for

managing the ArTIC-MS platform. Its main task is to provide other users with the
required environment for building, executing, and monitoring simulation experiments.

The following sections detail the use cases that focus on the development and deploy-
ment of a MSaaS simulation built as an orchestration of available M&S services. It is worth
noting that this paper only considers the case in which the federated MSaaS infrastructure
includes heterogeneous cloud implementations, as discussed in Section 5.3. A scenario
dealing with all TOSCA-based cloud implementations has already been discussed in previ-
ous work [12]. Finally, the use cases dealing with ArTIC-MS management and simulation
experiment execution/evaluation are not further discussed in this work.
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Figure 9. ArTIC-MS use case diagram.
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6.1. Development and Provisioning of a M&S Service

This use case, whose execution flow is outlined in Figure 10, involves two users
owning different skills: the TOSCA expert (TE) and the simulation service provider (SSP).

ArTIC-MS

Simulation Service ProviderTOSCA Expert

1. buiilds MSaaS core
     types

2. updates the MSaaS 
core types repository

4. build M&S 
    services

5. update the TOSCA M&S
    Services Repository

Services Registry
TOSCA

MSaaS Core
Types Repository

TOSCA
M&S

Services Repository

TOSCA Engine

TOSCA
NormativeTypes

Repo

Service Repository

uses

3. updates the 
    Service Registry

6. update the Service
    Registry

uses

Figure 10. Use case for building a TOSCA-based M&S Service.

As discussed in Section 5.4, a service template is composed of typed elements (e.g., nodes
and relationships) and might include other existing (and abstract) templates. Thus, the SSP
makes use of existing types and templates that are refined, extended, and composed in order
to develop the needed M&S service. Differently, the TE is responsible for the specification
of the TOSCA core MSaaS templates and also supports the SPP to specify the various YAML-
based TOSCA templates needed to make available the provided M&S services.

In this respect, Figure 10 also provides a more detailed view of the following ArTIC-MS
building blocks:

• TOSCA engine: Provides the implementation of TOSCA normative types which consti-
tutes the building blocks of other templates;

• Services repository: Includes the TOSCA MSaaS core types repository, which stores the
abstract and concrete templates for the core MSaaS types upon which other service
templates are built, and the TOSCA M&S services repository, which hosts the CSAR
packages wrapping the provided M&S services, respectively.

The use case is specified as follows:

1. The TOSCA Expert (TE) logs into ArTIC-MS to create the required templates for
specifying MSaaS core types used to build the M&S services;

2. The YAML templates are stored in the TOSCA MSaaS core template repository and
corresponding entries are added to the services registry;

3. The simulation service provider (SSP) develops the executable artifacts implementing
the provided M&S services;

4. The TE and SSP cooperate to specify an appropriate YAML template for each provided
M&S services;

5. The related CSAR package is built and stored in the TOSCA M&S service repository;
6. The SSP provides a metadata description for each M&S service that is stored in the

services registry.
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6.2. Composition and Deployment of a Federated Simulation Application

This section illustrates the use case in which the federation is composed by heteroge-
neous MSaaS infrastructure based on the RA. Specifically, the service provider is responsible
for creating M&S services (and also MSaaS applications exported as CSAR complex ser-
vices, as discussed in Section 6) by using the ArTIC-MS platform (left part of the figure).
Differently, Simulation Developers, which uses a non-TOSCA MSaaS implementation, needs
to build a MSaaS simulation by orchestrating local M&S services with TOSCA-based M&S
services provided by the service provider. The scenario is specified as follows:

Precondition: the Service Provider (SP) created a set of M&S services and MSaaS applications,
which are available as CSAR packages in ArTIC-MS (see Figure 11—steps 1 to 4).

1. the Simulation developer (SD) logs into the MSaaS platform and executes a query to
identify the available M&S services. As the query makes use of the API interfaces
provided by each partner’s registry, the SD is able to discover local services along
with the TOSCA-based services provided by the SP (see Figure 11, steps 5);

2. SD identifies the set of needed services (see Figure 11, step 6). In this respect, SD
identifies N services, where NL are available in the local infrastructure, NE services are
provided by remote partners via a URI endpoint and an interface specification (e.g.,
WSDL, etc.); finally, NRs are available from SP’s remote services repository as CSAR
packages, being N = NL + NE + NR. In this respect, according to the business model
assumed to be adopted by the SP, a subset of the NR (i.e., NR−REM) services might
need to be deployed onto the SP infrastructure, while the remaining NR−LOC can be
retrieved and deployed onto the SI infrastructure, being NR = NR−REM + NR−LOC

3. SD retrieves from the local repository the locally available NL services;
4. In order to ask for the deployment and execution of the NR−REM services that need to

be directly managed by the SP’s infrastructure, SD forwards a request to the ArTIC-MS
simulation management and execution control service (see Figure 11, step 7);

5. SD retrieves the CSAR descriptions of NR−LOC M&S services from the ArTIC-MS
service repository (see Figure 11, step 8);

6. SD translates the TOSCA template contained in the CSAR package to a vendor-specific
template via the Adaptation Service (see Figure 11, step 9);

7. SD uses the composition service to create a template that describes the given MSaaS
application, by composing the retrieved services (see Figure 11, step 10);

8. SD configures the required parameters of the various M&S services;
9. SD configures the composition to make it possible to invoke the operations provided

by the endpoints of the remote M&S services;
10. SD develops and configures a deployment description suitable for the underlying or-

chestration technology;
11. the deployment description is given as input to the deployment service in charge of

executing the automated deployment of the simulation (see Figure 11, step 11);
12. The MSaaS application is finally ready to be used by the simulation end user (SU).
13. During the simulation execution, the appropriate interaction between the two coop-

erating MSaaS infrastructure is managed through the simulation management and
execution control (SMEC) service (see Figure 11, step 12);
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Figure 11. Federation of heterogeneous MSaaS infrastructure.

7. Experimentation of ArTIC-MS: Federation with OCEAN

As discussed in Section 1, the main objective of this paper is the complete specifi-
cation of ArTIC-MS, a conceptual architecture aiming to foster the FAIR principles in
MSaaS environments.

In this respect, a preliminary evaluation of the soundness of principles on the basis
of ArTIC-MS has been discussed in [12]. Specifically, such an analysis has addressed the
following issues:

• The availability of existing software products for developing TOSCA templates;
• The availability and usability of IaaS cloud implementations compliant with TOSCA;
• The effectiveness of the HOT translator component, for mapping TOSCA templates to

HEAT-based ones.

Differently, in this work, experimentation was carried out as part of MASTER, a
research project developed under the National Program for Defense Research, which aims
to define innovative solutions for developing M&S applications in the cloud.

A prototype MSaaS concrete implementation based on the TOSCA-compliant IaaS
platform Alien4Cloud [31] and compliant with ArTIC-MS has been developed. Then, a
heterogeneous MSaaS federation has been built by federating the ArTIC-MS prototype
with OCEAN [15], a MSaaS platform based on the open-source OpenStack cloud infrastruc-
ture [16].

As ArTIC-MS focuses on infrastructure orchestration, the experimentation has not
addressed the evaluation of measurable simulation-related performance parameters (e.g.,
the simulation execution time or the speed-up). Rather, it has been conducted to assess
how ArTIC-MS is able to support the FAIR principles in the development of a MSaaS-
based application, by (i) easing the discovery of services in a heterogeneous federation
(findability), (ii) retrieving the required M&S resources throughout a metadata-based
discovery (accessibility, and (iii) improving the interoperability and reusability of M&S
resources thanks to the adoption of TOSCA.

The experimentation has addressed the simulation of a maritime defense scenario, as
depicted in Figure 12. The simulation includes two M&S services: a scenario generator avail-
able from the TOSCA-based ArTIC-MS prototype implementation, and a naval simulator,
which is managed by OCEAN.
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Figure 12. Federated MSaaS Infrastructure for the simulation of a maritime defense scenario.

The architecture of the adopted OCEAN implementation is depicted in Figure 13.
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Figure 13. OpenStack-based OCEAN implementation.

OCEAN provides a visual interface to specify templates by composing the several
elements (software artifacts, computing nodes, network connections, etc.) available from
a dedicated toolbox and includes a feature for searching existing services that can be
used as building blocks of more complex composed services. As an OpenStack-based
implementation, OCEAN makes use of the orchestration engine HEAT to parse topology
templates specified by the use of the HOT description format, which is based on YAML.

The experimentation addresses the use case discussed in Section 6.2 and specifically
focuses on the portability of TOSCA-based M&S services onto the OCEAN infrastruc-
ture. Specifically, Figure 14 shows the sequence of activities and the flow of information
exchanged between the two federated infrastructures.

User A, which acts as a service provider, is responsible for developing the scenario
generator service, specifying the relevant TOSCA-based template and creating the CSAR
package to make the M&S available to other users, as discussed in Section 6, by using the
ArTIC-based infrastructure platform (upper part of the figure).

User B, which acts as the simulation developer, is responsible for developing the
required simulation which addresses the maritime defense scenario illustrated in Figure 12,
by identifying, retrieving, deploying, and orchestrating the required M&S services, e.g., the
scenario generator and the naval simulator.

Specifically, the experimentation has been carried out as follows:

Precondition: executable artifacts implementing the Scenario Generator service are available
for User A.

1. User A creates the CSAR package, which wraps the scenario generator service template
and the relevant executable artifacts, and uploads it to the service repository. The
relevant metadata are also uploaded to the service registry (see Figure 14 steps 1–3);

2. User B logs into the OCEAN platform and executes a keywords-based query to
discover the M&S services required for simulating the addressed scenario. Specifically,
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the service registry is inquired to identify the services whose metadata satisfy the
search criteria specified by User B (see Figure 14 step 4). The naval simulator service
is available in the local infrastructure. Thanks to the capabilities provided by the
federated service discovery component of ArTIC-MS, User B is able to discover the
scenario generator hosted by the federated infrastructure;

3. User B retrieves the CSAR descriptions of the scenario generator M&S service provided
by User A and stored in the ArTIC-MS repository (see Figure 14 step 5);

4. The TOSCA template contained in the CSAR package is translated to a HOT template
(see Figure 14 step 6);

5. The generated HOT template is configured and deployed to the OCEAN infrastructure.
6. User B uses the visual environment provided by OCEAN to specify and configure the

orchestration and, finally, executes the simulation (see Figure 14 steps 7–8).

ArTIC-MSUser A
(Service Provider)

1. Creates TOSCA
    M&S services

2. stores TOSCA 
    CSAR package

6. translate 
    to HOT

5. retrieve TOSCA 
    CSAR package

OCEAN

Openstack
Infrastructure

7. Deploy

ArTIC-based Infrastructure
(TOSCA-Compliant)

OCEAN Infrastructure
(HOT-Compliant)

Service
Registry

API

3. stores Service
    Metadata

4. API-based
    Service Discovery

TOSCA
Engine

CSAR

HOT

User B
(Simulation Developer)

Service
Repository

HEAT 
Orchestration 

Engine

HEAT 
Translator

8. Orchestrate
      Services

Figure 14. Federation of ArTIC-MS and OCEAN.

The scenario generator service provided by User A is available as a .iso virtual image
to be deployed on top of a virtual machine. The server configuration includes two different
network interfaces. A fragment of the TOSCA-based YAML service template is provided
in Listing 1, while a fragment of the HOT-based YAML template yielded as output by the
HEAT translator is provided in Listing 2.
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Listing 1. TOSCA Service Template.

tosca_definitions_version: tosca_simple_yaml_1_0
description: scenario generator
topology_template:
...
node_templates:
virtual_machine:
type: SoftwareComponent
artifacts:
vm_image:
file: images/service -image.iso
type: tosca.artifacts.Deployment.Image.VM.iso
requirements:
host: server
# VM deployment
interfaces:
Standard:
create: vm_image
server:
type: tsca.nodes.Compute
capabilities:
host:
properties:
disk_size: 15 GB
num_cpus: 1
mem_size: 4096 MB
...

Listing 2. HOT Service Template.

heat_template_version: 2013 -05 -23

description: >
TOSCA_Scenario_Generator
...
virtual_machine_create_deploy:
type: OS::Heat:: SoftwareDeployment
properties:
config:
get_resource: virtual_machine_create_config
server:
get_resource: server
flavor: m1.medium
user_data_format: SOFTWARE_CONFIG
networks:
- port: { get_resource: port1 }
- port: { get_resource: port2 }
virtual_machine_create_config:
type: OS::Heat:: SoftwareConfig
properties:
group: script
config:
get_file: vm_image
...
outputs: {}

The next section discusses the experiment’s results.

Results and Discussion

The experimentation has demonstrated the feasibility of the proposed approach and
also showed how ArTIC-MS might support the development of a MSaaS-based distributed
simulation in a federation of heterogeneous cloud infrastructure.

The capabilities provided by the proposed conceptual architecture allow the simulation
developer to discover and retrieve remote M&S services available in federated infrastructure.
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The adoption of TOSCA for describing services in the cloud in a vendor- and technology-
independent fashion constitutes a relevant opportunity for supporting any MSaaS efforts.
TOSCA might constitute the backbone of MSaaS implementations that increase the portabil-
ity and interoperability degrees of M&S services in federated heterogeneous infrastructure,
also fostering service reuse in different application scenarios.

On the other hand, the experimentation, along with the preliminary evaluation con-
ducted in [12], has also revealed some limitations, which are mainly due to the maturity
level of the TOSCA-related technologies and the limited support of the TOSCA standard.

It must be pointed out that TOSCA is not currently supported by most of the relevant
players in the cloud marketplace (e.g., Amazon, Google, and Microsoft). Moreover, in a few
years the underlying standard adopted for specifying TOSCA templates has evolved from
XML (extensible markup language) to YAML and, besides that, the TOSCA conceptual
model has also been slightly revised. While this fact demonstrates the vitality of the TOSCA
developers community, the lack of a road map that clearly outlines how the standard will
be evolved in the next future might constitute limitations in its widespread adoption.

Regarding the supporting tool for converting TOSCA templates to templates based on
different languages (and vice versa), the availability of the HEAT Translator is a relevant
starting point that we exploited for pushing the reusability and the portability of M&S
services. Nonetheless, several efforts have to be spent in this direction. Currently, the
HEAT Translator only supports the translation from TOSCA to HOT, while the opposite
translation has to be addressed by ad-hoc extensions. Moreover, regarding the usability
of HEAT Translator, in case of translation errors, the tool lacks verbose messages, which
might help users to investigate and identify the specific problem.

8. Conclusions

This work investigated architectural approaches to support the FAIR principles in
the development of heterogeneous federations of MSaaS infrastructure. The development
of distributed simulations built as orchestrations of M&S services is a complex task that
becomes even more difficult when the service composition includes M&S services pro-
vided by the heterogeneous infrastructure. In order to easily address this objective, the
identification of an appropriate architecture assumes paramount relevance.

In this context, this work first proposes a reference architecture for identifying building
blocks and relevant capabilities that a concrete MSaaS infrastructure architecture should
provide to effectively deal with MSaaS federations. Moreover, this work investigated the
role of TOSCA as a valuable standard to foster M&S service interoperability and portability
in heterogeneous federations. In this respect, ArTIC-MS, a conceptual architecture based
on the proposed RA, was introduced.

In order to provide effective guidance for implementing concrete MSaaS infrastructure
in a federated environment, ArTIC-MS exploits the TOSCA standard and includes the
specification of actors and use cases to define the relevant operational view.

This work also discussed experimentation focused on a maritime defense scenario
built by orchestrating services in a heterogeneous MSaaS federated infrastructure.

According to the experimentation results, the capabilities provided by ArTIC-MS
support the findability, accessibility, interoperability, and reusability of M&S services in
heterogeneous infrastructure. In this respect, TOSCA constitutes a promising standard
for dealing with service portability and their interoperable orchestration in a federated
MSaaS infrastructure. Relevant issues that require further investigations include the actual
adoption of TOSCA in significant and large-sized implementations, in both industry and
academia, as well as the availability of open-source and commercial tools for translating
various languages for services deployment and orchestration in the cloud.

Further work includes the development of a complete ArTIC-MS implementation
based on a TOSCA-compliant cloud infrastructure and its evaluation in a heterogeneous
federation. Moreover, additional effort is required to investigate methods, tools, and
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languages for application orchestration, in order to appropriately extend the RA composition
service and the ArTIC-MS composer building blocks.
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