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Abstract: In this paper, we study via simulation the performance of irregular repetition slotted
ALOHA under multi-packet detection and different patterns of the load process. On the one hand,
we model the arrival process with a version of the M/G/∞ process able to exhibit a correlation
structure decaying slowly in time. Given the independence among frames in frame-synchronous
coded-slotted ALOHA (CSA), this variation should only take effect on frame-asynchronous CSA.
On the other hand, we vary the marginal distribution of the arrival process using discrete versions
of the Lognormal and Pareto distributions, with the objective of investigating the influence of the
right tail. In this case, both techniques should be affected by the change, albeit to a different degree.
Our results confirm these hypotheses and show that these factors must be taken into account when
designing and analyzing these systems. In frameless operations, both the shape of the packet arrivals
tail distribution and the existence of short-range and long-range correlations strongly impact the
packet loss ratio and the average delay. Nevertheless, these effects emerge only weakly in the case of
frame-aligned operations, because this enforces the system to introduce a delay in the newly arrived
packets (until the beginning of the next frame), and implies that the backlog of accumulated packets
is the key quantity for calculating the performance.

Keywords: coded ALOHA; multi-user detection; correlation; heavy tails

1. Introduction

Since the introduction of the ALOHA protocol [1,2], many random access schemes
have been proposed. Uncoordinated multiple access is necessary in communications
systems where coordinated resource allocation is not possible or is too costly. Classical
uncoordinated techniques, such as the ALOHA systems and carrier-sense-based tech-
niques [3,4], such as carrier-sense multiple access with collision avoidance (CSMA-CA),
require a retransmission policy to provide reliable communications, which introduces the
need for a separate feedback channel and incurs in a possibly large delay.

Recently, a considerable interest for finding new solutions to provide reliable, low-
latency communication in dynamical systems has emerged, motivated by the requirements
of 5G communications, e.g., in visible light communications [5], in CDMA systems [6], or in
LoRa-based communications [7]. An account of modern random access protocols is given
in [8], and the role of multiple-access in non-orthogonal communications with many users
is discussed in [9,10].

One promising uncoordinated multiple access technique is coded-slotted ALOHA
(CSA), also known as irregular repetition ALOHA (IRSA), which has been extensively
studied in the literature in the asymptotic regime (where the packet replicas are spread over
a large interval) and in the finite-length regime [11–13]. In CSA, transmissions are organized
into fixed-length frames, each consisting of n slots, and users arrange the transmission of
several copies of a packet in randomly chosen slots within the frame. This approach is
known as frame-synchronous CSA (FS-CSA) [14]. Alternatively, the transmission of the
packet copies can be performed immediately after the packet arrival, randomly within the

Future Internet 2023, 15, 132. https://doi.org/10.3390/fi15040132 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15040132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-3963-0451
https://orcid.org/0000-0002-5088-0881
https://doi.org/10.3390/fi15040132
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15040132?type=check_update&version=1


Future Internet 2023, 15, 132 2 of 18

next n slots, avoiding the need for synchronization among users at the frame level. This
approach is known as frameless or frame-asynchronous CSA [15,16] (FA-CSA), where the
time span for the transmission of the packet copies forms implicitly the local frame for
each individual user. Extensions of CSA, and in particular of FA-CSA, to asynchronous,
non-slotted random access have also been proposed and analyzed [17,18].

In either version, CSA creates time diversity for the transmissions and makes it possible
to sustain high throughput and low energy-consumption compared to slotted ALOHA,
making this approach of combining random transmission with encoding at the packet level
a good candidate for next generation random access with many simultaneous active users.

CSA has recently been adopted in commercial satellite communication systems, such
as in DVB-RCS2 [19], and is currently under study as the basis for next-generation multiple-
access technology in internet-of-things (IoT) applications [20], and for massive machine-
type communications (mMTC) in 5G networks under the so-called unsourced model where
all users use the same codebook and the receiver aims to return an unordered list of
messages. In these settings, CSA attains much better throughput and energy efficiency than
random coding and pure ALOHA [21].

The majority of works on CSA assume a collision channel where decoding is possible
only if a slot contains a single packet. As shown in [22–25], for instance, there exists a
connection among different types of systems and codes in graphs. Indeed, a CSA system
can be described by a bipartite graph and successive interference cancellation (SIC) can be
performed over the graph similarly to decoding of graph-based codes [26–28]. Therefore,
the performance of CSA resembles that of graph-based codes, i.e., the packet loss rate curve
displays generally a waterfall region for medium-to-high system loads and it shows and
error floor for low loads.

In the aforementioned protocols, all the replicas are transmitted using the same trans-
mit power. Thus, the received power diversity caused by natural fading is not significant
enough and the capture effect is not fully used to enhance the throughput of these protocols.
Further improvement is obtained by exploiting the capture effect, which can be achieved by
introducing transmit power diversity or exploiting the natural fading [29]. In [30] enhanc-
ing the physical layer of CSA-like protocols is investigated and an optimal received packet
power distribution is obtained. In [31], transmit power diversity is proposed to enhance the
performance of CSA-like protocols and an optimal transmit power distribution is derived
and analyzed. In [32], author exploit non-orthogonal multiple access techniques (NOMA)
into FA-CSA-like systems, optimizing the degree distribution to maximize the throughput.

Related to the FS-CSA and FA-CSA techniques, several of the studies assume that
users join the system according to a slot-based Poisson arrival process, and that arrivals
in different slots are statistically independent. This has the main advantage of allowing
a tractable mathematical model for the packet loss ratio (PLR) and an analysis of the
system stability [33]. This mathematical framework can be extended to the case of multi-
packet or multi-user detection (MUD) [34,35], which consists in having receivers capable of
successfully decoding k > 1 packets transmitted in the same slot, by employing successive
interference cancellation (SIC) at the receiver. Under k-MUD, the throughput scales almost
linearly with k until saturation (for Poisson arrival processes), increasing significantly the
capacity of the system.

Nevertheless, it has long been noted that traffic of communications networks is statisti-
cally long-range dependent and heavy-tailed, and these properties cannot be overlooked in
their performance studies (see [36] and references therein). For instance, in massive random
access or in mMTC, network traffic at the packet level is a superposition of numerous
individual data flows between pairs of hosts, possibly correlated. A high variance in the on
and off periods in these individual streams can physically induce LRD in the aggregated
traffic, which can be mathematically modeled with heavy-tailed distributions. Further,
though CSA has been extensively analyzed in the literature under the throughput-stability
trade-off, these works assume a Poisson point process for the packet arrivals for mathemati-
cal tractability, so their results and insights are limited to an idealized traffic model. For this
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reason, in this work, we study the impact of the correlation and the marginal distribution
of the load process on the performance of the system. On the one hand, we model the
arrival process with a version of the M/G/∞ process able to exhibit a correlation structure
decaying slowly in time. Given the independence among frames in FS-CSA, this variation
should only take effect on FA-CSA. On the other hand, we vary the marginal distribution
of the arrival process using discrete versions of the Lognormal and the Pareto distributions,
with the objective of investigating the influence of the right tail. In this case, both techniques
should be affected by the change. Results obtained confirm these hypotheses.

The remainder of the paper is organized as follows. In Section 2, we review the
operations of frame-synchronous and frame-asynchronous slotted ALOHA multiple access
protocols. The different arrival processes considered in this work are introduced in Section 3.
The performance evaluation and numerical results are presented in Section 4, and finally
some concluding remarks are summarized in Section 5.

2. System Model
2.1. Coded-Slotted ALOHA

In our system, packets arrive randomly to a group of nodes which share a slotted
channel. We denote by λa the mean arrival rate (packets per slot), and do not assume
that arrivals in different slots are statistically independent. Without loss of generality, we
consider that all the packets have a transmission time equal to the duration of the time
slot, and that the nodes attempt transmission independently at the beginning of a slot
without sensing the channel previously. Contrary to ordinary ALOHA, for every packet
to be transmitted, the sender generates ` copies or replicas according to a predefined
probability mass function that will be specified below in Section 2.2, and each of these
replicas is transmitted in a random slot. Thus, the replicas constitute a form of repetition
encoding as seen from each transmitting node. We introduce at this point some useful
terminology: a node which picks a value ` as its repetition schedule for a packet is a
degree-` node, and a time slot in which r packets are transmitted simultaneously will be
termed a degree-r slot. A key assumption in this paper is the k-MUD or k-MPR (multi-user
detection, or multi-packet reception, equivalently) capability achievable with the use of SIC
(successive interference cancellation): we suppose that, all the packets in a degree-i slot,
for any 1 ≤ i ≤ k can be successfully decoded at the intended receiver. This implies also
that the interference due to a correctly decoded packet can be completely removed from
any other slot containing a replica of this packet, thus reducing the effective interference
that would remain at that slot and enabling other decoding decisions. Note that, regardless
of its successful or unsuccessful decoding, every packet is transmitted ` times, where ` is a
random number.

In this paper, we focus on two basic performance metrics for this system

• The packet loss ratio (PLR). It is the probability that a packet is not decoded correctly.
Observe that this event is the non-existence of resolvable patterns of decoding in any
of the slots containing some replica of the packet.

• The delay of a decoded packet. This is defined as the number of slots between the
user’s arrival and the slot where the packet is resolved and correctly decoded.

As for the operation of the system, we distinguish and analyze two variants of coded-
slotted ALOHA, depending on the use of a coordinated frame for grouping the transmissions.

1. Frame synchronous CSA (FS-CSA). In this scheme, time is divided in frames, each
consisting of n slots. Any new packet from a transmitter must wait until the beginning
of the next frame for attempting the transmission of its ` replicas, which are randomly
and uniformly distributed over the frame time. A node with packets being scheduled
for transmission in a frame is called an active node, thus the number M of active
nodes in the frame is a random variable.
For the receiver, in FS-CSA decoding is performed slot-by-slot by applying the fol-
lowing strategy: first, in a given slot all the interference caused by packets that have
been successfully decoded in the previous slots of the frame is removed. If, after this
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step, the result is a degree-k (or lower) slot, then all the packets in it are decoded and
the receiver proceeds to look for other slots in the frame from which the interference
due to those newly decoded packets can be further removed. The decoding process
finishes when the receiver cannot find any slots in the frame to which k-MUD can
be applied to. Thus, notice that, at the end of a frame, all the packets from the active
users will have been either decoded successfully or dropped at the receiver.

2. Frame asynchronous CSA (FA-CSA). In this scheme, a new packet is transmitted im-
mediately after its arrival, in the next slot, and its remaining replicas are transmitted
at random times within the subsequent n − 1 slots, uniformly drawn. Therefore,
in FA-CSA there also exists a time period of n slots for sending the copies of a packet,
but the nodes are no longer enforced to be synchronized in global frames. Nodes are
active (i.e., they have some replica of a packet awaiting for transmission) during the n
slots following the new arrival, and again the total number M of active nodes in a slot
is a random value. Unlike FS-CSA, where M only changes from frame to frame, here
in FA-CSA M varies on a lost basis. In the literature, two minor variants of FA-CSA
have been considered. One is the system described here, when the transmission of the
first copy of a packet is immediate. The second consists in treating the first copy in
the same way as the remaining ones, i.e., the ` ≤ n replicas are transmitted randomly
and uniformly over the next n time slots.
The decoding process in FA-CSA is performed following the same steps as with FS-
CSA, but with the important difference that the receiver needs to keep memory of
all the slots that precede the current one (FS-CSA works only on the set of slots of
the current frame, n). However, it is clear that in practice the receivers in FA-CSA
would need a finite memory during the decoding decisions in order to keep the
memory finite. We will denote by nRX this finite size of the receiver memory counted
in number of slots. To all matters, nRX operates as a sliding window for the recovery
of the packets, and we will assume that any packets received in a slot out of this
window and not yet recovered are dismissed.

2.2. Bipartite Graph Representation and Degree Distributions

It is well known in the literature [28,37] that a CSA system can be modeled as a
bipartite graph between the set V of variable nodes and the set C of constraint (or check)
nodes. In the graph, an edge between i ∈ V and j ∈ C represents the transmission of
a packet (one of its copies) from node i in slot j. Hence, the number of outgoing links
from node i is equal to the number of replicas generated for that packet, and the number
of incoming edges into j is r if j is a degree-r slot. The main advantage of the bipartite
graph representation can be summarized by noting that this graphical model allows us to
understand the iterative decoding procedure described in Section 2.1 as an instance in the
framework of message passing algorithms over graphs (see [37]).

Figure 1 shows in detail in its top panel an example of FS-CSA for a system with
frames of n = 6 slots and λa = 0.5. The nodes select degrees 2 or 3 for their packets. These
are depicted as slots filled with blue (degree-2) and red (degree-3), respectively. The shaded
areas depict the frames, the same for all users, and the striped blocks show the slots in
which packets cannot be decoded, since this example assumes standard ALOHA (k = 1,
no MUD).

In Figure 2, the graphical representation for the two scenarios of Figure 1 is depicted,
while in Figure 3 we plot an example of FA-CSA-F, with with n = 6, λa = 1 and where
users select degree 2 or 3. In this case only if k > 1 all the packets can be decoded.
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slot:

new users:

# of active users:

# of active users:

FA−CSA−F

FS−CSA

...

...

 3        3        3        3       3        3       4       4        4        4      4        4

   1       1        3       3       3        3        3       3       1        4       4        4       3        3        4        2       2

1                 2,3                                4                       5,6,7                                            8       9              

0        1        2       3       4       5       6       7        8       9      10      11      12      13      14     15      16     17 

Figure 1. An example of FS-CSA and FA-CSA-F with k = 1.
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Figure 2. Equivalent graph representation of the system depicted in Figure 1.

...

...

   

slot: 0        1        2       3       4       5       6       7        8       9      10      11      12      13      14     15      16     17 

new users:

# of active users:

FA−CSA−F

17

1       2        4       5       6        6        6       5       4        6       6        6       5        5        5        3       4

1       2        3,4      5      6                7                8    9,10,11 12                                   13      14   15,16  

Figure 3. An example of FA-CSA-F with k = 2.
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As is customary for the analysis of codes defined on graphs, the different degrees of
the nodes is represented in polynomial compact form as

Λ(x) , ∑
i

Λixi, P(x) , ∑
j

Pjxj (1)

for variable and check nodes, respectively. Here Λi is the probability that a variable node
(VN) has degree i, and Pj is the probability that a check node (CN) has degree equal to j.
The VN degree polynomial Λ(x) is a system design parameter and can be optimized for
maximizing the system performance.

Similarly, the degree polynomials defined as

λ(x) , ∑
i

λixi−1, ρ(x) , ∑
j

ρjxj−1, (2)

summarize the distribution of degrees for a random edge in the bipartite graph. More
precisely, in the definition λi denotes the probability that an edge is connected to a degree-
i VN, and the probability that the edge is connected to a degree-j CN is given by ρj.
The relationship between the coefficients that appear in (1) and (2) is

λi =
iΛi

∑m mΛm
, ρj =

jPj

∑m mPm
. (3)

Thus, λ(x) = Λ′(x)/Λ′(1) and ρ(x) = P′(x)/P′(1), where f ′ is the derivative of function f .

3. Modeling the Arrival Processes
3.1. Marginal Distribution of the Arrivals

In order to check the impact of the tail of the marginal distribution of the arrival process
on the performance of the system, we consider the following distributions to model the
number of users joining the system in a given slot. Arrivals in different slots are assumed
to be statistically independent, i.e., the arrival point process is memoryless. Specifically,
we will consider two possible point processes for the arrivals: discrete versions of the
Lognormal and the Pareto probability distributions, in addition to the classical Poisson
process on the line.

3.1.1. Poisson Distribution

The Poisson random variable has the probability mass function

IP(X = j) = e−λ λj

j!
, j ≥ 0, j ∈ Z+, (4)

with mean value and variance equal to λ.

3.1.2. Lognormal Distribution

Consider a normal (Gaussian) random variable N (µ, σ2) with mean value µ and
variance σ2. The related Lognormal random variable X has the density function

f (x) =
1

xσ
√

2π
exp

(
− log x− µ

2σ2

)
, x ∈ R+, (5)

where the logarithms are natural. Thus log X ∼ N (µ, σ2). The expected value of X is
exp

(
µ + σ2

2
)
, and the variance is exp

(
σ2− 1

)
exp

(
2µ + σ2). We will use for our numerical

evaluations the quantization bXc as the point arrival process in each slot.
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3.1.3. Pareto Distribution

The density function of the Pareto random variable X with parameters m and α is

f (x) =
αmα

xα+1 , x ∈ (m,+∞). (6)

If α > 1 the expectation is finite, with value µ = αm
α−1 , and if α > 2 the variance is finite,

with value σ2 = αm2

(α−2)(α−1)2 . More generally, the k-th moment of X is given by

E[Xk] =

{
+∞, if α ≤ k,
αmk

α−k , if α > k,
(7)

so the k-th moment is finite only if α > k. The related Pareto distribution shifted to zero
is X − m, and has, in the same ranges of values of α, expected value m

α−1 and variance
αm2

α−2 − (µ + m)2. The conditions for finiteness of the k-th moments are obviously equal
for the shifted and non-shifted Pareto random variables. We will use for our numerical
evaluations the quantization bXc as the point arrival process in each slot.

3.2. Correlated Arrivals

We also consider for the experimental evaluation in this paper a versatile process able
to generate correlated arrivals in the different slots. Specifically, we use the occupancy
process of an M/G/∞ queuing system as our model for non-memoryless arrivals.

The M/G/∞ process [38], denoted as X, is a stationary version of the occupancy
process of an M/G/∞ queuing system. In this queuing system, users arrive according to a
Poisson process, occupy a server for a random time with a generic distribution S with finite
mean and leave the system.

In its discrete version—which means that the service times S of users are iid and take
discrete values—if the initial number of users in the system X0 ∼ Poisson(λ IE [S]), and the
users’ service times have the same distribution as the residual life Ŝ of the random variable
S, i.e.,

IP (Ŝ = k) =
IP (S ≥ k)

IE (S)
, (8)

then X is strictly stationary, ergodic and satisfies the following properties:

• The marginal distribution is ∼Poisson(λ IE [S]).
• The covariance function is rk = IP (Ŝ > k), k ≥ 0.

When the covariance function is summable, namely, ∑∞
k=0 rk < ∞, the process is termed as

short range dependent (SRD); in contrast, if the covariance is not summable, ∑∞
k=0 rk = ∞,

the process is termed as long-range dependent (LRD). In particular, the M/G/∞ process
exhibits LRD when S has infinite variance, as in the case of some heavy-tailed distributions.
The latter are the discrete probability distribution functions satisfying IP (S = k)∼ k−α,
asymptotically as k→ ∞. The (discrete) Pareto distribution is a clear example of a heavy-
tailed distribution.

In this work, we choose S [39] as a discrete heavy-tailed distribution with two parame-
ters, m and α, that allow to model simultaneously the short-term correlation behavior (by
means for example of the one-lag correlation coefficient, r1) and the long-term correlation
behavior (by means of the Hurst [40] parameter, H).

For this choice of S, the correlation function can be computed and is given by

rk =

{
1− (α−1)k

mα ∀k ∈ (0, m],
1
α (

m
k )

α−1 ∀k ≥ m.
(9)
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So, if α ∈ (1, 2), then H = 3−α
2 ∈ (0.5, 1), and ∑∞

k=0 rk = ∞. Hence, in this case, this
correlation structure gives rise to an LRD process. In this work, we use the efficient
generator of this version of the M/G/∞ process described in [41].

4. Numerical Experiments

In this section, we report the results of simulation tests to assess the PLR and average
delay of both frame-synchronous and frame-asynchronous slotted ALOHA with k multi-
user detection (MUD). This means that we assume that the receiver is able to decode
perfectly up to k simultaneous transmissions in a slot, but fails if the slot contains more
than k packets. Using MUD jointly with coded ALOHA improves both the throughput
and energy consumption of the system, which is especially important in applications
with massive number of devices (e.g., in massive machine type communications (mMTC),
as envisioned for 5G/6G networks). However, even though analytical results for k-MUD
coded ALOHA exist in the literature for Poisson arrival point processes [22,37], the analysis
turns out to be intractable when more general, non-memoryless or correlated arrival
processes are considered. In other words, the memoryless property of the arrival process is
a key property for analytical tractability of the model. Motivated by the strong impact that
heavy tails and LRD have on general queuing systems [36], our purpose in this work is to
gain some understanding on this expected impact through simulation tests.

In all the simulation test cases that follow, we used replica factors ` = 3 and ` = 8,
and the k-MUD capability is k = 1, 2, 3. A small MUD capability is generally enough to
sustain a high throughput, while keeping the complexity of the receivers to a practical level.
SIC quickly becomes very complex as the number of receivers increases [42].

In the next sections, we empirically test the performance of the system when the
arrivals are heavy-tailed and/or correlated with SRD or LRD. It is important to note that in
all the figures the x-axis plots λa/k, so the load offered to the system increases with k.

4.1. Impact of the Marginal Distribution of the Arrival Process
4.1.1. Frame Synchronous Coded-Slotted ALOHA

We first analyze the impact of the marginal distribution of the arrivals in the key per-
formance variables. To this end, we compare the results (Figure 4) between Poisson arrivals
(memoryless) and discrete Lognormal arrivals with µ = σ2. For frame-synchronous CSA,
there is no noticeable difference between both cases when µ = σ2. Clearly, performance
of k-MUD CSA in this special case is unaffected or only mildly affected by the marginal
distribution, and the key parameter in this respect is only the mean arrival rate (for fixed `
and replica distribution Λ(x), of course). The reason for this behavior is that FS-CSA acts
really as a gated system at the frame level: all the arrivals must await until the next frame
begins, and then the replicas for each user’s packets are uniformly distributed over the
frame. Therefore, it seems logical that, if the variance in the number of packets is low, it is
the average number of packets received during the previous frame, and not their marginal
distribution, the fundamental measure of the system load and performance. Accordingly,
we conjecture that the performance in this case is insensitive to the marginal distribution
and is only a function of the system load, as expected.

Contrarily, if we increase the variance, performance with the Lognormal marginal
degrades substantially. Figure 5 depicts the PLR and average delay in two asymmetric
cases, when σ2 = 1.1µ2 and with σ2 = 4µ2. We can see clearly that the PLR is now orders
of magnitude higher for the same normalized traffic load, and that the average delay
increases monotonically with λa/k. Most likely, this happens because the SIC decoder
cannot find any slot within the frame such that k-decoding can be used, and the recovery
of the (replica) packets becomes trapped. In other words, for arrival processes with high
variability—Poisson arrivals do not possess this property—the SIC decoder quickly hits
the error floor region of the decoding process [28], which suggests that a larger window
or a different, optimized degree distribution should be used in the system. Increasing k
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would also improve performance and shift the error floor region threshold, but at the cost
of a high hardware complexity at the receiver.
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Figure 4. Simulated PLR (top) and Mean Delay (bottom) for FS-CSA versus λa/k, with Λ(x) =

0.86x3 + 0.14x8, n = 200 and k = {1, 2, 3}, and marginal distribution Poissonian (left) and Lognormal
(right), in both cases µ = σ2.
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Figure 5. Simulated PLR (top) and Mean Delay (bottom) for FS-CSA versus λa/k, with Λ(x) =

0.86x3 + 0.14x8, n = 200 and k = {1, 2, 3}, and marginal distribution Lognormal, with σ2 = 1.1µ2

(left) and σ2 = 4µ2 (right).
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To test if the type of marginal distribution implies some change in the performance of
the system, we also conducted simulation experiments with the discrete Pareto distribution
shifted to zero, for α = 1.1, α = 1.5 and α = 1.9 (α is the rate of hyperbolic decay of
the tail of the distribution). The results are shown in Figure 6. Now, for heavy-tailed
marginal distributions, both the PLR and the average delay show a strong degradation,
and are very sensitive to the value of α. We conclude from this set of experiments that
the presence of heavy tails in the marginal distribution of the arrivals induces a notable
change in performance for CSA, and that the performance degrades fast as the tail of the
distribution becomes heavier, particularly for the average delay.
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Figure 6. Simulated PLR (top) and Mean Delay (bottom) for FS-CSA versus λa/k, with Λ(x) =

0.86x3 + 0.14x8, n = 200 and k = {1, 2, 3}, and marginal distribution Pareto, with α = 1.1 (top-left),
α = 1.5 (top-right) and α = 1.9 (bottom).

A second test with the discrete Pareto distribution shifted to zero, but with σ2 = 1.1µ2

and σ2 = 4µ2, yields the results depicted in Figure 7. The numerical results are very similar,
quantitatively and qualitatively, to those in Figure 5, confirming that the second-order
moments of the arrival process cannot be ignored at all when calculating or predicting the
system performance. Again, note that the differences in average delay for k = {1, 2, 3}
can be large, even for a finite decoding window (the frame length in these experiments is
n = 200 slots).
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Figure 7. Simulated PLR (top) and Mean Delay (bottom) for FS-CSA versus λa/k, with Λ(x) =

0.86x3 + 0.14x8, n = 200 and k = {1, 2, 3}, and marginal distribution Pareto, with σ2 = 1.1µ2 (left)
and σ2 = 4µ2 (right).

4.1.2. Frame Asynchronous Coded-Slotted ALOHA

We now turn our attention to the performance of frame asynchronous CSA. In this case,
the frameless structure suggests that the effects of LRD and/or heavy-tailed distributions
could be sharper, since correlations in the input traffic are not affected by the finite frame
structure, only by the memory used by the decoder. Thus, we analyze several tests to
confirm this hypothesis.

First, we change the marginal distribution of the point arrivals only, considering
both Poisson and Lognormal distributions with µ = σ2. Figure 8 confirms that, in this
particular case with average and variance having the same value, the marginal distribution
(both are light-tailed) has the effect of shifting the PLR and average delay to the right,
i.e., system overload appears later with the discrete Lognormal marginal. Actually, it
is quite remarkable that, for k = 1, 2, we do not see the exponential increase of PLR for
λa/k ≤ 1 in the case of Lognormal marginals, suggesting that the threshold for overloading
the SIC receiver is farther and appears at higher arrival rates. It is reached for λa/k ≈ 0.9
when k = 3, instead.

A second test if to check whether the parameters of the Lognormal distributions have
any impact on the dynamics of the system. To verify this, we simulated two types of
arrivals with marginal Lognormal with σ2 = 1.1µ2 and σ2 = 4µ2. The results are displayed
in Figure 9, and we see that the PLR is roughly one or two orders of magnitude higher
when the variance is larger. The average delay is also larger when the variance increases,
and there is not a significant difference in average decoding delay if k = 1, 2, 3, at least until
the arrival rate reaches the threshold of system overload.
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Figure 8. Simulated PLR (top) and Mean Delay (bottom) for FA-CSA versus λa/k, with Λ(x) =
0.86x3 + 0.14x8, n = 200 and k = {1, 2, 3}, and marginal distribution Poissonian (left) and Lognormal
(right), in both cases µ = σ2.
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Figure 9. Simulated PLR (top) and Mean Delay (bottom) for FA-CSA versus λa/k, with Λ(x) =
0.86x3 + 0.14x8, n = 200 and k = {1, 2, 3}, and marginal distribution Lognormal, with σ2 = 1.1µ2

(left) and σ2 = 4µ2 (right).

Next, we want to investigate how the existence of heavy tails in the input point
process influences the packet loss and the delay. In order to gain some insights, we simply
simulated the system changing the input process and using three discrete Pareto marginal
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distribution for the arrivals, with parameters α = 1.1, α = 1.5, and α = 1.9, respectively.
Remember that the three cases have infinite variance, since α < 2. According to the results
shown in Figure 10, for heavy-tailed arrivals and unbounded second moment, the PLR is
high but not very much sensitive to the normalized load λa/k. As for the average delay,
notable differences among the cases k = 1, 2, 3 arise only for the slowest decay rate of the
pdf tail (top-right panel in Figure 10) whereas for faster decay rates the behavior is very
similar with respect to the normalized loads. If one ignores for the moment the variations
due to the intensity of the arrival rate λa, then Figure 10 allows us to conclude that even for
heavy-tailed input traffic k-MUD for k > 1 has a good performance, since both the packet
loss ratio and the average delay are almost independent of the value of k. Alternatively, we
obtain approximately the same performance for arrival rates λa = λk, and k = 1, 2, 3, . . . .
This quasi-linear response is perhaps the main advantage in CSA, and our results show
that it is preserved even for different marginals, unless the input traffic has a very long tail
in its marginal distribution.

If instead we set as arrivals two discrete Pareto with different variances, i.e., σ2 = 1.1µ2

and σ2 = 4µ2, then we observe (Figure 11) the same shapes for the PLR and average
delays, with the only expected difference that performance is worse as the second moment
σ2 increases.
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Figure 10. Simulated PLR (left) and Mean Delay (right) for FA-CSA versus λa/k, with Λ(x) =

0.86x3 + 0.14x8, n = 200 and k = {1, 2, 3}, and marginal distribution Pareto, with α = 1.1 (top),
α = 1.5 (middle), and α = 1.9 (bottom).
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Figure 11. Simulated PLR (top) and Mean Delay (bottom) for FA-CSA versus λa/k, with Λ(x) =
0.86x3 + 0.14x8, n = 200 and k = {1, 2, 3}, and marginal distribution Pareto, with σ2 = 1.1µ2 (left)
and σ2 = 4µ2 (right).

4.2. Impact of the Correlation Structure of the Arrival Process

Next, we conducted some experiments to clarify whether the presence of correlations
(SRD or LRD) in the arrival pattern induces any changes in the performance metrics. We
used as input traffic the occupancy process of the a M/G/∞ queuing system, as described
in Section 3.2. Recall that the marginal distribution is Poissonian.

4.2.1. Frame Synchronous Coded-Slotted ALOHA

Figure 12 presents the numerical results for frame synchronous CSA. We cannot notice
in the graphs differences in performance with respect to the case with no correlations (i.e.,
Poisson point arrivals, cf. Figure 4). Figure 12 was produced with H = 0.75—a moderate
value for LRD—and r1 = 0.5 —also an intermediate value for the short-range correlation,
but the results obtained with other combinations of H and r1 are identical. This can be
explained with the same reason conjectured in Section 4.1.1: since all the arrivals during
a frame must wait until the start of the next one for transmitting their replica packets,
and since these replica packets are uniformly distributed over the frame, the original
correlation structure vanishes and only the average number of new packet arrivals matters.
So, in this case, the synchronous structure and gated service make the correlations possibly
inherent in the input traffic inessential for the system performance. This insensitivity is not
unexpected, yet its empirical verification is still interesting. As it is also shown in Figure 4,
MUD has a clear advantage over single detection as long as the normalized traffic load is
light (λa/k ≤ 0.5, approx.), but increases quickly beyond that threshold. This is reflected
in the average delay in the same fashion, since the delay reaches a maximum near that
threshold for the input traffic, too, and then starts to decrease and eventually stabilizes.
This decay is due to the high fraction of discarded (non-decoded packets), obviously.
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Figure 12. Simulated PLR (left) and Mean Delay (right) for FS-CSA versus λa/k, with Λ(x) =

0.86x3 + 0.14x8, n = 200 and k = {1, 2, 3}, and correlated arrivals with marginal Poisso-
nian distribution.

4.2.2. Frame Asynchronous Coded-Slotted ALOHA

The same arrival process as in the precedent Section was used with frame asyn-
chronous CSA. In this case, new packets do not wait for transmission (or wait randomly
and independently until their first replica is transmitted). Similarly, there is not now a
“natural” frame length for decoding the packets. As a consequence, it seems intuitive that
the LRD or SRD correlations existing in the arrivals persist, without significant alterations,
and could make performance much worse, either for PLR or for average delay. This is
indeed the case, as Figure 13 shows, where we used moderated values of the parameters,
H = 0.75 and r1 = 0.5 (we compare this case with respect to the case with no correlations,
i.e., Poisson point arrivals, cf. Figure 8). We see clearly in these graphs that, in the lightly
loaded regime, PLR is similar for k = 1, 2, 3 and a fixed λa/k, but deviates when the nor-
malized input traffic exceeds ≈0.7, and is worse for k-MUD with k > 1. To explain this,
recall that due to LRD and SRD correlations, large bursts of packets can arrive in short
time periods to the system (with non-negligible probability), and a fraction of these are
replicated ` times. Thus, k-MUD with persistent correlations can amplify the total number
of replicas to be transmitted within the current transmission window, increasing the system
load substantially.

Figures 14 and 15 show the effect of increasing the parameter that models the degree
of SRD or LRD, respectively, maintaining the other parameter in a moderate value. We can
see that in both cases the performance is degraded.
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Figure 13. Simulated PLR (left) and Mean Delay (right) for FA-CSA versus λa/k, with Λ(x) =

0.86x3 + 0.14x8, n = 200 and k = {1, 2, 3}, and correlated arrivals (H = 0.75 and r1 = 0.5) with
marginal Poissonian distribution.
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Figure 14. Simulated PLR (left) and Mean Delay (right) for FA-CSA versus λa/k, with Λ(x) =

0.86x3 + 0.14x8, n = 200 and k = {1, 2, 3}, and correlated arrivals (H = 0.75 and r1 = 0.9) with
marginal Poissonian distribution.
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Figure 15. Simulated PLR (left) and Mean Delay (right) for FA-CSA versus λa/k, with Λ(x) =

0.86x3 + 0.14x8, n = 200 and k = {1, 2, 3}, and correlated arrivals (H = 0.9 and r1 = 0.5) with
marginal Poissonian distribution.

5. Discussion

In this paper, we studied, via simulation, the performance of irregular repetition slotted
ALOHA under multi-packet detection. Our results suggest that there is a clear difference
between frame-synchronous and frame-asynchronous systems, in that with frameless
operations both the shape of the packet arrivals tail distribution and the existence of short-
range and long-range correlations strongly impact the packet loss ratio and the average
delay. To a large extent, these effects emerge only weakly in the case of frame-aligned
operations, because this enforces the system to introduce a delay in the newly arrived
packets (until the beginning of the next frame), and implies that the backlog of accumulated
packets is the key quantity for calculating the performance. These observations seem to
suggest that, for massive random access based on coded-slotted ALOHA, those in which the
number of active transmitters can be in the order of hundreds or more, frame-synchronous
operations are preferable for system stability (i.e., low PLR) over the frameless operations,
since the latter is highly sensitive to the presence of correlations and/or heavy tails.
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