
Citation: Koirala, A.; Bista, R.;

Ferreira, J.C. Enhancing IoT Device

Security through Network Attack

Data Analysis Using Machine

Learning Algorithms. Future Internet

2023, 15, 210. https://doi.org/

10.3390/fi15060210

Academic Editor: Gyu Myoung Lee

Received: 8 May 2023

Revised: 30 May 2023

Accepted: 7 June 2023

Published: 9 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Enhancing IoT Device Security through Network Attack Data
Analysis Using Machine Learning Algorithms
Ashish Koirala 1 , Rabindra Bista 1,* and Joao C. Ferreira 2,3

1 Department of Computer Science and Engineering, Kathmandu University, Dhulikhel 45200, Nepal;
ashish.krk4@gmail.com

2 Inov Inesc Inovação—Instituto de Novas Tecnologias, 1000-029 Lisbon, Portugal; jcafa@iscte.pt
3 Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR, 1649-026 Lisboa, Portugal
* Correspondence: rbista@ku.edu.np

Abstract: The Internet of Things (IoT) shares the idea of an autonomous system responsible for
transforming physical computational devices into smart ones. Contrarily, storing and operating infor-
mation and maintaining its confidentiality and security is a concerning issue in the IoT. Throughout
the whole operational process, considering transparency in its privacy, data protection, and disaster
recovery, it needs state-of-the-art systems and methods to tackle the evolving environment. This
research aims to improve the security of IoT devices by investigating the likelihood of network attacks
utilizing ordinary device network data and attack network data acquired from similar statistics. To
achieve this, IoT devices dedicated to smart healthcare systems were utilized, and botnet attacks
were conducted on them for data generation. The collected data were then analyzed using statistical
measures, such as the Pearson coefficient and entropy, to extract relevant features. Machine learning
algorithms were implemented to categorize normal and attack traffic with data preprocessing tech-
niques to increase accuracy. One of the most popular datasets, known as BoT-IoT, was cross-evaluated
with the generated dataset for authentication of the generated dataset. The research provides insight
into the architecture of IoT devices, the behavior of normal and attack networks on these devices,
and the prospects of machine learning approaches to improve IoT device security. Overall, the study
adds to the growing body of knowledge on IoT device security and emphasizes the significance of
adopting sophisticated strategies for detecting and mitigating network attacks.

Keywords: Internet of Things (IoT); botnet; pearson coefficient; random forest; ensemble learning

1. Introduction

IoT devices represent a paradigm shift in the way we interact digitally with the physi-
cal world, as it enables the connectivity and communication between a vast array of devices
and systems through a communication network. These interconnected devices, which can
range from simple sensors to complex machinery, are equipped with the ability to gather,
process, and transmit data, allowing them to sense and respond to their surroundings in
an autonomous manner. The IoT shares the idea of an autonomous system responsible
for transforming physical computational devices into smart ones in an activity-generated
environment under existing networks through embedded systems. Embedded systems
provide the essential combination of hardware and firmware, along with Internet access,
to execute respective tasks [1]. The key features of IoT devices comprise their abilities of
actuation, processing, connectivity, and data storage. Contrarily, storing and operating
information while maintaining its confidentiality and security throughout the whole opera-
tion process considering transparency in its privacy, data protection, and disaster recovery,
is a concerning issue in the IoT. This talks about the vulnerabilities such as open telnet
ports, which are devastating considering conditions such as outdated Linux firmware,
communications of data without encryption, etc., being common in the IoT ecosystem,

Future Internet 2023, 15, 210. https://doi.org/10.3390/fi15060210 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15060210
https://doi.org/10.3390/fi15060210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0008-7685-7082
https://orcid.org/0000-0002-6662-0806
https://doi.org/10.3390/fi15060210
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15060210?type=check_update&version=1

Future Internet 2023, 15, 210 2 of 30

keeping it vulnerable to attacks such as a botnet, etc. [2]. To prevent this situation, research
on false network detection respective to the concept of machine learning (ML) for tracking
any irregular traffic in the IoT ecosystem needs to be prioritized, as the detection mainly
deals with the behavior of those communications from the devices to the routers and
switches through the existing network, and any irregular behavior can be traced down
and operated on. IoT devices have become increasingly popular in recent years due to
their ability to connect to the Internet and facilitate remote communication and control.
However, the proliferation of these devices has also led to a rise in security breaches and
attacks, particularly through the use of botnets [3]. Botnets are networks of compromised
devices that are controlled remotely by a malicious actor. These devices can be utilized to
initiate distributed denial of service (DDoS) attacks, send spam emails, or steal sensitive
information. IoT devices, which often have weak security measures and are not regularly
patched or updated, are particularly vulnerable to compromise and can be easily recruited
into a botnet [4]. One example of a significant IoT-based botnet attack was the Mirai botnet,
which was first identified in 2016. This botnet was responsible for several high-profile
DDoS attacks, including an attack on the Krebs on Security website and an attack on the
Dyn DNS provider, which disrupted Internet service for much of the Eastern United States.
The Mirai botnet compromised many IoT devices, including routers, security cameras,
and digital video recorders, by using a list of default or commonly used passwords to
gain access.

Other research has highlighted the security risks associated with IoT device interop-
erability and the use of third-party libraries. In a paper published in 2019, researchers
found that the use of third-party libraries in IoT devices can lead to vulnerabilities that
attackers can exploit. Additionally, the lack of standardization and security measures in
developing IoT devices can lead to interoperability issues that attackers can exploit [5]. The
ability to detect abnormal changes in a system’s information, variables, or subsystems and
identify it as a deviation from normal behavior is possible by thoroughly understanding the
ecosystem and recognizing such changes based on prior experience. This concept can also
be adapted to detecting normal and abnormal network traffic. Data traffic from IoT devices
has been found to be distinct; it often exchanges data with fixed sets of endpoints rather
than a vast diversity in penetration of its web servers, which helps to track the regular
traffic and disobey the attack traffic according to the behavior and penetration change. IoT
devices also have distinct states, so the behavior can be conveniently differentiated [6].
Traditional security methods that only react after an attack has been detected may not be
sufficient to protect the network. To prevent these attacks from affecting the network’s
performance, a system that deploys smart and state-of-the-art security measures is neces-
sary for IoT networks. Using proactive security methods can mitigate potential security
weaknesses in the network. These security measures should also not cause any delays in
the network, as IoT networks require low latency. To meet these requirements, AI and
ML approaches can be used to provide the necessary intelligence to create smart security
systems. AI and ML algorithms are able to analyze large amounts of data and identify
common patterns that indicate an intrusion. Datasets are important for the effective use
of intrusion-based security systems. Without a dataset that resembles the network flows
in the IoT, it is difficult to validate the effectiveness of AI-based security measures. As
IoT networks become increasingly important, having a dataset that can be used for this
purpose will be a valuable contribution. By 2025, it is anticipated that the global market
for IoT end-user solutions will reach approximately $1.6 trillion, posing a new growing
danger from exposed telnet ports, out-of-date Linux firmware, and numerous other related
vulnerabilities [7]. The expansion of these insecure IoT devices opens up wide varieties of
new cybersecurity attack factors, most notably IoT Botnet attacks. IoT botnet attacks have
been more frequent, with several cases of attacks on distributed networks, even on the most
popular and security-concerned devices and networks, such as the likes of GitHub, Twitter,
Reddit, Netflix, Airbnb, etc. [8]. In this study, an IoT architecture was implemented to create
a network dataset. A botnet attack scenario was simulated on this architecture, which was

Future Internet 2023, 15, 210 3 of 30

designed to resemble a real-world environment. This enables the idea of recording and
generating datasets that can be utilized to train machine learning models for the detection
of normal and attack networks. The idea is to obtain a better understanding of the behavior
of botnets in IoT networks for the development of more effective methods to detect and
prevent them. The use of a realistic IoT architecture and simulated botnet attack enables
the gathering of valuable data that can be used to enhance the security of IoT networks in
the future. The major contributions of this study are listed as follows:

i. A novel IoT device dataset was introduced, based on a smart health service testbed,
that included both attack and normal network traffic. The dataset was preprocessed
and feature-engineered using advanced machine-learning techniques, enabling the
models to achieve higher accuracy;

ii. The generated dataset was cross-evaluated with an existing IoT intrusion detection
system dataset using various machine learning algorithms. The results demonstrated
the competency of the generated dataset in improving the performance of intrusion
detection systems and revealed unique features that make it a valuable addition to
the field of IoT intrusion detection;

iii. Nine popular machine learning model classifiers were applied to the dataset to classify
attack and normal network traffic. The models utilized advanced approaches to detect
anomalies and patterns in the network traffic, resulting in better classification accuracy;

iv. The study demonstrated the competency of advanced machine learning techniques
for detecting and classifying botnet attacks and showed that machine learning models
could effectively differentiate between normal and attack traffic. These techniques
and insights can be instrumental in the improvement of the security of IoT devices,
networks, and systems, thereby serving techniques in preventing botnet attacks.

The structure of this paper follows the following outline: Section 2 offers a comprehen-
sive review of current research on IoT datasets with state-of-the-art explanations of current
technology advancements in the field, while Section 3 offers an overview of the testbed
architecture utilized for generating and collecting the proposed datasets, which provides a
detailed description of the datasets and the methodology used to develop them, along with
discussions of normal and attack scenarios. In Section 4, machine learning (ML) methods
are introduced to evaluate their effectiveness on the proposed datasets, along with the
comparison with relevant datasets, and the experimental results of these evaluations are
presented. Section 5 focuses on the results of the machine learning classification of normal
and attack networks. The paper concludes with Section 5, which summarizes the results
and suggests future research directions.

2. State of the Art

Developing intrusion detection systems is a critical step toward securing IoT devices.
To create an effective research environment for this purpose, a labeled dataset plays an indis-
pensable role. The utilization of real-world datasets that accurately reflect IoT applications
is crucial in evaluating the competency and efficiency of security methods. However, the
unavailability of such datasets poses a significant obstacle to evaluating intrusion detection
systems for IoT applications. The lack of labeled datasets restricts researchers from empiri-
cally validating and evaluating intrusion detection methods tailored to IoT applications,
thereby hindering the development of more sophisticated methods. In essence, access
to labeled datasets is essential for researchers to evaluate the effectiveness of intrusion
detection methods for IoT devices and create robust security solutions [9]. Buczak and
Guven [10] used data mining and machine learning (ML) approaches for intrusion detection
systems (IDSs) in their cyber security study. Due to privacy concerns, they determined
that the absence of labeled datasets is a key barrier in building anomaly-based intrusion
detection methods, as most large corporations do not share their IoT datasets with the
academic community [11]. Popular datasets, such as KDDCUP99 and NSL-KDD [12],
UNSW-NB15 [13], and ISCX [14], were developed to fill this gap; however, they lack
IoT-specific components, such as sensor readings and IoT network traffic. Although sev-

Future Internet 2023, 15, 210 4 of 30

eral research studies [15,16] utilized these datasets to assess intrusion detection methods,
these datasets do not represent the pure attributes because none of them includes any
Iot system in their functional prototypes. IoT data for categorizing IoT devices based on
network metrics were provided by Sivanathan et al. [15]. The authors created a testbed
for smart homes to collect IoT traffic and utilized flow-based traits to identify each IoT
device, concluding that each item exhibits recognizable patterns in its traffic flows, such as
activity phases and volume changes. As a result of their creation with the goal of device
categorization, these datasets do not, however, contain any attack patterns. To address the
difficulties raised earlier, numerous researchers, most notably Koroniotis et al. [17] and
Hamza et al. [16], have presented IoT network-based IoT datasets that incorporate attack
patterns. They created an IoT-based dataset aimed at identifying DoS assaults in an IoT
network, in which they gathered several types of normal and DoS attack traffic, including
the TCP SYN attack and Ping of Death. To collect data, they mimicked a smart home setting.
Kolias et al. [18] have presented the Aegean WiFi Intrusion Dataset (AWID), which was
collected from a Small Office/Home Office (SOHO) environment utilizing 802.11 wireless
connections. This dataset encompasses various devices, including desktop computers,
laptops, smartphones, tablets, and smart TVs. Apparently, this collection only contains
MAC layer frame traces without a proper IoT device sensor data infrastructure. On the
other hand, Koroniotis et al. [17] developed a BoT-IoT dataset that includes both normal
and attack traffic. The dataset contains approximately 72 million records of network activity
from a modeled IoT ecosystem, and a mini version with roughly 3.6 million records is
available for review. Zolanvari et al. [19] created a network-driven dataset of IIoT systems
for cybersecurity assessment. To replicate real-life industrial applications, the dataset was
produced by simulating genuine industrial systems, which include several IIoT sensors and
actuators, a human–machine interface (HMI), a logger, and an alerting device. The dataset
was subjected to different popular machine learning methods. For binary classification,
the RF model had the maximum accuracy of 99.99%, while the NB model had the lowest
accuracy of 97.48%. The testbed included backdoor, command injection, denial-of-service,
and reconnaissance threats. The dataset, however, solely comprises data from an IIoT
architecture and does not include any traffic, data, or threats from IoT-based devices. As
a result, this dataset is insufficient for assessing IoT-based intrusion detection systems
(IDSs) [19]. Al Hawawreh et al. [20] have created a dataset that can be used to assess and
train deep learning and machine learning-based intrusion detection systems (IDSs) for IoT
systems. The dataset employs the Industrial Internet Reference Architecture (IIRA), which
has multiple levels as follows: edge level, platform level, and enterprise level, and deploys
different industrial standards, cloud computing, and attack tools. The attack records were
created with three separate frameworks: CKC, MALC, and ATTACK, and the dataset
contains records from five distinct procedures: MQTT, TCP, Modbus, CoAP, and SMTP. The
dataset was analyzed using seven different machine learning algorithms: KNN, DT, NB,
SVM, LR, GRU, and DNN. The decision tree (DT) method performed best, with 99.54%
performance for binary classification and 99.49% performance for multi-classification. One
of the most important research needs noted in this article is the need for more investiga-
tion of cyber threats that directly influence the features of PLCs, such as false commands
or data. Although the existing X-IIoTID dataset is an essential addition to IIoT security
research, it does not include these forms of threats. Another exploratory study is the lack
of preset data separated into training and testing datasets, which is required to improve
federation capabilities and assist researchers in making fair comparisons. While K-fold
cross-validation partially addresses this restriction, an empirical investigation employing
several data-splitting strategies is required to select the best one for splitting the dataset.
Furthermore, the researchers state that the X-IIoTID dataset contains minority attack types
that need assistance with data preprocessing approaches. Table 1 outlines the compilation
of prominent IoT datasets that have been extensively utilized for research purposes in
recent times.

Future Internet 2023, 15, 210 5 of 30

Table 1. Comparison of widely utilized IoT datasets.

Dataset Year Comprehensive
IoT Simulation

Multi Attack
Scenarios Telemetry Data Label IoT/IIoT

KDDCUP99/NSL-KDD [12] 1998 No No No Yes IoT

UNSW NB15[13] 2015 No Yes No Yes IoT

AWID [18] 2015 Yes Yes No Yes IoT

ISCX [14] 2017 No Yes No Yes IoT

UNSW-IoT Trace [15] 2018 Yes No No N/A IoT

BoT-IoT [17] 2018 Yes Yes No Yes IoT

UNSW-IoT [16] 2019 Yes Yes No Yes IoT

WUSTL-IIoT-2021 [19] 2021 Yes Yes No Yes IIoT

3. Materials and Methods

In terms of a general overview, the testbed environment comprises five integral
components of network infrastructure, simulation of IoT devices, extraction of network
data and features, tools and techniques required for a botnet attack, and machine learning
approach for attack/normal network classification.

3.1. Details of the Testbed

The network infrastructure in the testbed enables the incorporation of two Linux
servers that use Ubuntu version 20.04, also commonly known as Focal Fossa. This helps
the inclusion of normal and attack machines with supportive devices such as routers and
switches. The server, IoT devices, and smartphones are connected to WAN and LAN
interfaces accordingly and are connected to the Internet through a combination of routers
and a switch. Figure 1 illustrates the network architecture components of the testbed.

Future Internet 2023, 15, x FOR PEER REVIEW 5 of 31

investigation employing several data-splitting strategies is required to select the best one
for splitting the dataset. Furthermore, the researchers state that the X-IIoTID dataset
contains minority attack types that need assistance with data preprocessing approaches.
Table 1 outlines the compilation of prominent IoT datasets that have been extensively
utilized for research purposes in recent times.

Table 1. Comparison of widely utilized IoT datasets.

Dataset Year Comprehensive
IoT Simulation

Multi Attack
Scenarios

Telemetry
Data

Label IoT/IIoT

KDDCUP99/NSL-KD
D [12] 1998 No No No Yes IoT

UNSW NB15[13] 2015 No Yes No Yes IoT
AWID [18] 2015 Yes Yes No Yes IoT
ISCX [14] 2017 No Yes No Yes IoT
UNSW-IoT Trace [15] 2018 Yes No No N/A IoT
BoT-IoT [17] 2018 Yes Yes No Yes IoT
UNSW-IoT [16] 2019 Yes Yes No Yes IoT
WUSTL-IIoT-2021 [19] 2021 Yes Yes No Yes IIoT

3. Materials and Methods
In terms of a general overview, the testbed environment comprises five integral

components of network infrastructure, simulation of IoT devices, extraction of network
data and features, tools and techniques required for a botnet attack, and machine learn-
ing approach for attack/normal network classification.

3.1. Details of the Testbed
The network infrastructure in the testbed enables the incorporation of two Linux

servers that use Ubuntu version 20.04, also commonly known as Focal Fossa. This helps
the inclusion of normal and attack machines with supportive devices such as routers and
switches. The server, IoT devices, and smartphones are connected to WAN and LAN in-
terfaces accordingly and are connected to the Internet through a combination of routers
and a switch. Figure 1 illustrates the network architecture components of the testbed.

Figure 1. Network architecture of the testbed. Figure 1. Network architecture of the testbed.

Future Internet 2023, 15, 210 6 of 30

The system follows the Message Queuing Telemetry Transport (MQTT) [21] and
HTML protocol while servicing through the gateway API and is programmed accordingly
using scripts programmed in Java. A particular Ubuntu Server is under the control of
the attacking entity, and its purpose is to execute various types of Botnet-related attacks,
such as port scanning, fingerprinting, and volumetric and protocol-based DDoS attacks.
The transmission of essential data and information between servers was facilitated by
employing the File Transfer Protocol (FTP), a secure method for transferring files over a
network that utilizes the Secure File Transfer Protocol (SFTP) operating on port number 22.
The comprehensive dataset of both benign and malicious network traffic was meticulously
captured using Wireshark [22], a proficient network packet analyzer tool that runs on the
Ubuntu operating system. Wireshark captures packet information on demand, ensuring
the entire volume of network traffic data is precisely captured. The cloud server utilizes
the cloud server platform known as Heroku. In this cloud server, Heroku references the
repository of a Java program uploaded to Gitlab (https://about.gitlab.com/ assessed on
1 May 2023). Heroku supports the programming language and can process the system
following the Java-based framework, Spring boot. While processing, the Heroku server also
manages the internal program data in one popular and cost-effective database platform,
PostgreSql (https://www.postgresql.org/ assessed on 1 May 2023). The data generated
from the IoT device follow the network communication protocol to transfer and receive
files from the Heroku server [23]. The Representational State Transfer Application Pro-
gramming Interface (RestAPI) integration through java programming helps the IoT device
to communicate with its web and android based application to retrieve and transfer the
necessary data. Figure 2, illustrating the communication process for IoT network.

Future Internet 2023, 15, x FOR PEER REVIEW 6 of 31

The system follows the Message Queuing Telemetry Transport (MQTT) [21] and
HTML protocol while servicing through the gateway API and is programmed accord-
ingly using scripts programmed in Java. A particular Ubuntu Server is under the control
of the attacking entity, and its purpose is to execute various types of Botnet-related
attacks, such as port scanning, fingerprinting, and volumetric and protocol-based DDoS
attacks. The transmission of essential data and information between servers was facili-
tated by employing the File Transfer Protocol (FTP), a secure method for transferring files
over a network that utilizes the Secure File Transfer Protocol (SFTP) operating on port
number 22. The comprehensive dataset of both benign and malicious network traffic was
meticulously captured using Wireshark [22], a proficient network packet analyzer tool
that runs on the Ubuntu operating system. Wireshark captures packet information on
demand, ensuring the entire volume of network traffic data is precisely captured. The
cloud server utilizes the cloud server platform known as Heroku. In this cloud server,
Heroku references the repository of a Java program uploaded to Gitlab
(https://about.gitlab.com/). Heroku supports the programming language and can process
the system following the Java-based framework, Spring boot. While processing, the
Heroku server also manages the internal program data in one popular and cost-effective
database platform, PostgreSql (https://www.postgresql.org/). The data generated from
the IoT device follow the network communication protocol to transfer and receive files
from the Heroku server [23]. The Representational State Transfer Application Program-
ming Interface (RestAPI) integration through java programming helps the IoT device to
communicate with its web and android based application to retrieve and transfer the
necessary data. Figure 2, illustrating the communication process for IoT network.

Figure 2. Communicational passage for IoT network.

The following are the primary microcontroller components utilized for the devel-
opment of the IoT device: (1) Arduino Uno, (2) SIM808 Module, (3) ESP8266 (NodeMCU),
(4) Load Cell Sensor, and (5) HX711 Module.

The IoT device is programmed through Arduino IDE, implementing the C++ pro-
gramming language for the following functions:

i. Arduino Uno’s communication with all four components and supporting accesso-
ries;

ii. Sim808 Module for GPS location-based information retrieval and GSM (Global Sys-
tem for Mobile Communication) utilization for cellular network use;

iii. Esp8266, which helps the WiFi network communication to initialize the communi-
cation between the IoT device with the cloud network;

Figure 2. Communicational passage for IoT network.

The following are the primary microcontroller components utilized for the develop-
ment of the IoT device: (1) Arduino Uno, (2) SIM808 Module, (3) ESP8266 (NodeMCU),
(4) Load Cell Sensor, and (5) HX711 Module.

The IoT device is programmed through Arduino IDE, implementing the C++ program-
ming language for the following functions:

i. Arduino Uno’s communication with all four components and supporting accessories;
ii. Sim808 Module for GPS location-based information retrieval and GSM (Global System

for Mobile Communication) utilization for cellular network use;

https://about.gitlab.com/
https://www.postgresql.org/

Future Internet 2023, 15, 210 7 of 30

iii. Esp8266, which helps the WiFi network communication to initialize the communica-
tion between the IoT device with the cloud network;

iv. The Load Cell Sensor and HX711 Module help generate the sensor data based on an
object’s weight over the sensor. The HX711 module converts the analog signal from the
sensor and amplifies the voltage output from the load sensor so that Arduino Uno can
read the output. Algorithm 1 outlines the procedure utilized for the communication
of cloud network with developed IoT devices.

Algorithm 1 Transmitting data from SIM808 to cloud network

1: Connect the SIM808 module to the Arduino Uno using the appropriate pins and connectors
2: Configure the SIM808 module with the appropriate settings and credentials for the cloud
network
3: Use the Arduino Uno’s serial communication functions to establish a connection with the
SIM808 module
4: Use the SIM808 module’s API to obtain the data that you want to transmit
5: Use the Arduino Uno’s networking functions (such as WiFiClient or EthernetClient) to establish
a connection with the cloud network
6: Use the Arduino Uno’s HTTP or MQTT libraries to send the data to the cloud network
7: Disconnect from the cloud network and the SIM808 module when the transmission is complete

For simulation, both the weight and GPS sensors are programmed to continuously
provide the data to the cloud server, hence helping with the optimal level of data generation
and storage.

3.2. Data Generation

Wireshark [22] provides normal and attack network traffic in pcap files. For data
integrity, one of the tools that is used is tcpdump, which analyzes packet headers and
payloads. However, this approach can be time-consuming and may become a bottleneck
in high-speed networks, requiring a high processing throughput to be effective. Figure 3
depicts the block diagram of the connected devices forming an IoT device in operation.

Future Internet 2023, 15, x FOR PEER REVIEW 7 of 31

iv. The Load Cell Sensor and HX711 Module help generate the sensor data based on an
object’s weight over the sensor. The HX711 module converts the analog signal from
the sensor and amplifies the voltage output from the load sensor so that Arduino
Uno can read the output. Algorithm 1 outlines the procedure utilized for the com-
munication of cloud network with developed IoT devices.

Algorithm 1 Transmitting data from SIM808 to cloud network
1: Connect the SIM808 module to the Arduino Uno using the appropriate pins and
connectors
2: Configure the SIM808 module with the appropriate settings and credentials for the
cloud network
3: Use the Arduino Uno’s serial communication functions to establish a connection with
the SIM808 module
4: Use the SIM808 module’s API to obtain the data that you want to transmit
5: Use the Arduino Uno’s networking functions (such as WiFiClient or EthernetClient) to
establish a connection with the cloud network
6: Use the Arduino Uno’s HTTP or MQTT libraries to send the data to the cloud network
7: Disconnect from the cloud network and the SIM808 module when the transmission is
complete

For simulation, both the weight and GPS sensors are programmed to continuously
provide the data to the cloud server, hence helping with the optimal level of data gener-
ation and storage.

3.2. Data Generation
Wireshark [22] provides normal and attack network traffic in pcap files. For data

integrity, one of the tools that is used is tcpdump, which analyzes packet headers and
payloads. However, this approach can be time-consuming and may become a bottleneck
in high-speed networks, requiring a high processing throughput to be effective. Figure 3
depicts the block diagram of the connected devices forming an IoT device in operation.

Figure 3. Block diagram of the IoT device.

3.2.1. Flow-Based Approach
The flow-based approach looks at high-level descriptions of communication be-

tween devices and can be more efficient, reducing the amount of information that needs
to be analyzed [24]. In this research, packet-based data from the network were converted
into a flow-based format using the Argus tool in order to facilitate machine learn-
ing-based approaches at a convenient scale [25].

While IoT devices generally communicate with the required server over the Internet,
normal and attack traffic, in particular, need to be executed simultaneously. This requires

Figure 3. Block diagram of the IoT device.

3.2.1. Flow-Based Approach

The flow-based approach looks at high-level descriptions of communication between
devices and can be more efficient, reducing the amount of information that needs to be
analyzed [24]. In this research, packet-based data from the network were converted into
a flow-based format using the Argus tool in order to facilitate machine learning-based
approaches at a convenient scale [25].

Future Internet 2023, 15, 210 8 of 30

While IoT devices generally communicate with the required server over the Internet,
normal and attack traffic, in particular, need to be executed simultaneously. This requires
a particular Wireshark tool to capture raw packet data and store them physically in the
Ubuntu Server. As the testbed environment is experimental and it is clear which IP
address belongs to the attack traffic, it is more convenient for the job to observe the data
once generated.

3.2.2. Packet Conversion

While the continuous volumetric and protocol-based botnet attack is carried out in the
system with tools such as the Goldeneye tool [26], assisted by Hping3 [27] and Nmap [28]
for port filtering and accessing, the pcap files get captured and are stored. Moving forward,
a successive flow-based formatting is required where the Argus tool is used. Conversion of
packet data into the Argus file is performed by its keyword,

/argus -r networkData.pcap -w networkArgData.argus
Argus follows the command of -r to read and -w to write into the required files.

After Argus provides the network flows in a file format, another command helps with
the generation of the csv files. The different fields captured from the net workflow help
determine the behavior of the packet, and thus, the results are categorized accordingly
through the following command:

/ra -c, -s *Provide the necessary header files for csv* -r filename.argus¿filename.csv
This starts the Argus daemon, and necessary resources are provided to convert the

Argus file to a csv file with the required fields. A total of six different CSV files were created
with both normal and attack traffic with the required fields, as provided by the Argus Client.
Figure 4 demonstrates attacks on the communication channel across different protocols.

Future Internet 2023, 15, x FOR PEER REVIEW 8 of 31

a particular Wireshark tool to capture raw packet data and store them physically in the
Ubuntu Server. As the testbed environment is experimental and it is clear which IP ad-
dress belongs to the attack traffic, it is more convenient for the job to observe the data
once generated.

3.2.2. Packet Conversion
While the continuous volumetric and protocol-based botnet attack is carried out in

the system with tools such as the Goldeneye tool [26], assisted by Hping3 [27] and Nmap
[28] for port filtering and accessing, the pcap files get captured and are stored. Moving
forward, a successive flow-based formatting is required where the Argus tool is used.
Conversion of packet data into the Argus file is performed by its keyword,

/argus -r networkData.pcap -w networkArgData.argus
Argus follows the command of -r to read and -w to write into the required files. Af-

ter Argus provides the network flows in a file format, another command helps with the
generation of the csv files. The different fields captured from the net workflow help de-
termine the behavior of the packet, and thus, the results are categorized accordingly
through the following command:

/ra -c, -s *Provide the necessary header files for csv* -r filename.argus¿filename.csv
This starts the Argus daemon, and necessary resources are provided to convert the

Argus file to a csv file with the required fields. A total of six different CSV files were cre-
ated with both normal and attack traffic with the required fields, as provided by the Ar-
gus Client. Figure 4 demonstrates attacks on the communication channel across different
protocols.

Figure 4. SYN for TCP, UDP, and HTTP attack communication channels.

3.3. Initiation of Botnet Attack
The steps taken for the botnet attack in the testbed can be categorized into the fol-

lowing stages:

3.3.1. Denial of Service
In a denial of service (DoS) attack, an attacker attempts to make a network resource

or service unavailable to its intended users by overwhelming it with traffic or disrupting
its normal functioning. DoS attacks can take many forms, including flooding the targeted
server with requests, sending malformed or malicious packets to the server, or exploiting

Figure 4. SYN for TCP, UDP, and HTTP attack communication channels.

3.3. Initiation of Botnet Attack

The steps taken for the botnet attack in the testbed can be categorized into the
following stages:

Future Internet 2023, 15, 210 9 of 30

3.3.1. Denial of Service

In a denial of service (DoS) attack, an attacker attempts to make a network resource
or service unavailable to its intended users by overwhelming it with traffic or disrupting
its normal functioning. DoS attacks can take many forms, including flooding the targeted
server with requests, sending malformed or malicious packets to the server, or exploiting
vulnerabilities in the server software to crash the server. DDoS and DoS are inherited for
the dataset using TCP, UDP, and HTTP protocols.

The Hping3 tool was utilized for the process of DDoS and DoS attacks on the TCP and
UDP protocol using the following command:

hping3 -syn -flood -d 100 -p 80 192.168.110.235, where syn signifies SYN TCP attack,
flood signifies the packets’ rapid flow, d is the packet size, and p provides the value of port.

The Goldeneye tool was utilized for the attack on HTTP protocol using the following
command:

goldeneye.py http://192.168.11.235:80 -m post -s 75 iw 1 assessed on 25 April 2023, where
m provides the information of obtaining a get request or post request, 80 is the port number,
s provides the number of sockets information, and w is the simultaneously working
mechanism.

3.3.2. Network Discovery/Reconnaissance Attack

A network discovery attack is a type of cyber/Internet attack in which an attacker
sends probe packets to a target network or system in order to gather information about the
system’s configuration, vulnerabilities, or available services. Network discovery attacks
can be used to gather intelligence for more sophisticated attacks, such as DoS attacks or
network intrusions [29]. Network discovery attacks can take many forms, including ping
sweeps, port scans, and banner grabbing. Network discovery attacks can be challenging
to detect as the probe packets may not contain malicious payloads or raise alarms in
traditional security systems. Therefore, it is important for organizations to implement
a comprehensive security strategy that includes monitoring for probe packets and other
indicators of potential network discovery activity [29].

PortScanning: Nmap and Hping3 were utilized for this process, performing the
required port scans by using the following commands:

nmap -sT 192.168.110.235, where sT connects to the TCP protocol of the IP address
mentioned. Likewise, Hping3 also uses the command nmap -S -scan 1-1000 192.168.110.235,
where S signifies SYN scan and provides the range of scan needed.

OS fingerprinting: Here, Nmap and XProbe2 [30] tools were utilized for different
levels of OS scans. Nmap tool with Xprobe2 as a functional dependency work to identify
the OS of the target as follows:

nmap -sV -T5 -PO -O 192.168.110.235, where sV signifies SYN scan, T5 suggests the
scan is possible, PO includes IP protocol ping packets, and O enables the scanning. Tools
utilized for the initiation of botnet attacks are tabulated in Table 2.

Table 2. Tools utilized for botnet attacks.

Reconnaissance Denial of Service

Service Scanning-nmap, hping3 DDoS-hping3, goldeneye

OS Fingerprinting-nmap, Xprobe2 DoS-hping3, goldeneye

3.4. Labeling of Dataset

Ostinato [31] is a network packet and traffic generator and analyzer. It is utilized in
the Ubuntu server as a complementary network analyzer for Wireshark, and it can also
be installed as an add-on to the application. Ostinato is utilized to create custom packet
streams in conjunction with Wireshark and Argus to label datasets. By configuring Ostinato
to generate specific types of network traffic, Wireshark to capture the packets, and Argus
to record the packet flows, the datasets are labeled. For botnet network data, each traffic

Future Internet 2023, 15, 210 10 of 30

generated is recorded according to the attack performed. Ostinato helps mostly in smaller
testbeds as the condition of only single entity dataset generation is handled by the dataset
generator from Ostinato, which can generate and analyze the dataset accordingly at the
same time. The table below provides information on the utilization of Ostinato in the area
of botnet attack labeling. Each packet transaction through each type of botnet is labeled
according to the timetable of the activation of the botnet attack. Table 3 labels network
traffic categories, subcategorized by the implemented botnet technique, alongside normal
network traffic.

Table 3. Attack and normal network category from labeling.

TrafficCategory SubCategory

Normal Normal

DoS TCP, UDP, and HTTP

DDoS TCP, UDP, and HTTP

Reconnaissance ServiceScan and OSFingerprint

3.5. Analyzing the Dataset

As previously noted, the dataset comprises a variety of attack topologies. To under-
stand the dataset’s complexity, an evaluation of simulated traffic hours utilizing all of the
gathered characteristics in the various network levels was initiated.

Figure 5 shows the exact trace of how a file named network.pcap on a simulated
environment can store packet data over time. Figure 6 provides data percentage statistics
of the degree of data characteristics. The Denial of Service (DoS) comprises the highest
percentage of the dataset, at 38%, whereas the Reconnaissance attack comprises the least, at
11%, in the generated dataset. The Dos and DDoS records hold the highest value due to
the involvement of all three TCP, UDP, and HTTP attacks from the simulated environment.
The Reconnaissance attack has the Service Scan and OS Fingerprinting attacks on its sub-
categories, while the normal network is the simulated network without any intervention of
botnet threats in the simulated environment.

Future Internet 2023, 15, x FOR PEER REVIEW 10 of 31

of botnet is labeled according to the timetable of the activation of the botnet attack. Table
3 labels network traffic categories, subcategorized by the implemented botnet technique,
alongside normal network traffic.

Table 3. Attack and normal network category from labeling.

TrafficCategory SubCategory
Normal Normal
DoS TCP, UDP, and HTTP
DDoS TCP, UDP, and HTTP
Reconnaissance ServiceScan and OSFingerprint

3.5. Analyzing the Dataset
As previously noted, the dataset comprises a variety of attack topologies. To under-

stand the dataset’s complexity, an evaluation of simulated traffic hours utilizing all of the
gathered characteristics in the various network levels was initiated.

Figure 5 shows the exact trace of how a file named network.pcap on a simulated
environment can store packet data over time. Figure 6 provides data percentage statistics
of the degree of data characteristics. The Denial of Service (DoS) comprises the highest
percentage of the dataset, at 38%, whereas the Reconnaissance attack comprises the least,
at 11%, in the generated dataset. The Dos and DDoS records hold the highest value due to
the involvement of all three TCP, UDP, and HTTP attacks from the simulated environ-
ment. The Reconnaissance attack has the Service Scan and OS Fingerprinting attacks on
its sub-categories, while the normal network is the simulated network without any in-
tervention of botnet threats in the simulated environment.

Figure 5. Network flow for a simulated period. Figure 5. Network flow for a simulated period.

Future Internet 2023, 15, 210 11 of 30
Future Internet 2023, 15, x FOR PEER REVIEW 11 of 31

Figure 6. Data statistics of generated dataset.

The generated dataset comprises 44 different features, including the category and
sub-category of attack network data. For each DDoS and DoS, the sub-categories of UDP,
TCP, and HTTP are included, while the Reconnaissance attack carries the OSFinger-
printing and ServiceScan. Analysis of the dataset is also inclined to select features of da-
tasets to analyze optimal features and aid in machine learning for the comprehensive
identification of cyberattacks. The analysis of datasets using correlation coefficient
measures is an important task to measure the strength of the relationship between two or
more variables in the dataset. The correlation coefficient is a statistical measure that sta-
tistically can range from −1 to 1, indicating the degree of interconnected correlation be-
tween variables.

The total dataset features, along with their respective description, is listed in Ap-
pendix A.

3.5.1. Pearson Correlation Coefficient
This is a measure of the linear correlation between two variables. It determines the

strength and direction of the relationship between two variables. By dividing the covar-
iance of two variables by the sum of their standard deviations, the Pearson correlation
coefficient is determined. The scale ranges from −1 to 1, with −1 denoting a strong nega-
tive correlation, 0 denoting no association, and 1 denoting a high positive correlation [32].
The Pearson correlation coefficient is commonly used in datasets because it is easy to
understand and calculate, and it can be used to identify relationships between continu-
ous variables. It is implemented in the dataset as it provides its advantage in feature se-
lection and dimensionality reduction. The equation for the Pearson correlation coefficient
is as follows:

𝑟௑௒ = ෍ (𝑋௜ െ 𝑋)(𝑌௜ െ 𝑌)௡௜ୀଵඨ෍ (𝑋௜ െ 𝑋)ଶ௡௜ୀଵ ඨ෍ (𝑌௜ െ 𝑌)ଶ௡௜ୀଵ
 (1)

where 𝑥 signifies the sample mean of variable x, and 𝑦 signifies the sample mean of
variable y. To find the correlation between the features in a dataset, a script in Python to
examine the correlation coefficient was created, and the attributes were ranked in a range
of −1 to 1. The average correlation for each feature was also computed to identify the
features that would introduce less uncertainty in the dataset. When there is a strong re-
lation between two features, one feature from the pair can be eliminated. Hence, if there
is a strong relation, the value of the pair comes close to 1, which signifies that X is highly
correlated to Y, while a value close to −1 suggests a negative correlation. If there is no
correlation, then the correlation coefficient provides the result of 0 [32]. In the dataset, the
threshold was set to 0.90, as it helps obtain the highly correlated feature from the set and

Figure 6. Data statistics of generated dataset.

The generated dataset comprises 44 different features, including the category and
sub-category of attack network data. For each DDoS and DoS, the sub-categories of UDP,
TCP, and HTTP are included, while the Reconnaissance attack carries the OSFingerprinting
and ServiceScan. Analysis of the dataset is also inclined to select features of datasets to
analyze optimal features and aid in machine learning for the comprehensive identification
of cyberattacks. The analysis of datasets using correlation coefficient measures is an
important task to measure the strength of the relationship between two or more variables
in the dataset. The correlation coefficient is a statistical measure that statistically can range
from −1 to 1, indicating the degree of interconnected correlation between variables.

The total dataset features, along with their respective description, is listed in
Appendix A.

3.5.1. Pearson Correlation Coefficient

This is a measure of the linear correlation between two variables. It determines
the strength and direction of the relationship between two variables. By dividing the
covariance of two variables by the sum of their standard deviations, the Pearson correlation
coefficient is determined. The scale ranges from−1 to 1, with−1 denoting a strong negative
correlation, 0 denoting no association, and 1 denoting a high positive correlation [32]. The
Pearson correlation coefficient is commonly used in datasets because it is easy to understand
and calculate, and it can be used to identify relationships between continuous variables.
It is implemented in the dataset as it provides its advantage in feature selection and
dimensionality reduction. The equation for the Pearson correlation coefficient is as follows:

rXY =
∑ n

i=1

(
Xi −

−
X
)(

Yi −
−
Y
)

√
∑ n

i=1(Xi −
−
X)2

√
∑ n

i=1(Yi −
−
Y)2

(1)

where x signifies the sample mean of variable x, and y signifies the sample mean of variable
y. To find the correlation between the features in a dataset, a script in Python to examine
the correlation coefficient was created, and the attributes were ranked in a range of −1 to 1.
The average correlation for each feature was also computed to identify the features that
would introduce less uncertainty in the dataset. When there is a strong relation between
two features, one feature from the pair can be eliminated. Hence, if there is a strong relation,
the value of the pair comes close to 1, which signifies that X is highly correlated to Y, while
a value close to −1 suggests a negative correlation. If there is no correlation, then the
correlation coefficient provides the result of 0 [32]. In the dataset, the threshold was set to

Future Internet 2023, 15, 210 12 of 30

0.90, as it helps obtain the highly correlated feature from the set and helps in the feature
reduction. One of the pairs with a threshold greater than or equal to 0.90 was eliminated,
and also the correlation relation between each of the different variables opposed to the
target was also considered in the research. Figure 7 shows the Pearson correlation heatmap
for the dataset where every feature pair with a higher or equal to 0.90 correlation is dropped
for the machine learning model training.

Future Internet 2023, 15, x FOR PEER REVIEW 12 of 31

helps in the feature reduction. One of the pairs with a threshold greater than or equal to
0.90 was eliminated, and also the correlation relation between each of the different vari-
ables opposed to the target was also considered in the research. Figure 7 shows the
Pearson correlation heatmap for the dataset where every feature pair with a higher or
equal to 0.90 correlation is dropped for the machine learning model training.

Figure 7. Pearson correlation heatmap for dataset.

3.5.2. Entropy
In the context of classification in supervised learning, entropy is often used to

measure a group’s impurity. It is used to analyze the relevance of a split in a decision tree,
where the goal is to select the split that results in the most homogeneous subgroups (i.e.,
sub-groups with the lowest entropy) [33]. Overall, the use of entropy in classification
helps to identify splits that result in more homogeneous and pure sub-groups, which can
improve the accuracy and effectiveness of the model. The choice of the best entropy
measure for a particular problem depends on the specific requirements and characteris-
tics of the problem. In the context of classification in supervised learning, Shannon en-
tropy is the most commonly used entropy measure. It is defined as the sum of the prob-
abilities of all possible outcomes multiplied by the log of the probability of each outcome.
It provides a simple and intuitive way to quantify the impurity of a group, and is effec-
tive in decision tree learning and other classification algorithms [33]. The equation for
Shannon entropy is as follows:

𝐻(𝑋) = െ ෍ 𝑝௫௜ logଶ 𝑝௫௜௡
௜ୀଵ (2)

where H(X) represents the Shannon entropy of the random variable X, n is the number of
possible outcomes of X, and p(xi) is the probability of the i-th outcome of X. The features
obtained are characterized according to the entropy value, where a lower entropy pro-
vides the idea of higher information gain. This way, with a Python script, the best fea-

Figure 7. Pearson correlation heatmap for dataset.

3.5.2. Entropy

In the context of classification in supervised learning, entropy is often used to measure
a group’s impurity. It is used to analyze the relevance of a split in a decision tree, where
the goal is to select the split that results in the most homogeneous subgroups (i.e., sub-
groups with the lowest entropy) [33]. Overall, the use of entropy in classification helps to
identify splits that result in more homogeneous and pure sub-groups, which can improve
the accuracy and effectiveness of the model. The choice of the best entropy measure
for a particular problem depends on the specific requirements and characteristics of the
problem. In the context of classification in supervised learning, Shannon entropy is the
most commonly used entropy measure. It is defined as the sum of the probabilities of all
possible outcomes multiplied by the log of the probability of each outcome. It provides a
simple and intuitive way to quantify the impurity of a group, and is effective in decision
tree learning and other classification algorithms [33]. The equation for Shannon entropy is
as follows:

H(X) = −
n

∑
i=1

pxilog2 pxi (2)

where H(X) represents the Shannon entropy of the random variable X, n is the number of
possible outcomes of X, and p(xi) is the probability of the i-th outcome of X. The features
obtained are characterized according to the entropy value, where a lower entropy provides
the idea of higher information gain. This way, with a Python script, the best features are

Future Internet 2023, 15, 210 13 of 30

selected according to the entropy calculated. The best 10 and 20 features from both datasets
are shown below in Table 4.

Table 4. Best 10 and best 20 features of the generated dataset.

Best 10 Features Remaining 10 Features for Best 20

RecMean FlowSrcIPRate

RecMin FlowDstIPRate

RecMax SrcPortRate

FwdPackets/s DstPortRate

BwdPackets/s SrcIpPktsCount

SrcIPFwdConn DstIpPktsCount

DstIPBwdConn BwdPktsCount

FlowID ProtocolNum

FlowState RecordTime

ArgusSeq FwdPktsCount

This research employs the idea of multiclass classification through cross-evaluation of
the proposed dataset with one of the most popular botnet datasets, BoT-IoT [17]. Feature
reduction for the BoT-IoT dataset is also crucial for a comprehensive machine learning
analysis. The researchers and the team at the University of New South Wales (UNSW)
provided detailed information about the dataset and utilized techniques such as correlation
coefficient and chi-square tests to identify the best features for their dataset. These methods
allowed for the reduction of the dataset to only the most informative and relevant features,
facilitating more efficient and accurate analysis. The dataset and feature information, as
well as the best features, are accessible through the dataset database, which can be accessed
through a web portal provided accordingly by the researchers [17]. The BoT-IoT dataset
comprises a total of 46 distinct features. The best 10 and 20 features from the BoT-IoT
dataset are presented in Table 5 accordingly.

Table 5. Best 10 and 20 features of BoT-IoT dataset [17].

Best 10 Features Remaining 10 Features for Best 20

seq AR_P_Proto_P_Dport

stddev AR_P_Proto_P_DstIP

N_IN_Conn_P_SrcIP AR_P_Proto_P_Sport

min AR_P_Proto_P_SrcIP

state number TnP_PSrcIP

mean TnP_Per_Dport

N_IN_Conn_P_DstIP TnP_PDstIP

drate flgs_number

srate Pkts_P_State_P_Protocol_P_SrcIP

max Pkts_P_State_P_Protocol_P_DestIP

The cross-evaluation of data in this study was conducted using a BoT-IoT dataset
consisting of 3 gigabytes of data. The 3 GB of the dataset contained 12% normal network
traffic and 88% attack traffic. In order to optimize the analysis, the top 10 and top 20 features
were utilized in the process. Figure 8 showcases the dataset statistics for 3 GB of dataset
from BoT-IoT that has been implemented in the cross evaluation process.

Future Internet 2023, 15, 210 14 of 30
Future Internet 2023, 15, x FOR PEER REVIEW 14 of 31

Figure 8. Data statistics of BoT-IoT dataset (3 GB).

The most frequently occurring attacks in the dataset were DDoS and DoS botnet
attacks, which constituted 64% of the attacks, followed by reconnaissance attacks at 24%.
This information proved to be helpful in identifying the patterns and similarities present
in the generated dataset. The generated dataset contained approximately 5.2 million
flows, and the utilization of the DDoS and DoS botnet attacks and reconnaissance attacks
enabled a thorough analysis of the similar context of the data.

3.5.3. Data Scaling and Normalization
Scaling and normalization boost data preprocessing, which helps transform the da-

taset’s features into a standard scale without distorting differences in the range or mag-
nitude of the features. Standard Scaler, a data preprocessing module from the scikit-learn
library, was utilized in this study to provide transparency in the mean and unit variance
between the features. This also enables the improvement of the algorithm’s performance
by ensuring that the input features are on a similar scale and possibly have Gaussian
distribution. Scaling also helps reduce the computational burden of training the algo-
rithm, and normalization can make it easier to compare features measured on different
scales. It is a technique for scaling the features of a dataset so they have zero mean and
unit variance [34]. The formula for z-score normalization is as follows: 𝑧௜ = 𝑥𝑖 െ 𝜇𝜎 (3)

where x represents the original data point, µ (mu) is the mean of the sample of the data
points, σ (sigma) is the standard deviation, and z is the standardized data point. This
formula subtracts the mean of the feature from each value and divides the resulting val-
ues by the standard deviation of the feature. This helps to enable the components to be
normalized at the same level of scale, transform features with skewed distributions, re-
duce the influence of outliers on the features, and make a larger dynamic range of dis-
tance measurement stable, which reduces the computational burden while training the
model.

3.5.4. Sampling of Data
As the system’s goal is to identify unusual events, it is common for these types of

datasets to be imbalanced, with a higher chance of a minority of instances being classified
as normal networks and the majority being classified as attack activity. Imbalanced da-
tasets can be challenging to work with because the classifier may not have enough ex-
amples of the minority class to learn how to classify them accurately. This can lead to
poor performance in the minority class and make it difficult to evaluate the classifier’s
performance using standard metrics, such as accuracy. Several approaches address im-
balanced datasets, including oversampling the minority class, undersampling the major-
ity class, and using specialized algorithms designed to handle imbalanced datasets.
Considering a variety of samples, the imbalanced dataset was split into a number of
classes with different samples using the idea of oversampling. Random Over Sampler is

Figure 8. Data statistics of BoT-IoT dataset (3 GB).

The most frequently occurring attacks in the dataset were DDoS and DoS botnet
attacks, which constituted 64% of the attacks, followed by reconnaissance attacks at 24%.
This information proved to be helpful in identifying the patterns and similarities present in
the generated dataset. The generated dataset contained approximately 5.2 million flows,
and the utilization of the DDoS and DoS botnet attacks and reconnaissance attacks enabled
a thorough analysis of the similar context of the data.

3.5.3. Data Scaling and Normalization

Scaling and normalization boost data preprocessing, which helps transform the
dataset’s features into a standard scale without distorting differences in the range or mag-
nitude of the features. Standard Scaler, a data preprocessing module from the scikit-learn
library, was utilized in this study to provide transparency in the mean and unit variance
between the features. This also enables the improvement of the algorithm’s performance
by ensuring that the input features are on a similar scale and possibly have Gaussian distri-
bution. Scaling also helps reduce the computational burden of training the algorithm, and
normalization can make it easier to compare features measured on different scales. It is a
technique for scaling the features of a dataset so they have zero mean and unit variance [34].
The formula for z-score normalization is as follows:

zi =
xi− µ

σ
(3)

where x represents the original data point, µ (mu) is the mean of the sample of the data
points, σ (sigma) is the standard deviation, and z is the standardized data point. This
formula subtracts the mean of the feature from each value and divides the resulting values
by the standard deviation of the feature. This helps to enable the components to be
normalized at the same level of scale, transform features with skewed distributions, reduce
the influence of outliers on the features, and make a larger dynamic range of distance
measurement stable, which reduces the computational burden while training the model.

3.5.4. Sampling of Data

As the system’s goal is to identify unusual events, it is common for these types of
datasets to be imbalanced, with a higher chance of a minority of instances being classified
as normal networks and the majority being classified as attack activity. Imbalanced datasets
can be challenging to work with because the classifier may not have enough examples of the
minority class to learn how to classify them accurately. This can lead to poor performance
in the minority class and make it difficult to evaluate the classifier’s performance using
standard metrics, such as accuracy. Several approaches address imbalanced datasets,
including oversampling the minority class, undersampling the majority class, and using
specialized algorithms designed to handle imbalanced datasets. Considering a variety of
samples, the imbalanced dataset was split into a number of classes with different samples

Future Internet 2023, 15, 210 15 of 30

using the idea of oversampling. Random Over Sampler is an oversampling technique the
imblearn library provides for balancing imbalanced datasets [35]. It works by generating
synthetic samples of the minority class by randomly sampling from the existing minority
class samples. This helps create different classes of various samples in the training set.
A total of nine different classes were taken for the multiclass problem, where each class
belongs to the nature of the attack or normal network from the dataset. Table 6 shows the
different categorizations of class for multiclass classification that were used for the research.

Table 6. Class categorization for multiclass classification.

Classes Nature

0 DDoS-HTTP

1 DDoS-TCP

2 DDoS-UDP

3 DoS-HTTP

4 DoS-TCP

5 DoS-UDP

6 Normal

7 ServiceScan

8 OSFingerprint

4. Results

This chapter describes the various techniques utilized to obtain results for binary and
multiclass classification for the generated dataset and cross-evaluate the dataset with BoT-
IoT [17]. This study suggests the idea of cross-evaluating the generated dataset with one of
the most popular datasets, where the results discuss the performance measuring metrics,
such as confusion matrix, precision, recall, F1-score, accuracy, ROC, and AUC curve, as well
as model parameters, for different machine learning models. The chapter also includes a
comparison of binary classification for IoT datasets using the best 10 and 20 features, and a
comparison of the performance of different machine learning models in binary classification
using a confusion matrix for the best 20 features. It also covers the optimal feature selection
for cross-dataset multiclass classification using the best 10 and 20 features. These techniques
are used to obtain and analyze the results to conclude the performance of the models.

4.1. Performance Measuring Metrics

A range of performance indicators was commonly utilized to assess the effectiveness
of different machine learning models. These indicators provided insight into a model’s
capabilities and limitations, and were used to compare the performance of different models.
By examining these metrics and concepts, a thorough understanding of a model’s perfor-
mance helped to gain the insights needed for an informed decision about which model was
most suitable for a given task. The metrics are formulated as follows:

Precision (P) =
TP

TP + FP
(4)

Recall (R) =
TP

TP + FN
(5)

Accuracy (A) =
TP + TN

TP + FN + TN + FP
(6)

F1 Score (F1) =
2·PR
P + R

(7)

Future Internet 2023, 15, 210 16 of 30

where True Positive (TP) is the number of actual attack records that were correctly identified
as attacks, True Negative (TN) is the number of actual normal records that were correctly
identified as normal, False Negative (FN) is the number of actual attack instances that were
not correctly categorized as normal, and False Positive (FP) is the number of actual normal
instances that were incorrectly identified as attacks. Furthermore, the training time (i.e., the
CPU time to create the model) and prediction time (i.e., the CPU time to test the model) are
also examined since they are crucial in evaluating the model’s execution time, particularly
in the durational phase of runtime and testing time to report the projected outcomes.

4.2. Model Parameters

The data were effectively processed, and then machine learning algorithms were em-
ployed to assess how well they performed on the dataset. These models included decision
trees, logistic regression, naive bayes, random forests, k-nearest neighbors, gradient boost,
a multi-layer perceptron, and a convolutional neural network. The Python scripts were im-
plemented using the scikit-learn library, and the model parameters were adjusted to achieve
the highest accuracy while minimizing training time. The specific model parameters used
for each classification model are provided in subsequent sections. Figure 9 demonstrates
the processes utilized for the dataset evaluation through machine learning models.

Future Internet 2023, 15, x FOR PEER REVIEW 16 of 31

where True Positive (TP) is the number of actual attack records that were correctly iden-
tified as attacks, True Negative (TN) is the number of actual normal records that were
correctly identified as normal, False Negative (FN) is the number of actual attack in-
stances that were not correctly categorized as normal, and False Positive (FP) is the
number of actual normal instances that were incorrectly identified as attacks. Further-
more, the training time (i.e., the CPU time to create the model) and prediction time (i.e.,
the CPU time to test the model) are also examined since they are crucial in evaluating the
model’s execution time, particularly in the durational phase of runtime and testing time
to report the projected outcomes.

4.2. Model Parameters
The data were effectively processed, and then machine learning algorithms were

employed to assess how well they performed on the dataset. These models included de-
cision trees, logistic regression, naive bayes, random forests, k-nearest neighbors, gradi-
ent boost, a multi-layer perceptron, and a convolutional neural network. The Python
scripts were implemented using the scikit-learn library, and the model parameters were
adjusted to achieve the highest accuracy while minimizing training time. The specific
model parameters used for each classification model are provided in subsequent sections.
Figure 9 demonstrates the processes utilized for the dataset evaluation through machine
learning models.

Figure 9. Dataset evaluation process through ML models.

4.2.1. Decision Tree
The model classifier was created using the scikit-learn DecisionTreeClassifier. The

model’s maximum depth was set to 2, while all the other parameters were left at their
default settings. The test sample was taken to represent 20% of the entire dataset after the
data were standardized using the StandardScaler function in the scikit-learn library.

4.2.2. Naive Bayes
Scikit-learn classifier GaussianNB was utilized as the model classifier for the Naive

Bayes. All the supporting features were utilized with default values. The data were scaled
by StandardScaler and normalized with Z-score normalization from the scikit-learn li-
brary, where the test sample was considered to be 20% of the total data.

4.2.3. Logistic Regression
The classifier LogisticRegression was implemented from the linear model library of

scikit-learn. In the case of the LogisticRegression function in Python’s scikit learn library,
the solver parameter specifies the algorithm to use when fitting the model. The solver
was specified with liblinear such that the model would use the LIBLINEAR library to fit
the model. LIBLINEAR is a linear classifier that can handle both binary and multiclass
classification problems, well suited for cases where the number of features is very large
relative to the number of samples. The test sample was taken into account as 20% of the
entire dataset after the data were normalized using StandardScaler in the scikit-learn li-
brary.

Figure 9. Dataset evaluation process through ML models.

4.2.1. Decision Tree

The model classifier was created using the scikit-learn DecisionTreeClassifier. The
model’s maximum depth was set to 2, while all the other parameters were left at their
default settings. The test sample was taken to represent 20% of the entire dataset after the
data were standardized using the StandardScaler function in the scikit-learn library.

4.2.2. Naive Bayes

Scikit-learn classifier GaussianNB was utilized as the model classifier for the Naive
Bayes. All the supporting features were utilized with default values. The data were scaled
by StandardScaler and normalized with Z-score normalization from the scikit-learn library,
where the test sample was considered to be 20% of the total data.

4.2.3. Logistic Regression

The classifier LogisticRegression was implemented from the linear model library of
scikit-learn. In the case of the LogisticRegression function in Python’s scikit learn library,
the solver parameter specifies the algorithm to use when fitting the model. The solver was
specified with liblinear such that the model would use the LIBLINEAR library to fit the
model. LIBLINEAR is a linear classifier that can handle both binary and multiclass classifi-
cation problems, well suited for cases where the number of features is very large relative to
the number of samples. The test sample was taken into account as 20% of the entire dataset
after the data were normalized using StandardScaler in the scikit-learn library.

Future Internet 2023, 15, 210 17 of 30

4.2.4. KNN

The KNeighborsClassifier algorithm from the scikit-learn library was utilized under
the library of neighbors. The total number of neighbors was set as 30 to attain the best
balance between model performance and computational efficiency. The distance metric
was determined with default values for the Euclidean distance. The algorithm was set
to ‘auto’ such that the most reasonable algorithm based on the circumstances of statistics
passed would be supplied in the fitting of the model. Number of test samples was set to
0.20, with Z-Score normalization utilized for the data preprocessing.

4.2.5. Gradient Boost

The XGBClassifier was utilized as the model training classifier from the library of
xgboost, and an instance of the class was created with 42 random states. The random state
parameter specifies the random seed used to initialize the model. The data were scaled by
StandardScaler and normalized with Z-score normalization in the scikit-learn library, and
the test sample was considered to be 20% of the total data.

4.2.6. Random Forest

The RandomForestClassifier was utilized from the scikit-learn library to implement
the model. The n_estimators were specified to be 10, providing the number of trees in order
to obtain the most comprehensive accuracy levels as 10 with entropy as the criterion passed
to the model. In a random forest, entropy is used as a criterion for splitting the data at a
node. When the entropy of a node is high, it means that the data at that node are not pure
and contain a mix of different classes. This indicates that the node can be split further to
create more homogeneous sub-nodes. For multiclass classification, the n_estimator utilized
is 100. The data were normalized with StandardScaler, and the test sample was collected to
be 20% of the total data.

4.2.7. MLP

The MLPClassifier in the neural network class of the scikit-learn library was utilized
to train the model. A single hidden layer was specified with 100 neurons, with the alpha
being 0.0001, to observe the highest possible accuracy in the data analyzed. The alpha
value can help prevent the weights from becoming too large, which can lead to numerical
instability during training. For multiclass classification, three hidden layers, with 100 as
the first neuron, 100 as the second neuron, and 50 as the third neuron, were utilized for
the classification. Additionally, the alpha value for multiclass classification was specified
as 0.0001.

4.2.8. CNN

The Tensorflow module was implemented for defining and training the model. The
keras module provides a high-level API for building and training neural networks, which
is implemented to provide the Sequential class. The MinMaxScaler class was implemented
to normalize the input data before feeding it to a neural network model. The test sample
was collected to be 20% of the total size. The model consisted of a sequence of seven
dense layers followed by six dropout layers. Each dense layer was fully connected and
had a specified number of nodes, as well as a specified activation function. The range of
dense layers started with 1500 nodes, and the dropout layers were a type of regularization
layer that helped to prevent overfitting by randomly setting a fraction of the input units
to zero during training. The last layer of the model was a dense layer with a single node
and a sigmoid activation function, which was used for binary classification. The model
was compiled using the compile method, which specified the loss function, optimization
algorithm, and metrics to track during training and evaluation. The research implemented
the categorical_crossentropy loss function with epochs of 50 under a very popular adam
optimizer. The dense layers were optimized by the regularization technique and fine-tuning.
The dropout layers prevent overfitting by adding constraints to the model.

Future Internet 2023, 15, 210 18 of 30

4.2.9. Ensemble Method

The VotingClassifier from the scikit-learn library was implemented to train an ensem-
ble model that utilizes the predictions of multiple classifiers using both hard and soft voting
schemes. The VotingClassifier is initialized with a list of estimators (i.e., the individual
classifiers) and a voting type. The fit method is used to train the ensemble model on the
training data. The score method is used to evaluate the performance of the ensemble model
on the test data. The ensemble model is trained using seven different classifiers: model 1 (a
decision tree), model 2 (a Naive Bayes classifier), model 3 (a logistic regression classifier),
model 4 (a KNN classifier), model 5 (a random forest classifier), model 6 (a gradient boost-
ing classifier), and model mlp (a multi-layer perceptron classifier). The hard voting scheme
means that the ensemble model will make a prediction based on the majority vote among
the individual classifiers, while the soft voting analyzes the average of class probabilities.
Algorithm 2 explains the hybrid voting ensemble technique, which implements both the
hard and soft voting techniques from the classifiers involved in the ensemble process.

Algorithm 2 Hybrid Voting Ensemble using Hard and Soft Voting

Require: Training data D = (x1, y1), (x2, y2), . . . , (xn, yn), test data T = x’1, x’2, . . . , x’m
Ensure: Ensemble predictions ŷ = ŷ1, ŷ2, . . . , ŷm

1: Train K models on the training data D: M = M1, M2, . . . , MK
2: for each test instance x’i do
3: for each model Mj ∈M do
4: Make a prediction ŷi,j = Mj(x’i)
5: end for
6: Compute the average of class probabilities avg(y) = (1/K) Σj = 1

K pi,j(y), where
pi,j(y) is the probability estimate for class y given by model Mj for instance x’i

7: Compute the majority vote prediction ŷi
vote = argmaxy Σj = 1

K [ŷi,j = y]
8: Compute the average prediction confidence Ci

avg = (1/K) * Σj = 1
K maxy pi,j(y)

9: Set a threshold α ∈ [0, 1]
10: if the average prediction confidence Ci

avg ≥ α then
11: Set the ensemble prediction to be the average prediction:

ŷi = arg maxy pˆi
avg(y)

12: else
13: Set the ensemble prediction to be the majority vote prediction: ŷi = ŷvote

i
14: end if
15: end for
16: return ŷ = 0

In this research, while the employment of a machine learning model for binary classifi-
cation relies solely on the generated dataset, utilizing its top 10 and 20 features, the concept
of multiclass classification involves merging the two datasets of the generated dataset with
the BoT-IoT dataset, each with a size of 3 gigabytes, for the purpose of conducting the
analysis. Cross-evaluation of datasets was utilized with similar sizes of data to avoid biased
results and ensure that the model generalizes well to new data. It is important to compre-
hend that using datasets of equal size can help prevent overfitting to a particular dataset or
set of features. The binary and multiclass classification approaches are implemented with
distinct sets of parameters, which are enumerated in Table 7.

4.3. Binary Classification for Generated Dataset

The primary dataset from the designed IoT device was utilized for this process of
binary classification, where further multiclass classification will be analyzed with the help
of the BoT-IoT dataset in the next sections. Using the above-mentioned machine learning
approaches, binary classification was carried out to determine if a data sample was hostile
or not. Using the assessment metrics specified in the following section, the results are
tabulated for various numbers of features. The 10 and 20 best features were selected to

Future Internet 2023, 15, 210 19 of 30

be evaluated. The top features to help with categorization were those that substantially
influenced the decision-making process.

Table 7. Parameters employed for binary and multiclass classification.

Classifiers Binary Parameter Multiclass Parameter Approach Scikit Classifier

Random Forest n_estimators = 10
criterion = ‘entropy’

n_estimators = 100
criterion = ‘entropy’ Multiclass = ‘OVR’ RandomForestClassifier

KNN n_neighbors = 30 n_neighbors = 30 Multiclass = ‘OVR’ KNeighborsClassifier

MLP
1 hidden layer and
100 neurons,
alpha = 0.0001

3 hidden layers (100, 100, 50),
alpha = 0.0001 Multiclass = ‘OVR’ MLPClassifier

Decision Tree Only
Multiclass Classification max_depth = 2, criterion = ‘gini’ OVR DecisionTreeClassifier

Gradient Boost Only Multiclass
Classification random_state = 42 One-vs-Rest

approach (OVR) XGBClassifier

Naive Bayes Only
Multiclass Classification var_smoothing = 1 × 10−9 OVR GaussianNB

Logistic Regression Only
Multiclass Classification solver = ‘liblinear’ OVR LogisticRegression

CNN Only
Multiclass Classification

7 dense layers,
6 dropout layers,
1500 nodes,
epochs: 50,
activation function: ‘relu’,
loss_function:
‘categorical_crossentropy’
optimizer: ‘adam’

Categorical Tensorflow-Sequential
Model

Ensemble Only
Multiclass Classification

voting = ‘soft’ and ‘hard’,
estimators = ‘7’,
sklearn.ensemble technique

OVR VotingClassifier

4.3.1. Best 10 Features

Shannon entropy was used to identify features that contained a high level of infor-
mation about the target variable, while the Pearson coefficient for correlation was used to
identify features that were highly interrelated with the target variable. Combining these
methods, the best 10 or 20 features were selected for training the machine learning model.
The machine learning algorithm was trained on the best features to predict the presence
of an intrusion. Using the best 10 or best 20 features helped achieve optimal outcomes for
intrusion detection on the dataset. This was because the machine learning algorithm could
avoid overfitting to noisy or irrelevant data and focus on the most informative features for
intrusion detection.

The specific techniques and parameters used may vary depending on the dataset’s
characteristics and the specific application of the machine learning model. Overall, the
combination of Shannon entropy and the Pearson coefficient for feature selection and
training machine learning algorithms on the best 10 or best 20 features led to accurate
predictions of the presence of an intrusion in the dataset. Table 8 presents a comparison of
ML models for classification, using best 10 features from generated dataset.

4.3.2. Best 20 Features

These features were selected based on their correlation with attack instances in the
dataset. By using these 20 features, machine learning models were trained to identify
patterns and detect intrusions with high accuracy. The use of these features provided a
more efficient and effective way to detect intrusions compared to using all the available
features, as tabulated in the following table. This is because the selected features are highly
correlated with attack instances and provide a more focused approach to intrusion detection.
Table 5 offers a concise overview of the best 10 and 20 features. In contrast, Table 9 presents

Future Internet 2023, 15, 210 20 of 30

a comparative analysis of machine learning models for classification, utilizing the best
20 features from the generated dataset.

Table 8. Comparison of binary classification of best 10 features.

Model 0/1 Precision Recall F1-Score Accuracy Training
Time (s)

Prediction
Time (s)

Random
Forest

0
1

0.5525
0.9999

0.9983
0.9681

0.7135
0.9834 0.974125 825.36 729.16

KNN 0
1

0.9992
0.9998

0.9954
1.0000

0.9973
0.9998 0.999812 996.15 562.12

MLP 0
1

0.9989
0.9998

0.9965
0.9999

0.9976
0.9999 0.999816 1256.21 24.25

Table 9. Comparison of binary classification of best 20 features.

Model 0/1 Precision Recall F1-Score Accuracy Training
Time (s)

Prediction
Time (s)

Random
Forest

0
1

0.9989
0.9999

0.9976
1.0000

0.9983
0.9999 0.999872 850.62 799.15

KNN 0
1

0.9999
0.9999

0.9966
1.0000

0.9982
0.9999 0.999862 1054.14 778.32

MLP 0
1

0.9998
0.9999

0.9988
1.0000

0.9992
0.9999 0.999859 1356.14 55.63

4.3.3. Performance Evaluation Regarding Number of Features

With the increase in the feature set from 10 to 20, a progressive increase in overall
accuracy can be observed. With random forest, we can see an exceptional increase in
precision with the increase in the feature set. Additionally, the training and prediction time
grows when the feature sets are increased to another 10. In KNN and MLP, both classifiers
show an increase in the rate of precision and recall, which helped increase the F1-score
compared to the decreased feature sets. This comparison shows a higher level of accuracy
in both the feature set, where an increase in all the performance metrics can be observed,
respectively, with the increasing feature set. The best 20 features observed through the
information gain and entropy were utilized, where features were also dropped due to the
Pearson coefficient relation. Hence, with the proper increase and a higher level of accuracy
in the 20 best features, along with a slight satisfactory increase in time and prediction time
measures, the optimal number of features was analyzed to be 20.

4.4. Cross-Dataset MultiClass Classification

This utilizes the cross-dataset selection of both BoT-IoT and the primary dataset that was
generated. As explained previously, the BoT-IoT dataset is a very popular and well-managed
dataset in the research field of the IoT. A total of 3 Gb of data from each of the datasets were
merged together for this process of cross-dataset evaluation. The dataset was tested for
similarity to each other, and collectively, both of the dataset features were reduced with the
help of data preprocessing techniques, as discussed earlier. Figure 8 provides information
about how the machine learning technique is initiated for the process. As mentioned in
the classifier section, the training and testing dataset is considered 80 and 20 percent of the
total merged datasets. Considering the imbalanced dataset after merging both datasets, the
scaling technique was utilized to attain the highest accuracy and computational efficiency.
This enables the inclusion of multiclass classification, where the samples are determined
according to the attack class they belong to. The ML models were developed using the top
10 and 20 features to determine the most comprehensive list of features for achieving the

Future Internet 2023, 15, 210 21 of 30

peak level of accuracy in the ideal supporting time. Table 10 provides the comparison of
different classifiers utilized for best 10 features from the dataset.

Table 10. Comparison of multiclass classification of best 10 features.

Model Class Precision Recall F1 Score Accuracy Training
Time (s)

Prediction
Time (s)

Decision Tree

0
1
2
3
4
5
6
7
8

0.00
0.39
0.58
0.00
0.00
0.51
0.00
0.00
0.57

0.00
1.00
0.57
0.00
0.00
0.89
0.00
0.00
0.27

0.00
0.56
0.58
0.00
0.00
0.65
0.00
0.00
0.37

0.428093 307.40 102.76

Naive Bayes

0
1
2
3
4
5
6
7
8

0.09
0.66
1.00
0.00
0.99
0.55
0.73
0.51
0.57

0.96
0.52
1.00
0.00
0.67
0.91
0.12
0.89
0.27

0.17
0.58
1.00
0.00
0.80
0.68
0.20
0.65
0.37

0.553320 212.16 55.24

Logistic
Regression

0
1
2
3
4
5
6
7
8

0.31
0.20
0.95
1.00
0.99
0.69
0.38
0.55
0.38

0.89
0.06
1.00
1.00
0.67
0.91
0.13
0.91
0.13

0.46
0.09
0.97
1.00
0.80
0.78
0.20
0.68
0.20

0.846680 567.21 268.12

KNN

0
1
2
3
4
5
6
7
8

0.99
0.97
1.00
1.00
0.96
0.91
0.80
0.97
0.99

0.98
0.83
1.00
1.00
0.99
0.90
0.81
0.83
0.98

0.99
0.89
1.00
1.00
0.98
0.91
0.80
0.89
0.99

0.972670 2182.4 1136.56

Gradient Boost

0
1
2
3
4
5
6
7
8

0.58
0.91
1.00
0.72
0.86
1.00
0.62
0.76
1.00

0.57
0.91
1.00
0.45
0.96
1.00
0.64
0.73
1.00

0.58
0.92
1.00
0.56
0.91
1.00
0.63
0.75
1.00

0.873166 1657.5 4400.12

Future Internet 2023, 15, 210 22 of 30

Table 10. Cont.

Model Class Precision Recall F1 Score Accuracy Training
Time (s)

Prediction
Time (s)

Random
Forest

0
1
2
3
4
5
6
7
8

1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.95
0.99

1.00
0.99
1.00
1.00
1.00
1.00
1.00
0.99
0.97

1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.97
0.98

0.994109 2167.15 1354.12

MLP

0
1
2
3
4
5
6
7
8

0.98
0.99
1.00
0.99
0.99
1.00
1.00
0.98
0.91

1.00
0.99
1.00
1.00
1.00
1.00
1.00
0.94
0.96

0.99
0.99
1.00
1.00
1.00
1.00
1.00
0.96
0.94

0.982880 2856.12 1274.12

CNN

0
1
2
3
4
5
6
7
8

1.00
0.97
1.00
1.00
0.96
0.89
0.90
0.99
0.99

0.98
0.83
1.00
1.00
1.00
0.96
0.72
0.67
0.99

0.99
0.99
1.00
1.00
0.99
0.98
0.97
0.99
0.99

0.975160 5815.22 3514.5

Ensemble
Approach

0
1
2
3
4
5
6
7
8

1.00
1.00
0.99
1.00
1.00
0.99
1.00
1.00
1.00

1.00
1.00
0.99
1.00
1.00
0.99
1.00
1.00
1.00

1.00
1.00
0.99
1.00
1.00
0.911
1.00
1.00
1.00

0.99967 9232.4 3201.12

The main motivation for incorporating the best 10 and 20 features from the dataset
is the model’s improvement in performance due to less influence of noise and irrelevant
information and faster training time. Reduced overfitting and more robust system architec-
ture can also be taken as an inspiration for the process. Table 11 provides the classification
result utilizing best 20 features from the dataset.

In this scenario, the increase in the best features resulted in increased accuracy scores,
as expected. Given the relationship between training and prediction times and the number
of features, adding more features also resulted in longer training and prediction periods.
The decision tree algorithm demonstrated an increase in both accuracy and training and
prediction times when the features were added from 10 to 20. The decision tree algorithm
performed well, with 20 best features across all classes regarding precision, recall, and
F1-score. The results were similar for the random forest classifier, which also showed an
increase in evaluation metrics when the features were added from 10 to 20. The prediction
times for the KNN classifier were typically higher, while the training times were short
and constant. The gradient boost classifier and the ensemble approach using the best

Future Internet 2023, 15, 210 23 of 30

20 features also provided significant results. Overall, the findings show that, in terms of
scores, training times, and prediction times, utilizing 20 features is the best choice.

Table 11. Comparison of multiclass classification of best 20 features.

Model Class Precision Recall F1 Score Accuracy Training
Time (s)

Prediction
Time (s)

Decision Tree

0
1
2
3
4
5
6
7
8

0.00
0.39
0.90
0.00
0.00
0.70
0.00
0.00
0.57

0.00
1.00
0.87
0.00
0.00
0.92
0.00
0.00
0.68

0.00
0.56
0.89
0.00
0.00
0.80
0.00
0.00
0.62

0.578093 350.40 112.76

Naive Bayes

0
1
2
3
4
5
6
7
8

0.34
0.85
0.87
0.73
0.51
1.00
1.00
0.57
0.94

0.96
0.54
1.00
0.52
0.89
0.85
1.00
0.27
0.47

0.50
0.66
0.93
0.61
0.65
0.92
1.00
0.37
0.63

0.721787 257.32 85.67

Logistic
Regression

0
1
2
3
4
5
6
7
8

0.58
0.91
1.00
0.72
0.86
1.00
1.00
0.62
0.76

0.57
0.91
1.00
0.45
0.96
1.00
1.00
0.64
0.73

0.58
0.92
1.00
0.56
0.91
1.00
1.00
0.63
0.75

0.873166 569.23 296.55

KNN

0
1
2
3
4
5
6
7
8

0.98
0.99
1.00
0.99
0.99
1.00
1.00
0.91
0.98

1.00
0.99
1.00
1.00
1.00
1.00
1.00
0.96
0.94

0.99
0.99
1.00
1.00
1.00
1.00
1.00
0.94
0.96

0.986780 2256.54 1542.26

Gradient Boost

0
1
2
3
4
5
6
7
8

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

0.999840 1864.25 5421.87

Future Internet 2023, 15, 210 24 of 30

Table 11. Cont.

Model Class Precision Recall F1 Score Accuracy Training
Time (s)

Prediction
Time (s)

Random Forest

0
1
2
3
4
5
6
7
8

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

0.999594 2274.39 1656.34

MLP

0
1
2
3
4
5
6
7
8

1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.95
0.99

1.00
0.99
1.00
1.00
1.00
1.00
1.00
0.99
0.97

1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.97
0.98

0.994109 2967.15 1454.12

CNN

0
1
2
3
4
5
6
7
8

0.99
0.99
1.00
1.00
0.99
0.98
0.98
0.99
0.99

0.99
0.99
1.00
1.00
1.00
0.99
0.96
0.99
0.99

0.99
0.99
1.00
1.00
0.99
0.98
0.97
0.99
0.99

0.996718 6504.15 4254.12

Ensemble
Approach

0
1
2
3
4
5
6
7
8

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

0.999936 9487.25 3565.21

5. Discussion

Regarding the binary classification of network data, the best 20 features showed an
increase in classification accuracy. Only the dataset generated was utilized in the process
of binary classification, where we can see that the ML models are able to identify the
normal behaving network and attack network with optimal accuracy. The MLP model
here takes the highest training time, but predicts quickly. In KNN, an optimal number of
neighbors, as discussed in the earlier section, also enabled the model to perform accurately.
Data-preprocessing techniques and Z-score normalization also play a significant role. With
the imbalanced dataset, imblearn also aided the model with the best data-preprocessing
analysis. On the contrary, with 99.9872%, the random forest outshines the other models
and has a better average in time management as well. The classification result analysis for
the generated dataset is illustrated in Figure 10.

Future Internet 2023, 15, 210 25 of 30Future Internet 2023, 15, x FOR PEER REVIEW 26 of 31

Figure 10. Binary classification results of dataset.

One-vs-rest (OvR) schemes were utilized to train classifiers in multiclass classifica-
tion. This involves training multiple binary classifiers to help differentiate a single class.
Categorical cross-entropy loss function was utilized for the multiclass neural network
classification with soft max activation for the output layer and adam optimizer for the
gradient-based optimization algorithm to train multiclass convolutional neural networks.
The ensemble approach was utilized as a hybrid of both the hard and soft voting tech-
niques. Hard voting provides the majority voting for the classifier with the highest out-
come, and soft voting utilizes the idea of taking the average of predicted probabilities for
each class from all the ensembled classifiers. The ensemble algorithm trains different
models on training data, then computes the average prediction confidence for each test
instance and sets a threshold to determine which should be enacted for the outcome.
Figure 11 illustrates the multiclass classification results for the cross evaluated datasets.

Figure 11. Cross-evaluation multiclass classification results of dataset.

Tables 10 and 11 show the multiclass classification results. The best 20 features pro-
vide the optimal results where gradient boost gives an exceptional result, and random
forest also provides the optimal results with negligible errors in classifications. MLP
(99.41%) and CNN (99.67%) classify the multiclass problem well. Gradient boost with
99.98% accuracy takes double or triple the prediction time when compared to the other
classifiers, while random forest provides a good average in every aspect, from accuracy
to time utilized. As an ensemble approach, the ensemble technique provides the optimal
result accuracy of 99.9936%. Combining multiple models and requirements of time for
optimization and operations can be observed in the training time the ensemble approach

Figure 10. Binary classification results of dataset.

One-vs-rest (OvR) schemes were utilized to train classifiers in multiclass classification.
This involves training multiple binary classifiers to help differentiate a single class. Categor-
ical cross-entropy loss function was utilized for the multiclass neural network classification
with soft max activation for the output layer and adam optimizer for the gradient-based
optimization algorithm to train multiclass convolutional neural networks. The ensemble
approach was utilized as a hybrid of both the hard and soft voting techniques. Hard voting
provides the majority voting for the classifier with the highest outcome, and soft voting
utilizes the idea of taking the average of predicted probabilities for each class from all the
ensembled classifiers. The ensemble algorithm trains different models on training data,
then computes the average prediction confidence for each test instance and sets a threshold
to determine which should be enacted for the outcome. Figure 11 illustrates the multiclass
classification results for the cross evaluated datasets.

Future Internet 2023, 15, x FOR PEER REVIEW 26 of 31

Figure 10. Binary classification results of dataset.

One-vs-rest (OvR) schemes were utilized to train classifiers in multiclass classifica-
tion. This involves training multiple binary classifiers to help differentiate a single class.
Categorical cross-entropy loss function was utilized for the multiclass neural network
classification with soft max activation for the output layer and adam optimizer for the
gradient-based optimization algorithm to train multiclass convolutional neural networks.
The ensemble approach was utilized as a hybrid of both the hard and soft voting tech-
niques. Hard voting provides the majority voting for the classifier with the highest out-
come, and soft voting utilizes the idea of taking the average of predicted probabilities for
each class from all the ensembled classifiers. The ensemble algorithm trains different
models on training data, then computes the average prediction confidence for each test
instance and sets a threshold to determine which should be enacted for the outcome.
Figure 11 illustrates the multiclass classification results for the cross evaluated datasets.

Figure 11. Cross-evaluation multiclass classification results of dataset.

Tables 10 and 11 show the multiclass classification results. The best 20 features pro-
vide the optimal results where gradient boost gives an exceptional result, and random
forest also provides the optimal results with negligible errors in classifications. MLP
(99.41%) and CNN (99.67%) classify the multiclass problem well. Gradient boost with
99.98% accuracy takes double or triple the prediction time when compared to the other
classifiers, while random forest provides a good average in every aspect, from accuracy
to time utilized. As an ensemble approach, the ensemble technique provides the optimal
result accuracy of 99.9936%. Combining multiple models and requirements of time for
optimization and operations can be observed in the training time the ensemble approach

Figure 11. Cross-evaluation multiclass classification results of dataset.

Future Internet 2023, 15, 210 26 of 30

Tables 10 and 11 show the multiclass classification results. The best 20 features provide
the optimal results where gradient boost gives an exceptional result, and random forest
also provides the optimal results with negligible errors in classifications. MLP (99.41%) and
CNN (99.67%) classify the multiclass problem well. Gradient boost with 99.98% accuracy
takes double or triple the prediction time when compared to the other classifiers, while
random forest provides a good average in every aspect, from accuracy to time utilized.
As an ensemble approach, the ensemble technique provides the optimal result accuracy
of 99.9936%. Combining multiple models and requirements of time for optimization and
operations can be observed in the training time the ensemble approach utilizes (9487.25 s).
Whereas, Table 12 outlines the comparison of most popular datasets with the generated
dataset in terms of their components, techniques and labeling.

Table 12. Comparison of widely utilized IoT datasets with proposed dataset.

Dataset Year Comprehensive
IoT Simulation

Multi Attack
Scenarios Telemetry Data Label IoT/IIoT

KDDCUP99/NSL-KDD [12] 1998 No No No Yes IoT

UNSW NB15 [13] 2015 No Yes No Yes IoT

AWID [18] 2015 Yes Yes No Yes IoT

ISCX [14] 2017 No Yes No Yes IoT

UNSW-IoT Trace [15] 2018 Yes No No N/A IoT

BoT-IoT [17] 2018 Yes Yes No Yes IoT

UNSW-IoT [16] 2019 Yes Yes No Yes IoT

WUSTL-IIoT-2021 [19] 2021 Yes Yes No Yes IIoT

Proposed Dataset 2022 Yes Yes Yes Yes IoT

Telemetry data label the sensor and actuator data for access to the real-time environ-
ment in the network. All of the aforementioned factors are crucial in determining the
authenticity of a dataset, and the dataset generated in this research demonstrated its ability
to meet these standards. The data collection method employed ensured that the dataset was
obtained from a real-world IoT environment; the data diversity, volume, quality, relevance,
meta-information, availability, diversity and balance, and realism and evaluation were
all taken into consideration during the data generation process. This dataset is a true
representation of real-world IoT environments, making it highly valuable for training and
evaluating machine learning models for IoT security.

6. Conclusions

In this paper, packet and flow-based network datasets derived from simulated IoT
devices are analyzed with the objective of generating authentic datasets. The study involves
capturing network packets in real-time using packet analyzer tools and network flow tracers
from the Layer 2 addresses, tunnel data representation (MPLS, GRE, IPsec, etc.), protocol
identifications, SAPs, total hop count, L4 transport detection, RTP detection, and host flow
applications aiding in the dataset development. The devices were then subjected to a botnet
attack and were able to generate 6,000,000 flows of botnet attack and normal network data.
The brute force ability of the tool leveraging techniques such as the HTTP stress toolkit
was substantial in the process of obtaining and posting attacks to the HTTP requests in
the network, while DNS and TCP scans and resolver stability analysis were utilized for
TCP and UDP attacks through advanced probing and fingerprinting. Data preprocessing
techniques, such as imblearn, normalization, correlation, and entropy selection, are utilized
in the process of scaling the dataset. While binary classification was implemented on
the generated dataset using three different machine learning models, the random forest
classifier provided the optimal result of 99.9872% to classify the attack and normal network

Future Internet 2023, 15, 210 27 of 30

traffic. The boT-IoT dataset, which is one of the most popular datasets in the research
field of IoT security, was implemented for cross-evaluation of the generated dataset. Nine
different classes respective to the normal and attack network categories were evaluated for
multiclass classification with the popular dataset. The implementation of nine different
machine learning techniques on the dataset provided optimal results through the detailed
analysis of datasets from preprocessing techniques. The ensemble approach was found to
be particularly effective in achieving a high accuracy of 99.9936%.

One of the key findings of this research is the successful implementation of a botnet
attack subjected to a functional IoT network, enabling the generation of a dataset with
both attack and normal network data. Additionally, it highlights the remarkable ability
of machine learning models to distinguish between normal network traffic and attack
traffic, considering the behavioral characteristics of the network as valuable features and
parameters for developing appropriate machine learning models. This underscores the
potential of employing machine learning applications, especially for classifying complex
and imbalanced datasets, utilizing suitable data preprocessing techniques. The dataset
possesses the potential to serve as a valuable resource for further investigations in the
area of IoT security. Future endeavors could involve the utilization of cloud interfaces to
facilitate interactions with the server, enabling the generation and storage of data on cloud
networks. This approach is not limited to static data, but rather encompasses the dynamic
generation of data over time.

Author Contributions: Conceptualization, A.K., R.B. and J.C.F.; methodology, A.K., R.B. and J.C.F.;
software, A.K., R.B. and J.C.F.; validation, R.B. and J.C.F.; formal analysis, R.B. and J.C.F.; Investi-
gation, R.B. and J.C.F.; resources, R.B.; data curation, A.K., R.B. and J.C.F.; writing—original draft
preparation, A.K.; writing—review and editing, A.K., R.B. and J.C.F.; visualization, A.K., R.B. and
J.C.F.; supervision, R.B.; project administration, A.K., R.B. and J.C.F. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received funds from Erasmus+, NEEM project under GA 101083048.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This paper was carried out in the Scopus of Eramus+ European Project NEEM.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Feature sets of generated dataset.

Description Feature
from Generated Dataset

Flow data id FlowID

Source IP address identification SrcIp

Source port number value SrcPort

Destination IP address identification DstIp

Destination port number value DstPort

Start time for the record Timestamp

Argus flow number ArgusSeq

Flags according to the flow state flgs

Numerical value of flag FlagCount

Future Internet 2023, 15, 210 28 of 30

Table A1. Cont.

Description Feature
from Generated Dataset

Transaction protocol in string Protocol

Numerical value of protocol ProtocolNum

Total packet count totalFBwdPackets

Total number of bytes FlowBytes

Flow State FlowState

Numerical value for flow state FlowStateNumber

End record time RecordTime

Count of packets per protocol ProtoPktsCount

Count of packets per dport BwdPktsPort

Avg rate per protocol per Source IP FlowSrcIPRate

Avg rate per protocol per Destination IP FlowDstIPRate

Count of inbound connections per source IP SrcIPFwdConn

Count of inbound connections per destination IP DstIPBwdConn

Mean frequency per protocol per source port SrcPortRate

Mean frequency per protocol per dport DstPortRate

Count of packets organized based on flow state
and protocol per source IP SrcFlowStateProto

Count of packets organized based on flow state
and protocol per destination IP DstFlowStateProto

Total record duration time TotalRecDuration

Mean length of combined data records RecMean

Standard deviation of combined data records RecStd

Total duration of combined data records RecSum

Minimum duration of combined data records RecMin

Maximum duration of combined data records RecMax

Total source-to-destination packet FwdPkts

Total destination-to-source packet BwdPkts

Total Source-to-destination byte FwdPktsCount

Total destination-to-source byte BwdPktsCount

Total packets per second in flow BulkPktsRate

Source to destination packets per second FwdPackets/s

Destination to source packets per second BwdPackets/s

Count of bytes per source IP FwdPktsByte

Count of bytes per Destination IP BwdPktsByte

Count of packets per source IP SrcIPPktsCount

Count of packets per Destination IP DstIPPktsCount

References
1. Nord, J.H.; Koohang, A.; Paliszkiewicz, J. The Internet of Things: Review and theoretical framework. Expert Syst. Appl. 2019, 133,

97–108. [CrossRef]
2. Kumar, A.; Lim, T.J. EDIMA: Early Detection of IoT Malware Network Activity Using Machine Learning Techniques. In

Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT’19), Limerick, Ireland, 15–18 April 2019.

https://doi.org/10.1016/j.eswa.2019.05.014

Future Internet 2023, 15, 210 29 of 30

3. Ali, I.; Ahmed, A.I.A.; Almogren, A.; Raza, M.A.; Shah, S.A.; Khan, A.; Gani, A. Systematic Literature Review on IoT-Based Botnet
Attack. IEEE Access 2020, 8, 212220–212232. [CrossRef]

4. Al-Othman, Z.; Alkasassbeh, M.; Baddar, S.A.-H. A State-of-the-Art Review on IoT botnet Attack Detection (Version 1). arXiv
2019, arXiv:2010.13852. [CrossRef]

5. Vengatesan, K.; Kumar, A.; Parthibhan, M.; Singhal, A.; Rajesh, R. Analysis of Mirai Botnet Malware Issues and Its Prediction
Methods in Internet of Things. In Proceedings of the Lecture Notes on Data Engineering and Communications Technologies,
Madurai, India, 19–20 December 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 120–126.

6. Awadelkarim Mohamed, A.M.; Abdallah, M.; Hamad, Y. IoT Security: Review and Future Directions for Protection Models. In
Proceedings of the 2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia,
9–10 September 2020. [CrossRef]

7. Mukhopadhyay, S.; Suryadevara, N.; Nag, A. Wearable Sensors and Systems in the IoT. Sensors 2021, 21, 7880. [CrossRef]
[PubMed]

8. Trajanovski, T.; Zhang, N. An Automated and Comprehensive Framework for IoT Botnet Detection and Analysis (IoT-BDA).
IEEE Access 2021, 9, 124360–124383. [CrossRef]

9. Al-Hadhrami, Y.; Hussain, F.K. Real time dataset generation framework for intrusion detection systems in IoT. Future Gener.
Comput. Syst. 2020, 108, 414–423. [CrossRef]

10. Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE
Commun. Surv. Tutor. 2016, 18, 1153–1176. [CrossRef]

11. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep Learning for IoT Big Data and Streaming Analytics: A Survey
(Version 2). arXiv 2017, arXiv:1712.04301. [CrossRef]

12. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), Ottawa, ON, Canada, 8–10 July
2009. [CrossRef]

13. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT,
Australia, 10–12 November 2015. [CrossRef]

14. Sharafaldin, I.; Habibi Lashkari, A.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy, Funchal,
Portugal, 22–24 January 2018. [CrossRef]

15. Sivanathan, A.; Gharakheili, H.H.; Loi, F.; Radford, A.; Wijenayake, C.; Vishwanath, A.; Sivaraman, V. Classifying IoT Devices in
Smart Environments Using Network Traffic Characteristics. IEEE Trans. Mob. Comput. 2019, 18, 1745–1759. [CrossRef]

16. Hamza, A.; Gharakheili, H.H.; Benson, T.A.; Sivaraman, V. Detecting Volumetric Attacks on loT Devices via SDN-Based
Monitoring of MUD Activity. In Proceedings of the 2019 ACM Symposium on SDN Research, SOSR ’19: Symposium on SDN
Research, San Jose, CA, USA, 3–4 April 2019. [CrossRef]

17. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the Internet of
Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

18. Kolias, C.; Kambourakis, G.; Stavrou, A.; Gritzalis, S. Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats
and a Public Dataset. IEEE Commun. Surv. Tutor. 2015, 18, 184–208. [CrossRef]

19. Zolanvari, M.; Teixeira, M.A.; Gupta, L.; Khan, K.M.; Jain, R. Machine Learning-Based Network Vulnerability Analysis of
Industrial Internet of Things. IEEE Internet Things J. 2019, 6, 6822–6834. [CrossRef]

20. Al-Hawawreh, M.; Sitnikova, E.; Aboutorab, N. X-IIoTID: A Connectivity-Agnostic and Device-Agnostic Intrusion Data Set for
Industrial Internet of Things. IEEE Internet Things J. 2022, 9, 3962–3977. [CrossRef]

21. Dinculeană, D.; Cheng, X. Vulnerabilities and Limitations of MQTT Protocol Used between IoT Devices. Appl. Sci. 2019, 9, 848.
[CrossRef]

22. Wireshark Download. Wireshark. Available online: https://wireshark.org/download.html (accessed on 9 March 2023).
23. Cloud Application Platform—Heroku. Available online: https://www.heroku.com/ (accessed on 9 March 2023).
24. Umer, M.F.; Sher, M.; Bi, Y. Flow-based intrusion detection: Techniques and challenges. Comput. Secur. 2017, 70, 238–254.

[CrossRef]
25. Holman, R.; Stanley, J. The history and technical capabilities of Argus. Coast. Eng. 2007, 54, 477–491. [CrossRef]
26. Kali Linux Tools’. Kali Linux. Available online: https://www.kali.org/tools/goldeneye/ (accessed on 9 March 2023).
27. Kali Linux Tools’. Kali Linux. Available online: https://www.kali.org/tools/hping3/ (accessed on 9 March 2023).
28. Nmap: The Network Mapper—Free Security Scanner. Available online: https://nmap.org/ (accessed on 9 March 2023).
29. Gvozdenovic, S.; Becker, J.K.; Mikulskis, J.; Starobinski, D. IoT-Scan: Network Reconnaissance for the Internet of Things (Version

1). arXiv 2022, arXiv:2204.02538. [CrossRef]
30. Kali Linux Tools’. Kali Linux. Available online: https://www.kali.org/tools/xprobe/ (accessed on 9 March 2023).
31. Ostinato Traffic Generator for Network Engineers’. Ostinato Traffic Generator for Network Engineers. Available online:

https://ostinato.org/ (accessed on 9 March 2023).
32. Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 1–4.

https://doi.org/10.1109/ACCESS.2020.3039985
https://doi.org/10.48550/ARXIV.2010.13852
https://doi.org/10.1109/iccit-144147971.2020.9213715
https://doi.org/10.3390/s21237880
https://www.ncbi.nlm.nih.gov/pubmed/34883879
https://doi.org/10.1109/ACCESS.2021.3110188
https://doi.org/10.1016/j.future.2020.02.051
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1109/COMST.2018.2844341
https://doi.org/10.1109/cisda.2009.5356528
https://doi.org/10.1109/milcis.2015.7348942
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1109/TMC.2018.2866249
https://doi.org/10.1145/3314148.3314352
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.1109/COMST.2015.2402161
https://doi.org/10.1109/JIOT.2019.2912022
https://doi.org/10.1109/JIOT.2021.3102056
https://doi.org/10.3390/app9050848
https://wireshark.org/download.html
https://www.heroku.com/
https://doi.org/10.1016/j.cose.2017.05.009
https://doi.org/10.1016/j.coastaleng.2007.01.003
https://www.kali.org/tools/goldeneye/
https://www.kali.org/tools/hping3/
https://nmap.org/
https://doi.org/10.48550/ARXIV.2204.02538
https://www.kali.org/tools/xprobe/
https://ostinato.org/

Future Internet 2023, 15, 210 30 of 30

33. Komazec, T.; Gajin, S. Analysis of flow-based anomaly detection using Shannon’s entropy. In Proceedings of the 2019 27th
Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 November 2019. [CrossRef]

34. Patro, S.G.K.; Sahu, K.K. Normalization: A Preprocessing Stage (Version 1). arXiv 2015, arXiv:1503.06462. [CrossRef]
35. Lemaitre, G. Imbalanced-Learn. Scikit-Learn-Contrib. Available online: https://github.com/scikit-learn-contrib/imbalanced-

learn (accessed on 11 February 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/telfor48224.2019.8971036
https://doi.org/10.48550/ARXIV.1503.06462
https://github.com/scikit-learn-contrib/imbalanced-learn
https://github.com/scikit-learn-contrib/imbalanced-learn

	Introduction
	State of the Art
	Materials and Methods
	Details of the Testbed
	Data Generation
	Flow-Based Approach
	Packet Conversion

	Initiation of Botnet Attack
	Denial of Service
	Network Discovery/Reconnaissance Attack

	Labeling of Dataset
	Analyzing the Dataset
	Pearson Correlation Coefficient
	Entropy
	Data Scaling and Normalization
	Sampling of Data

	Results
	Performance Measuring Metrics
	Model Parameters
	Decision Tree
	Naive Bayes
	Logistic Regression
	KNN
	Gradient Boost
	Random Forest
	MLP
	CNN
	Ensemble Method

	Binary Classification for Generated Dataset
	Best 10 Features
	Best 20 Features
	Performance Evaluation Regarding Number of Features

	Cross-Dataset MultiClass Classification

	Discussion
	Conclusions
	Appendix A
	References

