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Abstract: Providing accurate and real-time bus travel time information is crucial for both passengers
and public transportation managers. However, in the traditional bus travel time prediction model,
due to the lack of consideration of the influence of different bus drivers’ driving styles on the bus
travel time, the prediction result is not ideal. In the traditional bus travel time prediction model, the
historical travel data of all drivers in the entire bus line are usually used for training and prediction.
Due to great differences in individual driving styles, the eigenvalues of drivers’ driving parameters
are widely distributed. Therefore, the prediction accuracy of the model trained by this dataset is low.
At the same time, the training time of the model is too long due to the large sample size, making
it difficult to provide a timely prediction in practical applications. However, if only the historical
dataset of a single driver is used for training and prediction, the amount of training data is too small,
and it is also difficult to accurately predict travel time. To solve these problems, this paper proposes
a method to predict bus travel times based on the similarity of drivers’ driving styles. Firstly, the
historical travel time data of different drivers are clustered, and then the corresponding types of
drivers’ historical data are used to predict the travel time, so as to improve the accuracy and speed
of the travel time prediction. We evaluated our approach using a real-world bus trajectory dataset
collected in Shenyang, China. The experimental results show that the accuracy of the proposed
method is 13.4% higher than that of the traditional method.

Keywords: bus travel time prediction; driving style; hierarchical clustering; machine learning;
support vector machines

1. Introduction

With the increasing number of urban vehicles, traffic congestion and air pollution have
become major problems in many cities. One of the important ways to solve urban traffic
problems is to prioritize the development of public transportation and reduce the number
of private cars used by commuters. The key to the development of public transport is
providing good transport services for passengers. It is very important to provide accurate
bus travel time information to passengers, which can help travelers plan their trips and
reduce waiting time [1,2]. However, due to the complex urban transportation environment,
accurately predicting bus travel time is very difficult. Multiple factors can affect the travel
time of buses, such as changes in passenger flow, traffic conditions, the time period of
operation, the driver’s driving style, weather factors, etc. [3,4]. These factors lead to great
uncertainty in bus travel times [5].

Due to a lack of sufficient data, some of these influencing factors are difficult to quantify,
and it is difficult to establish a model that includes all of the factors that affect travel
time [6,7]. For example, existing research does not consider the influence of differences
in drivers’ individual driving styles on bus travel times. Because each bus is driven by
different drivers, the level of driving, driving experience, and driving habits of each driver
are different, which has a significant impact on the travel time of buses [3,7]. For example,
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when passing the same road section, a driver with an aggressive driving style will likely
arrive at the next stop earlier than the scheduled time, a driver with a steady driving
style will likely arrive at the next stop on time, and a driver with an overly gentle or
cautious driving style will very likely arrive at the next stop later than the scheduled time.
Therefore, the difference in travel time caused by differences in driving style increases as
the distance traveled increases. As a result, a bus that departs later will gradually catch
up with a bus that leaves earlier, resulting in a crowding of buses. This phenomenon is
called bus bunching [8], as shown in Figure 1, supposing that the driving style of bus
driver a is too gentle, the driving style of bus driver b is more steady, and the driving
style of bus driver c is more aggressive. Their departure times are 10 min apart, but
differences in driving styles lead them to meet at the 12th stop. This phenomenon disrupts
the regularity of bus operations. Regularity is the main indicator of service reliability since
it is the main determinant of passenger waiting times [9]. Bus bunching is not conducive
to passengers being able to the bus on time and affects the enthusiasm of passengers
towards taking the bus. With the rapid development of GPS positioning technology,
big data technology, and machine learning technology, the differences in bus travel time
caused by drivers’ individual driving behaviors can be found regularly as long as sufficient
data are obtained.
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This article aims to introduce the factor of the driver’s driving style into the bus travel
time prediction model through a study of the driving styles of city bus drivers. This is
helpful for bus operators to promptly correct the impact of drivers’ styles of driving on
travel time according to the prediction results, thus reducing the bus bunching phenomenon.
To effectively distinguish the driving styles of different drivers, this article first introduces
the bus driver driving style judgment model based on hierarchical clustering technology,
groups the historical travel time data of different drivers, and then uses the corresponding
travel time prediction model to predict bus travel time.

The main contributions of this paper can be summarized as follows.

• We propose a new combination method to study the influence of driving style factors
on the prediction of travel time;

• To our knowledge, this is the first study to introduce the factor of the driver’s driving
style into the bus travel time prediction model;

• We are able to improve the accuracy of travel time forecasting and shorten the fore-
casting time. Our preliminary results reveal the influence of drivers’ driving styles on
bus travel times.

This paper is organized as follows. Section 2 presents a brief review of the background
literature. Section 3 includes the classification method of the driving styles of bus drivers
and the prediction model of bus travel time. In Section 4, the effectiveness of the proposed
method is verified by experiments, and the experimental results are analyzed and discussed.
Section 5 is the conclusion and a brief note on future research directions.

2. Related Works

The prediction of travel time is an essential and problematic component of the Intel-
ligent Public Transport System (IPTS) [10] that has attracted many researchers and IPTS
planners [7]. Various models have been proposed to predict bus travel times or arrival
times. Some studies have also mentioned that bus travel time is affected by the driving
styles or driver behaviors of bus drivers [7,11]. However, due to a lack of data, no in-depth
research studies have been performed. This article will review existing research in terms of
two aspects: the classification of driver driving styles and bus travel time prediction.

2.1. Research on Driver’s Driving Style

A driver’s driving style can be understood as the way a driver operates the vehicle
controls in driving scenarios and external conditions [12]. Driving style is largely dependent
on traffic conditions, vehicle performance, the driver’s personality, and control devices at
traffic intersections [13]. Driving style is manifested mainly in a driver’s control over the
vehicle’s speed and acceleration, as well as their lane change behavior and progress during
driving [14]. For analyses of driving behavior, it is important to select appropriate test cycles,
test routes, test vehicles, and test drivers [14]. Vehicle positioning can be provided by GPS,
which is an indirect measurement method of speed and acceleration at the same time.

The most common aggregate driving behavior parameters used in the articles studied
include the mean speed, acceleration, deceleration, driving duration, number of accel-
eration and deceleration events, relative positive speed, and idle time [14]. Speed and
acceleration/deceleration were used by Johnson and Trivedi to identify driver characteris-
tics [15]. Murphey et al. [16] categorized drivers’ driving styles according to the speed at
which a driver accelerated and decelerated. Moreover, they proposed that driving style is a
short-lived behavior; specifically, a driver can be aggressive over a period of time, while
their performance might be normal during another period of time. Langari and Won [17]
used standard deviation and the average acceleration ratio to classify driving styles. If the
ratio was greater than 100%, the driving style was classified as aggressive, if the ratio was
between 50% and 100%, the driving style was classified as normal, and if the ratio was less
than 50%, the driving style was classified as calm.

The classification algorithms for the driving styles of drivers are usually divided into
three categories in these papers. The first category is those that are implemented by a set of
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rules, also known as threshold-based algorithms. It is the simplest method for recognizing
driving styles [17,18]. This type of algorithm is simple to use, as well as easy to explain
and implement, but it limits the number of parameters that can be managed. Therefore,
its accuracy is quite limited. The second category is model-based classification algorithms,
which describe driving styles through a set of predefined feature equations. However, the
main disadvantage of driving style modeling by drivers is that it is difficult to prove the
accuracy of the results. For model verification, its results must be compared with those of
real drivers, which requires a lot of data collection [15,19]. The third category is recognizing
drivers’ driving styles through machine learning algorithms, including the hierarchical cluster
analysis [20], analysis of principal components [20], Gaussian mixture model [19], k-nearest
neighbor [21,22], artificial neural networks [22,23] and other machine learning algorithms.

Current research generally divides the driving style of drivers into two or three
categories. In [15,18,21,22], driving style was divided into two categories, i.e., aggressive
and non-aggressive. Xu et al. [24] divided driving styles into three categories, including
aggressive, mild, and medium driving styles. Murphey et al. [16] divided driving styles into
four categories by analyzing the jerk profile of the driver, including calm driving, normal
driving, aggressive driving, and no speed. Z. Constantinescu et al. [20] proposed five to
seven levels of drivers, covering a range from non-aggressive to aggressive. However, this
complicated the algorithm’s development and the interpretation of the classes themselves.
Augustynowicz [23] classified drivers using a range within (−1, 1), from the mild driver to
the aggressive driver. Despite a fruitful line of empirical findings from previous scholarship,
the impact of bus drivers’ driving styles on travel time has not yet been fully investigated.

2.2. Research on Prediction of Bus Travel Time

In previous studies, various complex models and algorithms have been developed
to predict bus travel time by using AVL/APC/GPS data. In recent years, with the rapid
growth of data and the expansion of Intelligent Transportation Systems (ITS), machine
learning has become an important tool for solving complex problems, such as the prediction,
analytics, and patterns of large amounts of data [25]. The following models are mainly
used for applying machine learning to predict the travel time of buses.

Multivariate linear regression models use multivariate statistical techniques to examine
the linear correlation between a group of independent variables and a single dependent
variable [1]. Patnaik et al. [26] used multiple linear regression models to predict the arrival
time of buses at a target bus stop. This kind of model can reflect which independent
variables are important for travel time prediction and which independent variables are
relatively less important for travel time prediction. This model has a small number of
calculations and can get satisfactory results in some relatively simple cases. However, the
variables in a transportation system are interrelated, so the applicability of the regression
model is generally limited [27].

An artificial neural network (ANN) is produced by simulating the intelligent data
processing ability of the human brain. Due to its outstanding advantages in solving complex
non-linear problems, ANNs are very popular for travel time prediction [28,29]. An ANN
model was used to predict bus arrival times in Jeong and Rilett [1]. Their results show
that the ANN model is better than the regression model in terms of prediction accuracy.
Yu et al. [30] concluded that although the performance of ANN models is worse than that
of SVMs, ANN models are better than k-NN and LR models. Fan and Gurmu [2] used only
GPS data to predict bus travel times and concluded that the ANN model is superior to the
historical average (HA) model and the Kalman filter model in terms of its overall accuracy
and the robustness of its prediction.

The support vector machine (SVM) model is similar to an ANN. An SVM has a
strong learning ability and better generalization ability than a neural network. It is easy
to balance the degree of fitting and the level of generalization. It shows many unique
advantages in solving small-sample, nonlinear, and high-dimensional pattern recognition
problems [31]. Wu et al. [31] first applied a support vector regression model to the prediction
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of travel time on a highway, proving that the SVR is suitable for traffic data analyses and
demonstrated the feasibility of applying SVRs in the prediction of travel time. Vanajakshi
and Rilett [32] compared several different travel time prediction methods, including a
historical method, time series analysis, ANN, and SVM. Their results show that the SVM
is a feasible alternative to a short-term prediction problem when the amount of data is
essentially small or noisy. Yu et al. [33] used an SVM to predict bus arrival times, to
study the feasibility and applicability of SVMs in the field of predicting bus travel time.s
Then Yu et al. [30] compared the SVM, ANN, k-NN algorithm, and LR regression models.
Their results show that the SVM model is the most accurate model among the four models.
Ma et al. [7] compared the ANN, KNN, and SVM bus travel time prediction models through
experiments, and their results show that the performance of the SVM is better than that of
the other two algorithms.

The Kalman filter (KF) is a linear recursive prediction updating algorithm, which is
used to estimate the parameters of the process model. By using dynamic AVL (Automatic
Vehicle Location) and APC (Automatic Passenger Counting) data, Shalaby and Farhan [34]
tried to use the KF bus travel time model to provide real-time information on the arrival
and departure times of buses. Vanajakshi et al. [35] used the KF model to predict bus travel
times, and their conclusion showed that the KF model was significantly better than the
average method. Fan and Gurmu [2] used a historical average model, KF model, and ANN
model to predict the travel times of buses. They concluded that the prediction effect of
the KF model was better when there were no huge differences in the travel time between
long-distance road sections and two adjacent sections. In two other studies [28,36], a KF
model was used as a dynamic adjustment algorithm to correct the baseline travel time
predicted by an ANN and SVM.

Throughout our review of previous studies, SVMs have shown better performance in
predicting bus travel times compared to other models. Furthermore, they are advantageous
in solving small-sample, nonlinear, and high-dimensional pattern recognition problems
in actual applications of bus travel time prediction. Therefore, we chose to use an SVM to
predict bus travel times in this work.

3. Methodology
3.1. Prediction Framework

We provide an approach to predicting bus travel times based on similarities in drivers’
driving styles. It consists of two main parts: driving style classification and travel time
prediction. Figure 2 shows an overview of our proposed approach.

The first part is the hierarchical clustering driver driving style classification model,
which is used to classify the driver’s driving style according to the bus GPS data. The
second part is the bus travel time prediction model. First, the corresponding training dataset
was selected according to the classification results of the first part. Then, the corresponding
travel time prediction was made for buses driven by drivers with different driving styles.
These two parts are described in detail in the following two sections: Sections 3.2 and 3.3.

3.2. Driver Driving Style Classification Method

In order to better distinguish the driving styles of bus drivers, we also consider the
characteristics of space and time. First, travel times are categorized. Specifically, a day
is divided into three time periods: 7:00–9:00, 9:00–16:00, and 16:00–19:00. The purpose
of this time division is to ensure that the travel time of bus drivers has a similar pattern
in the same time period, as the time spent on the same road section varies at different
time periods [7]. For example, some drivers need to spend 8–10 min driving through a
certain road segment during the morning rush hour from 7:00 to 9:00, while they only need
5–8 min during off-peak hours from 9:00 to 16:00 in the same road segment. There are even
some drivers who can drive through this section in less than 5 min.
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Secondly, each bus route is divided into sections. In this step, we consider the road
section between two adjacent bus stops as the basic prediction unit. We classify the driving
style of the drivers based on the travel time between two adjacent stations (sum of driving
time and waiting time). For example, a driver who arrives at a bus stop at a scheduled time
can be defined as having a normal driving style. A driver with a mild driving style will
arrive later than the scheduled time, while a driver with an aggressive driving style will
arrive earlier than the scheduled time. This tendency will gradually become larger with
the increase in the distance travelled, so eventually the bus behind will catch up with or
overtake the bus in front after a few stops. Similarly, a bus’s waiting time at the bus stop
can also reflect the driving style of the driver. Different drivers have different reactions to
the speed of passengers’ movements when they get on the bus. For example, if an impatient
driver urges passengers to hurry up and get on the bus at the stop, then the stopping time
of this type of driver at the stop will be relatively shorter. A gentle driver generally does
not urge passengers but waits quietly for passengers to get on the bus calmly, so this type of
driver will wait at the stop for a relatively long time. Drivers with a driving style between
the two mentioned above will judge whether to urge passengers or not depending on the
time. When there is plenty of time, they will not urge passengers, while when time is tight,
they will urge passengers to accelerate boarding.

In this work, we use the hierarchical clustering analysis model to classify the driving
styles of bus drivers. Hierarchical clustering (HC) is a statistical method used to divide
objects into groups with similar meanings. It attempts to find groups that minimize
differences within groups and maximize differences between external groups. When we do
not know the number of groups in advance but want to create groups and analyze group
members, we usually use hierarchical clustering analysis [18]. A hierarchical clustering
analysis starts with a single point as a cluster and then continuously merges two clusters
until only one cluster is left [37]. This method is described in Algorithm 1.
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Algorithm 1: HC—Basic Hierarchical Clustering Algorithm

Input: Sample set D = {x1, x2, . . . , xm};
Cluster distance metric function d;
Number of clusters k.
Output: Clusters C = {C1, C2, . . . , CK}
Process:
1: for j = 1, 2, . . . , m do

2: Cj =
{

xj

}
3: end for
4: for i = 1, 2, . . . , m do
5: for j = i + 1, . . . , m do
6: M(i j) = d(Ci, Cj);
7: M(j, i) = M(i, j)
8: end for
9: end for
10: Set the current number of clusters: q = m
11: while q > k do
12: Find the two closest clusters Ci∗ and Cj∗ ;
13: Merge Ci∗ and Cj∗ ; Ci∗ = Ci∗ ∪ Cj∗ ;
14: for j = j∗ + 1, j∗ + 2, . . . , q do
15: Renumber cluster Cj to Cj−1
16: end for
17: Delete the j∗ row and j∗ column of the distance matrix M;
18: for j = 1, 2, . . . , q − 1 do
19: M(i∗, j) = d(Ci∗ , Cj);
20: M(j, i∗) = M(i∗, j)
21: end for
22: q = q − 1
23: end while

3.3. Bus Travel Time Prediction Method

The objective of predicting bus travel time is to predict bus travel times between two
locations (e.g., two bus stops) [3]. The travel time of a bus between two adjacent stops includes
the time spent waiting before passing through an intersection, the time spent waiting on the
way, and the time spent waiting at the departure stop, as shown in Equation (1).

Ttravel(i→i+1) = Td,i+1 − Td,i (1)

where:

• Ttravel(i→i+1) is the predicted time for the bus to travel from stop i to stop i + 1, including
the parking time at stop i, as shown in Figure 3;

• Td,i is the predicted arrival time of the bus at stop i;
• Td,i+1 is the predicted arrival time of the bus at stop i + 1;
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Similarly, the bus travel time between two non-adjacent stops is the sum of the travel
time of multiple adjacent stops.

In this section, we will introduce the process of predicting bus travel time based on
clustering drivers’ driving styles. This process includes two steps: (1) the selection of train-
ing dataset based on the results of the driver’s driving style classification in the previous
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section; and (2) the construction of the travel time prediction model. Corresponding travel
time prediction models for drivers with different types of driving styles were constructed.

Previous studies [7,34] have indicated that the kernel of the radial basis function (RBF)
is better at predicting bus travel time. Therefore, the RBF kernel function is used in the
SVR model in this study, along with the parameters C and e of SVR. The selection of this
parameter is based on the best combination in previous papers [31], where (C, e) is set to
(2, 0.1). C defines the cost of the penalty function. To accurately and quickly predict the
travel time of buses, it is important to determine the appropriate factors for estimating the
traffic conditions. The factors we consider in this work are as follows [38]:

(1) X1 = day of the week. In general, traffic flow is different during the five working days
of the week;

(2) X2 = number of road segments. The number of sections between two adjacent stops of
the predicted bus line. Different road sections have different road condition characteristics;

(3) X3 = departure time of the bus. At different times of the day, the bus journey time
is different. For example, during peak hours and off-peak hours, the travel time of
buses varies greatly.

The prediction model of bus travel time can be summarized as the following relationship:

Tpredicted = f (X1, X2, X3) (2)

4. Case Study
4.1. Data Collection and Processing

In this section, experiments were conducted using the Shenyang City 239 bus route
as an example to verify the effectiveness of the proposed travel time prediction method
described in the last section. The 239 bus route map is shown in Figure 4. The 239 bus line
starts from Kang li Automobile Company in the west to the Quan Yuan community in the
east. There are 26 stops in the entire journey with a total length of 13.9 km. The operating
time period of this bus line is from 06:00 am to 20:30 pm. All buses in the 239 bus line are
equipped with GPS positioning devices to collect the location data of each bus every 5 s
and transmit them to the data center in real time. The data recorded are listed in Table 1.
The serial number of the vehicle-mounted device on each bus is unique and corresponds to
a fixed driver. To maintain consistency, only the driving data from the west to the east were
used in this study.
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Table 1. Description of GPS dataset.

Variable Description

O_LINENAME the line name
O_TERMINALNO the serial number of the vehicle-mounted device

O_DATE the date of data generated
O_TIME the time of data generated

O_LONGITUDE Longitude
O_LATITUDE Latitude

O_SPEED instantaneous speed
O_UP running direction

O_NEXTSTATIONNO the serial number of the next stop

Perhaps due to the influence of GPS signal strength, some road sections have incom-
plete data. Therefore, the data from the fourth stop to the thirteenth stop were collected
and used as the research object in this study (see Figure 4). The corresponding road section
consists of nine adjacent stops. For example, road section 7 represents the road section
between the sixth stop and the seventh stop, road section 13 represents the road section
between the twelfth stop and the thirteenth stop, and so on.

In order to verify the influence of the drivers’ driving styles on the travel time, the
interference of other factors has to be considered. The time period selected in this study
was sunny, and the traffic conditions were normal (no traffic accidents). The buses to
be predicted in our model were roughly the same in terms of vehicle type and vehicle
performance. Therefore, it can be considered that the main factor affecting the bus travel
time was the driving styles of individual drivers.

The data in this study were collected over 11 working days from 4 January 2016 to
18 January 2016. A total of 3204 valid history records of bus travel times were obtained.
The data of the first 10 days (4 January 2016 to 15 January 2016) were used as the training
data, and the data of the remaining day (18 January 2016) were used as the prediction data.

4.2. Performance Measures

In order to compare the prediction accuracy of the different methods intuitively, two
terms, i.e., the mean absolute error (MAE) and root mean square error (RMSE), are used to
analyze the accuracy of our experimental results. Each measure is calculated as follows:

MAE =
∑
∣∣∣tobserved − tpredicted

∣∣∣
N

(3)

where tobserved is the observed value, tpredicted is the predicted value, and N is the total
number of datasets.

The MAE can better reflect the actual situation of the prediction error and also reflect
the accuracy of the prediction.

RMSE =

√√√√∑
(

tobserved − tpredicted

)2

N − 1
(4)

The RMSE can express the relative error of the prediction and reflect the stability of
the prediction.

4.3. Driving Style Cluster of Bus Drivers

In this section, the drivers were clustered according to their driving styles. First, a segmen-
tation of the time period was performed. One day was divided into three periods according
to the time division scheme proposed in Section 3.2. In each period, the travel time data of
nine adjacent stations (5–13) and nine drivers on the no. 239 bus line are stored in the form of a
matrix, and then the data processed into the 2D matrix structure are hierarchically clustered.
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The results are shown in Figure 5. For example, during the morning peak hours
from 7:00 to 9:00, when the cluster number is nine, the driving styles are divided into
nine categories: {902334, 902355, 902349, 902335}; {902353, 902359}; {902347}; {902351};
and {902340}. In other time periods, the classification results are {902353, 902359, 902335};
{902334, 902349, 902355}; {902347}; {902349}; and {902355}.
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1, 2, 3, 4, 5, 6, 7, 8, and 9 are 902334, 902335, 902340, 902347, 902349, 902351, 902353, 902355, and 902359.
(a) Morning peak time: 7:00–9:00. (b) Off–peak time: 9:00–16:00. (c) Afternoon peak time: 16:00–19:00.
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4.4. Results

In order to select the best dataset for the prediction of travel time, four different levels
of datasets are selected from the clustering results in the previous section of the experiment,
which are divided into nine categories, five categories, four categories, and one category.
For example, the training datasets corresponding to the four prediction models of driver
number 902334 are shown in Table 2. Among them, Model 1 is when the dataset is clustered
into nine categories, that is, the travel time history data of a single driver are used for
training and prediction. Model 4 is trained and predicted by the travel time history data
of all drivers when the dataset is clustered into one category. Model 2 and Model 3 use
the historical data of 3–6 drivers’ travel time for training and prediction when they are
clustered into five and four categories, respectively, according to the clustering results.

Table 2. The training datasets corresponding to the four prediction models of driver number 902334.

Model Number of Clusters 7:00–9:00 9:00–16:00 16:00–19:00

Model 1 9 902334 902334 902334

Model 2 5 902334, 902335, 902349, 902355 902334, 902349, 902355 902334, 902349, 902359

Model 3 4 902334, 902335, 902349, 902353,
902355, 902359

902334, 902335, 902349, 902353,
902355, 902359

902334, 902335, 902349, 902353,
902355, 902359

Model 4 1 All data All data All data

The four models were experimentally evaluated, and six drivers were selected as
experimental subjects on 18 January 2016. Table 3 lists the scheduled departure schedules
of the six predicted drivers on 18 January 2016. The travel time of each driver will be
predicted using four models from different datasets.

Table 3. The schedule of the six predicted drivers on 18 January 2016.

Time Period 902334 902335 902351 902353 902355 902359

7–9 8:27:35 7:37:39 7:16:42 7:21:04

9–12 11:39:54 9:36:14 11:26:30 10:25:45 9:47:19 10:14:51

12–16 13:49:38 12:27:07 13:54:07 14:19:43 12:39:59
15:22:28 15:13:35

16–19 16:25:51 16:40:31 17:05:54 17:45:58

Figure 6 shows the MAE values of the predicted results of all the trips of the buses driven
by the six drivers under the four prediction models. Table 4 is the average MAE of all the
trips of each bus in one day under the four prediction models that are used for the forecast.
The global MAE (g-MAE) score measures the average MAE of all the buses driven by the six
drivers in the four models. The bold results are the results with the best performance for this
experiment. (The bold results in the following tables have the same meaning.)

The results show that the performance of Model 2 and Model 3 is better than that
of Model 1 using only a single driver history dataset and Model 4 using all the datasets,
and the prediction error of Model 2 is the smallest (compared to model 1, the accuracy is
improved by 24.5%, compared to Model 3, the accuracy is improved by 9.1%, and compared
to Model 4, the accuracy is improved by 13.4%). Obviously, the prediction effect of Model 1
using only the historical data of a single driver is the most unsatisfactory, which may be
the result of too few training data. However, the accuracy of the prediction results is not as
simple as the more data, the better. The prediction effect of Model 4 using all the data is not
the best. We think that the main reason for this is that the driving behaviors of the drivers
are different, resulting in a wide distribution of travel time data.
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Future Internet 2023, 15, 222 13 of 18

Table 4. Prediction results of four models (MAE).

Driver Model 1 Model 2 Model 3 Model 4

902334 65.8 42.0 42.7 44.2

902335 36.1 30.8 32.7 39.7

902351 47.7 36.5

902353 63.9 50.4 58.5 56.8

902355 39.9 29.0 30.9 38.2

902359 33.4 28.4 33.9 34.8

g-MAE 47.8 36.1 39.7 41.7

Figure 7 shows the impact of different numbers of clusters on the performance of
the model. As the number of clusters increases, the MAE value first decreases and then
increases, indicating that a smaller number of clusters is not enough to distinguish different
driving style data. A larger dataset cannot provide personalized information for the model.
On the other hand, a larger number of clusters can lead to a smaller amount of data in some
categories, resulting in the poor predictive performance of the model. This indicates that
selecting appropriate predictive data is crucial.
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Figure 8 shows the comparison results of the root mean square error (RMSE) of the
four prediction models, and Table 5 shows the average RMSE results of all the trips of each
predicted bus the next day using the four prediction models. The global RMSE (g-RMSE)
score measures the average RMSE of the buses driven by the six drivers in the four models.

The results show that the performance of Model 2 and Model 3 is better than that of
Model 1 using only a single driver history dataset and Model 4 using all datasets, and the
RMSE value of Model 2 is the best (24.6% higher than that of Model 1, 10.2% higher than
that of Model 3, and 15.6% higher than that of Model 4).
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Figure 8. The RMSE values of the predicted results of all trips of the buses driven by six drivers 
under the four prediction models. (a) 902334. (b) 902335. (c) 902351. (d) 902353. (e) 902355. (f) 902359. 

Table 5. Prediction results of four models (RMSE). 

Driver Model 1 Model 2 Model 3 Model 4 
902334 94.5 64.8 59.7 63.8 
902335 58.6 47.1 55.3 65.0 
902351 72.5   58.0 
902353 92.1 71.3 82.0 80.1 
902355 59.5 45.1 48.0 61.0 
902359 49.3 39.8 53.6 53.3 

g-RMSE 71.1 53.6 59.7 63.5 

The results show that the performance of Model 2 and Model 3 is better than that of 
Model 1 using only a single driver history dataset and Model 4 using all datasets, and the 
RMSE value of Model 2 is the best (24.6% higher than that of Model 1, 10.2% higher than 
that of Model 3, and 15.6% higher than that of Model 4). 

The same conclusion can be drawn from the results in Figure 9: as the number of 
clusters increases, the RMSE value also decreases at first and then increases. This indicates 
that both too large and too small datasets are not conducive to model prediction. 
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Table 5. Prediction results of four models (RMSE).

Driver Model 1 Model 2 Model 3 Model 4

902334 94.5 64.8 59.7 63.8

902335 58.6 47.1 55.3 65.0

902351 72.5 58.0

902353 92.1 71.3 82.0 80.1

902355 59.5 45.1 48.0 61.0

902359 49.3 39.8 53.6 53.3

g-RMSE 71.1 53.6 59.7 63.5

The same conclusion can be drawn from the results in Figure 9: as the number of
clusters increases, the RMSE value also decreases at first and then increases. This indicates
that both too large and too small datasets are not conducive to model prediction.
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4.5. Discussion

In this study, a new method combining the hierarchical clustering algorithm and support
vector regression model was proposed to study the influence of driving styles on the prediction
of travel time. In previous studies on the prediction of bus travel times, other scholars have
considered the impact of changes in passenger flow [39], traffic conditions [40,41], space–time
factors [42–44], signals [45–47], weather [40], and other factors on the prediction of travel
time. Compared to these influencing factors, it is more difficult to obtain driving style data.
Therefore, to our knowledge, there has not been research that has taken into account driving
styles in the prediction of bus travel times. In addition, although there are a lot of traffic
data being collected currently, they lack accurate processing. How to extract feature sets that
can accurately predict bus travel times from these data is still worth studying [45]. Recently,
some meaningful research has been conducted on this subject. For example, buses’ running
times for multiple routes were used to predict arrival times for each route, which improves
prediction precision [30]. Ma et al. [44] uses clustering based on the homogeneity of travel
time observations and potential traffic conditions to estimate the probability distribution of
travel time according to the travel time distribution of road sections. He et al. [40] explored the
common travel time patterns of different bus line sections and divided bus line sections with
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similar patterns into the same cluster. Then these clusters were merged to extract data records
for model training and the prediction of bus travel times. This paper also considers driving
styles from the perspective of optimizing the prediction dataset. For the first time, driving
styles were used to optimize the training and prediction dataset, and then the optimized
datasets were used to predict the bus travel times. The effectiveness of the proposed method
is verified by experiments.

Moreover, from our experimental results, we also found that the MAE values of the
four models were higher than those of other periods in the early peak hours. One of the
possible reasons for this is that the route selected for research in this paper is one-way,
driving from the outside of the city to the center of the city. The number of passengers and
vehicles entering the city in the early hours of the morning is greater than in other periods,
leading to more uncertain factors in terms of travel time. We believe that the impact of traffic
conditions and drivers’ driving styles on bus travel times is both relevant and restrictive.
Subsequent research should consider the comprehensive impact of multiple factors, which
can further improve the accuracy of predictions. Although the prediction quality is low
during peak hours, our framework can also significantly improve prediction accuracy.

5. Conclusions

In this work, a method for predicting bus travel times by clustering drivers’ driving
styles was presented. The historical travel times of different bus drivers were first clustered,
and then the prediction of the travel time was made using the historical dataset of the
corresponding driver, which achieved the objective of improving the speed and precision
of the travel time prediction. Our experiments were conducted using a large-scale dataset
of real-world data collected in Shenyang, China. The experimental results indicate that the
bus travel time prediction method (Model 2) based on the clustering of drivers’ driving
styles proposed in this research paper increases the average accuracy by 13.4%. In addition,
it is found that the performance of Model 2 and Model 3 (the models that are based on
the clustering results after the dataset selection) is better than that of Model 1 (the model
using only a single driver history dataset) and Model 4 (the traditional method using all
the datasets). Among all the models, Model 2 has the best prediction accuracy, which is
in contrast to Model 1, which has the worst prediction accuracy. We believe that the main
reason for this difference is the sparsity of the dataset of individual drivers. At the same
time, it is also found that the prediction accuracy of Model 4 is not the best, indicating
that it is not correct to assume that the more data, the better the accuracy of the prediction
results. We believe that the main reason for this is that using data from all drivers can mask
differences in driver behaviors.

In our future work, we will consider more behavioral factors, such as bus drivers’
acceleration behavior, braking behavior, and overtaking behavior, to further study the
impact of bus drivers’ driving styles on travel time.
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