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Abstract: Smart home environments, which consist of various Internet of Things (IoT) devices to
support and improve our daily lives, are expected to be widely adopted in the near future. Owing
to a lack of awareness regarding the risks associated with IoT devices and challenges in replacing
or the updating their firmware, adequate security measures have not been implemented. Instead,
IoT device identification methods based on traffic analysis have been proposed. Since conventional
methods process and analyze traffic data simultaneously, bias in the occurrence rate of traffic patterns
has a negative impact on the analysis results. Therefore, this paper proposes an IoT traffic analysis
and device identification method based on two-stage clustering in smart home environments. In the
first step, traffic patterns are extracted by clustering IoT traffic at a local gateway located in each smart
home and subsequently sent to a cloud server. In the second step, the cloud server extracts common
traffic units to represent IoT traffic by clustering the patterns obtained in the first step. Two-stage
clustering can reduce the impact of data bias, because each cluster extracted in the first clustering is
summarized as one value and used as a single data point in the second clustering, regardless of the
occurrence rate of traffic patterns. Through the proposed two-stage clustering method, IoT traffic is
transformed into time series vector data that consist of common unit patterns and can be identified
based on time series representations. Experiments using public IoT traffic datasets indicated that
the proposed method could identify 21 IoTs devices with an accuracy of 86.9%. Therefore, we can
conclude that traffic analysis using two-stage clustering is effective for improving the clustering
quality, device identification, and implementation in distributed environments.

Keywords: device identification; internet of things; machine learning; traffic analysis; two-stage
clustering

1. Introduction

Recently, smart homes have become more popular in conjunction with the widespread
use of Internet of Things (IoT) devices [1]. Consequently, IoT devices have become more
integrated into our daily lives. The market size of smart homes in the world increased to
80.2 billion dollars in 2022, with expectations for continued growth. Projections indicate
that the market size will grow to 338.2 billion dollars in 2030 [2]. Since users can control
home appliances anytime and anywhere using applications, and products can also work
autonomously based on sensing data, our daily lives have become more comfortable and
efficient. However, the connection of household appliances to the internet has resulted in
cyberattacks [3]. A security news site states that 1.5 billion attacks on IoT devices were
reported during the first half of 2021, which is more than a 100% growth in cyberattacks
compared to the first half of 2020 [4]. This indicates that IoT devices, such as computers
and smartphones, can be targets of attacks; thus, adequate security measures are essential.
However, measures against IoT device security have not yet been sufficiently considered
owing to the difficulties of replacing devices, updating their firmware, grasping their
behavior, and implementing large-scale security systems in smart home environments [5].
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With the continuous increase in the number of IoT devices being used, the risk of attacks is
anticipated to increase. In addition, users may find it challenging to grasp and manage all
the installed IoT devices, thus potentially leaving them without awareness of any anomalies
caused by cyberattacks.

The first step toward ensuring security in smart home environments is that users
can grasp what kinds of IoT devices are running. For this purpose, it is important to
automatically identify connected IoT devices in some way. Several methods for identifying
IoT devices or their behavior based on traffic analysis using machine learning have been
proposed [6–14]. Although these methods automatically identify IoT devices and their
behavior from traffic data, they do not consider how they work in smart home environments.
Furthermore, since a lot of user information is included in the communication data of IoT
devices, data handling is also an important issue in ensuring security and user privacy.
However, these methods process all traffic data at once. When implementing the methods
in a real environment, the traffic data of IoT devices collected in a smart home will be
uploaded to a cloud server. As a result, this could cause leakage of user privacy information.
Therefore, in this paper, we propose IoT traffic analysis and device identification methods
based on two-stage clustering for smart home environments. Here, we highlight the
following three points as considerations for IoT device identification methods in smart
home environments:

1. The need to update the identification models: People often install new IoT devices and
remove older devices from their home environments. To address such replacements
and maintain proper management, it is essential to update identification models
frequently, which requires periodic training. However, conventional methods imple-
ment IoT device identification with only one-time learning and do not consider the
computational and communication loads owing to model updating.

2. How to process traffic data: Analyzing a significant amount of traffic data simultaneously
in one place can cause a heavy load on the memory and CPU, as well as interfere
with the analysis. With the growing use of IoT devices, the processing of a larger
amount of collected IoT traffic is required. Although collecting and analyzing traffic
data on a cloud server is one solution, this approach requires sending traffic data
captured in smart homes to the cloud for analysis or learning, which is unsuitable
from the perspective of communication traffic and user privacy. In addition, traffic
data are biased because of variations in IoT device behaviors. The biases increase in
proportion to the number of device types and the amount of collected traffic data,
which could negatively impact the analytical results and appropriate classification.
Therefore, it is necessary to consider how to process significant amounts of traffic
data appropriately when implementing this method in smart home environments.
However, conventional methods typically process traffic data simultaneously.

3. The range that IoT device identification targets: Most methods utilize fixed values such
as the IP and MAC addresses included in traffic data to identify specific IoT devices
installed in smart homes. From the perspective of security in smart homes, however,
it is important to identify and grasp not only whether the appropriate IoT devices are
connected but also whether they operate properly. Some conventional methods ana-
lyze IoT traffic based on communication features, such as the number of destination
IP addresses, the number of protocol types, and the total amount of data. However,
they only focus on features in a fixed interval. Thus, methods that do not consider the
time series characteristics of IoT traffic would overlook the behavior of IoT devices,
since they cannot extract features from some IoT traffic owing to the differences in
communication periods.

Based on these aspects, we propose an IoT traffic analysis and device identification
method based on two-stage clustering [15,16] for smart home environments. The proposed
method considers a two-layer distributed traffic analysis at two locations: a gateway
router installed in each smart home and a cloud server. In this paper, we verified whether
two-stage clustering performs properly in both IoT traffic analysis and device identification
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by comparing a centralized clustering method with only a cloud server. Note that in this
paper, the proposed and comparative methods were implemented on a single computer
and not in a distributed environment. Consequently, we extracted the specific time series
characteristics of IoT traffic using two-stage clustering at a lower cost. Moreover, we
implemented an IoT device identification method based on the analytical results, which
can identify 21 IoT devices with an accuracy of 86.9%. The results indicate that IoT traffic
analysis with two-stage clustering is effective in improving the clustering performance,
device identification, and implementation in distributed environments. Our contributions
can be summarized as follows:

• We summarized the concerns regarding IoT device identification in real environments:
the need to regularly update identification models, how to process traffic data, and the
range of IoT device identification. Thereafter, we proposed an IoT traffic analysis and
device identification method based on two-stage clustering that can be implemented
in smart home environments. This study investigated whether two-stage clustering
performs properly in IoT traffic analysis and device identification by comparing it
with a normal centralized clustering method.

• We applied the two-stage clustering method, which has previously been proposed to
grasp dynamic traffic changes specifically for peer-to-peer video streaming services
(P2PTV) [15,16], to IoT traffic analysis based on the similarities between P2PTV and
IoT traffic. Using two-stage clustering, we extracted traffic patterns to describe IoT
traffic and transformed the IoT traffic into a time series numerical representation,
which is a series of traffic patterns. Consequently, we visualized the time series
characteristics of the communication of IoT devices and extracted traffic features for
IoT device identification.

• We implemented an IoT device identification model with a long short-term mem-
ory (LSTM) network based on time series representations as the dataset. Using the
proposed device identification model based on two-stage clustering, the accuracy
with respect to identifying 21 IoT devices was 86.9%. The proposed method provides
greater precision for both overall and for each IoT device identification than conven-
tional single-stage centralized clustering. Moreover, by comparing the accuracies of
six different time series representations as datasets, we demonstrated the effectiveness
of analyzing IoT traffic over multiple time intervals.

The rest of this paper is organized as follows. Section 2 presents related studies on
IoT device identification and introduces two-stage clustering [15,16], which is the basic
concept of this paper. Section 3 presents an IoT traffic analysis method based on two-stage
clustering. Section 4 presents and evaluates the analytical results of the two-stage clustering
in comparison with those of one-stage clustering, which is similar to conventional methods.
Section 5 proposes an IoT device identification method based on the analytical results
obtained using two-stage clustering and evaluates the proposed method on indices of
classification accuracy and efficiency. Finally, we assessed the effectiveness of distributed
traffic analysis of IoT traffic using two-stage clustering. Section 6 presents the conclusions
of the study and discusses future perspectives.

2. Related Work
2.1. IoT Device Identification Methods

Several identification methods of IoT devices have been proposed. Takasaki et al.
proposed an IoT device identification method based on two-stage traffic analysis [6]. In the
first step, this method extracts domain names from domain name system packets that IoT
devices send regularly and estimates the manufacturers of the connected devices based
on the domain names of the destination servers. Moreover, the method classifies devices
into three categories, IoT devices, non-IoT devices, and routers, using supervised machine
learning. By capturing all packets sent from each device in 10 min, the number of packets,
total and average data sizes, the number of protocol types, and the number of destination
addresses were extracted from the packets and used as feature values in the first-stage
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analysis. In the first step, the method classified connected devices into three categories with
over 94% accuracy. The second step attempts to classify the functional categories of devices
identified as IoT devices in the first step by analyzing traffic waveforms that represent
the time variation of the transmitted packets. This method analyzed a set of 6000 packets
collected from each IoT device every 100 milliseconds for 10 min as feature values using
deep learning, a LSTM network [17], and a convolutional neural network. The accuracy
of identifying the seven functional categories of the IoT devices was 83.7%. However, the
accuracy of identifying reactive devices that operate in response to the actions of users and
sensors, such as light bulbs, healthcare devices, and air quality sensors, was low.

Koike et al. proposed a method for identifying the called functions of IoT devices
using the characteristic time variability of their generated traffic to visualize their operating
status [7]. This method collects traffic data using specific functions on a smart speaker.
Since the time variability of the communication traffic is discriminative for each function,
30 consecutive packets were set as one window. From each window, the average, variance,
and standard deviation of the packet size, excluding the error packets from each transmis-
sion protocol, were extracted as feature values. In these experiments, 10 functions known
as Amazon Echo Spots were estimated using a random forest. The results indicated that
the classification accuracy of the ten functions was only 56.1%. The authors of this paper
attribute the low accuracy to the labeling of even a no-communication period between
function calls as part of each function and the definition of the window size. This method
can automatically monitor the operation status of IoT devices, but the identification target
is limited to one smart speaker.

Koike et al. proposed an improved version of this method [8]. This version uses
two categories of features extracted from traffic data of functions called on three smart
speakers: Amazon Echo Spot, Amazon Echo Dot, and Amazon Echo Flex. In the first
category, the features extracted from each individual packet, such as the transport protocol,
port number, and source and destination addresses, were used. In the second category,
the features of each window consisting of 30 consecutive packets were used, as was
done in [7]. However, they were extended to the average, variance, standard deviation,
maximum, minimum, and difference between the maximum and minimum packet sizes.
Random forests was employed as a machine learning algorithm based on comparisons of
the identification accuracy of different supervised learning algorithms: random forests,
extreme gradient boosting (XGBoost) [18], light gradient boosting machine (LightGBM) [19],
and CatBoost [20]. In addition, regarding the treatment of the no-communication period,
which was a factor contributing to low accuracy in the previous method when a function
was not called before the first call or between calls, this method extracts idle time from
the traffic data as a separate function. The experimental results demonstrated that the
method could identify eleven called functions with an accuracy of 76.1% for the Amazon
Echo Spot, nine functions with an accuracy of 89.8% for the Amazon Echo Dot, and had an
accuracy of 85.2% for the Amazon Echo Flex. Moreover, a device identification method for
the three types of Amazon Echo was implemented with an accuracy of 99.1%. This method
can automatically and more precisely monitor how IoT devices operate than the previous
method [7]. Nevertheless, the target is still limited to smart speakers only.

Hattori et al. proposed a method to estimate the execution functions on several types of
IoT devices [9], which is also an extended version of the previous two methods. To examine
the possibility of analyzing which functions of an IoT device have been executed, they used
eight IoT devices from four categories: two smart cameras, two smart remote controllers,
two smart speakers, and two smart plugs. The devices were connected to an edge router,
where traffic data were collected during the execution of each function 10 s before and
after execution. From the collected traffic data, the number and size of sending, receiving,
TCP, and UDP packets, as well as the number of source and destination IP addresses in
time windows of 0.5, 1, and 1.5 s were extracted. The mean, maximum, variance, and
standard deviation values of the 30 extracted items were computed and evaluated based
on the importance of the features calculated using random forests. Thereafter, the method
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selected and used 28 important features from 120 features as feature values and identified
the function of the IoT device executed using random forests. The accuracy of detecting
eight functions was 73%, and the accuracy of detecting 16 combinations of eight executed
functions and two IoT devices in each device category was 91%. This method enables the
automatic understanding of the behavior of not only smart speakers but also a wide variety
of IoT devices.

Ammar et al. proposed an autonomous IoT device identification prototype [10],
thereby outlining a methodology for an IoT device identification assistant and its architec-
ture. The objective was to identify the types of devices that were newly connected to the
home gateway to help end users better manage their devices and obtain more services from
them. In feature selection, the first set of features was extracted from the flow characteris-
tics of packet size, the interarrival time of flows, flow size, and protocol. In addition, the
second set of features was extracted from the device description inspected from the packet
payloads: the manufacturer name from the MAC address and the device name from the
DHCP information. This method identified 28 IoT devices with an average accuracy of 98%
using a decision tree. This method was considered for architectures designed to operate in
smart home environments. However, all processing related to device identification was
performed on a server, and the identification results were obtained on the web browser.
This poses a problem in terms of user privacy protection.

Nguyen-An et al. proposed a method for visualizing IoT traffic characteristics and
identifying IoT devices based on the average information content, which is known as
information entropy [11]. This method analyzed IoT traffic properties by calculating the
information entropy of the traffic parameters: the number of source and destination IP
addresses, the number of source and destination ports, packet sizes, and the total amount of
data for source IP addresses observed in five minutes. Subsequently, this method visualized
them using behavior-shaped graphs. Moreover, an IoT device identification method based
on the information entropy of IoT traffic features was implemented, and IoT devices were
successfully identified with 94% accuracy. This method uses entropy to achieve time series
feature extraction in IoT device communication. However, focusing on entropy in only a
certain time interval could lead to inadequate feature extraction for some IoT devices.

Okui et al. proposed an identification of IoT device models in the home domain using
IP flow information export (IPFIX) records [12]. The aim of this method based on IPFIX,
which is a standard for flow information, is to reduce data volume for communication
costs. In this method, IoT traffic captured on a gateway router was converted to IPFIX
information, and the converted data were sent to the device identification server. Then,
feature extraction from the IPFIX records and training of an identification model using
LightGBM were operated on the server. As a result, this method identified 25 IoT devices
with 98.48% precision. Moreover, using IPFIX records reduced the data volume to ap-
proximately 11% compared to traffic data. On the other hand, since all procedures for the
IoT device identification were performed on a single server, there are concerns about the
concentrated load.

Trad et al. proposed a method to mitigate frequent retraining for IoT device identifica-
tion models [13,14]. A Siamese neural network (SNN) was trained to generate embeddings
corresponding to the similarities of feature values. In this method, a database of embed-
ding vectors corresponding to IoT traffic was created using an SNN. In the identification,
95 feature values extracted from IoT traffic were input to the identification model using an
SNN, and an embedding vector was output. Then, the closest embedding to the output
vector was searched from the database, and the input traffic was classified according to
the IoT device corresponding to the retrieved embedding. When a new device was added,
this IoT traffic was also input to the identification model using an SNN, and an embedding
corresponding to the device was generated. And then, this embedding was added to the
database. Therefore, the database was extended to include the new device type, and the
model could recognize the new device without the updating. Based on the results in [14],
this method yielded an 85.8% F-measure even when 28 unknown IoT device data were
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added after training. However, this method also processed traffic data at once, whereas all
traffic data should be shared with the cloud servers in the real environments.

2.2. Considerations Regarding IoT Device Identification in Smart Home Environments

As mentioned previously, several IoT device identification methods based on traffic
analysis with machine learning have been proposed. They automatically identify and
understand IoT devices using traffic data. However, no consideration has been given to the
implementation of these methods in a smart home environment.

IoT device identification in smart home environments involves three considerations.
The first is the need to update identification models. This is because it is unlikely that IoT de-
vices, once installed, will be used indefinitely in smart home environments. As new devices
are installed and older devices are removed, frequent updating of the identification model
and periodic training for model updating are essential to achieve proper management in
response to the replacement of IoT devices installed in smart homes. However, conven-
tional methods implement IoT device identification with only one-time learning and do
not consider the computational and communication loads associated with model updating.

The second problem is how to process the traffic data. Analyzing a large amount of
traffic data simultaneously in one place can cause a heavy load on the memory and CPU,
as well as interfere with the analysis. With the growing use of IoT devices, the processing
of a larger amount of collected IoT traffic is required. Although collecting and analyzing
traffic data on a cloud server is one solution, this approach requires sending traffic data
captured in smart homes to the cloud server every time the identification model is trained,
which is unsuitable from the perspective of communication cost. Additionally, since IoT
traffic contains a large amount of user information, uploading all the traffic data to the
cloud server could lead to the leakage of user privacy. In addition, since the frequency of
device usage and the amount of communication data vary by IoT device, biases potentially
exist in the IoT traffic. The biases increase in proportion to the amount of traffic data, which
potentially has a negative influence on traffic analysis. Therefore, it is necessary to consider
how to process significant amounts of traffic data appropriately when implementing this
method in smart home environments. However, conventional methods typically process
traffic data simultaneously.

The third consideration is the target range for IoT device identification. Specific IoT
devices in smart homes can be identified simply using static information such as IP and
MAC addresses obtained from traffic data. From the perspective of security in smart homes,
however, it is important to not only determine whether the appropriate IoT devices are
connected but also to identify and grasp whether they are operating properly. Conventional
methods analyze IoT traffic based on the communication properties, such as the number of
destination IP addresses, protocol types, and the total amount of data. However, they only
focus on the features extracted from traffic data for a fixed interval, and they accordingly
ignore that each IoT device has different communication and operation cycles. Thus, they
overlook the behavior of IoT devices because they cannot extract features from some IoT
traffic owing to variations in the communication periods or behavior.

3. IoT Traffic Analysis with Two-Stage Clustering

Based on the current situation of IoT device security and the issues with conventional
methods, we propose a method for analyzing IoT traffic and identifying IoT devices based
on the time series properties of IoT traffic for operation in smart home environments. The
first aim of this paper is to ensure security in smart home environments. The proposed
method only uses the communication traffic of IoT devices and automatically identifies
what kinds of IoT devices are used. By checking the identification results, users can obtain
information about what kind of devices are operating. Furthermore, the proposed method
uses two-stage clustering [15,16] to avoid user privacy leakage caused by uploading IoT
traffic itself to a cloud server. The second aim is to distribute the computational costs in
traffic analysis. The proposed method operates in two locations: gateway routers installed
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in smart homes and a cloud server. Note that it is not necessary to implement the proposed
method on IoT devices. The proposed method comprises two phases: an IoT traffic analysis
phase with two-stage clustering and an IoT device identification phase based on time series
representations. In this section, we describe the first phase of the proposed method.

3.1. Two-Stage Clustering

In the proposed method, we focus on two-stage clustering, which is the basis of the
proposed method. Two-stage clustering is a traffic analysis method that aims to obtain
dynamic changes in P2PTV traffic as proposed in [15,16]. As a preliminary preparation,
the traffic data when viewing each P2PTV video content were divided into predetermined
unit time lengths. In the first-stage clustering, the set of divided traffic data was clustered
using k-means clustering for each P2PTV content. The representative values were extracted
from each cluster obtained from the first clustering. Representative values corresponding
to all the first-stage clusters were gathered and clustered again using k-means clustering.
These clustering steps possibly equalize the biases of the occurrence frequency of traffic
patterns, because every cluster is described as one value, regardless of the cluster size.
Hence, two-stage clustering extracts traffic patterns irrespective of the occurrence frequency.
In [15], the patterns obtained by two-stage clustering were used to illustrate the transition
characteristics of P2PTV traffic. In [16], comparisons of one- and two-stage clustering
confirmed the effectiveness of two-stage clustering in P2PTV traffic analysis.

There are three reasons for applying the two-stage clustering in the proposed method.
First, the two-stage processing can realize load distribution, which is one of the consid-
erations when assuming implementation in actual environments. For instance, the first
clustering step is performed at a gateway in each smart home, and the clustering results
are subsequently transferred to a cloud server and clustered in the second stage. Thus,
the entire clustering process is distributed in the network. Second, the concept that every
cluster is described as one value regardless of the cluster size can reduce the impact on
IoT traffic analysis from the biases of traffic data, which is similar to P2PTV traffic analysis.
Moreover, this representation mechanism can reduce communication traffic when com-
bined with the distributed implementation described above. Only representative values of
the clusters are transferred from each smart home to a cloud server. Third, the objective
of two-stage clustering [15,16] to obtain dynamic changes in P2PTV traffic coincides with
the need to determine whether an IoT device functions normally or appropriately, thereby
addressing the concerns raised in the context of conventional methods. This is because
two-stage clustering primarily divides traffic data into a series of data pieces and thus
realizes time series data analysis. Therefore, we decided to use a two-stage clustering in
the proposed method.

3.2. Procedure of the Proposed Method

Figure 1 shows an overview of the IoT traffic analysis using the proposed method. This
method analyzes IoT traffic in two steps at two locations: gateway routers installed in smart
homes for the first step analysis and a cloud server for the second step analysis. In the first
step, the IoT traffic data are preliminarily divided into data pieces per unit of time. From
the divided traffic data pieces, feature values are extracted and subsequently clustered
for each IoT device at the gateway router in each smart home. This is the first clustering.
Next, representative values are extracted from each cluster generated by the first clustering
and treated as the cluster feature. In this paper, a representative vector composed of the
averages of all the feature values in each cluster was used. Thereafter, the cluster features
were sent from each gateway router to the cloud server. Thus, by avoiding sending raw
traffic data and feature values of all traffic data pieces, the communication load between the
gateway routers and cloud server is reduced. In the second step, the cloud server executes
another clustering process using all the cluster features for all the IoT devices gathered
from the gateway routers: This is the second clustering. The clusters extracted by the second
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clustering on the cloud server are defined as the unit traffic. A series of unit traffic can
represent a set of elemental patterns generated by IoT devices.

The unit traffic patterns resulting from the second clustering are sent back from the
cloud server to the gateway routers. The gateway routers compare the results of the first
and second clustering and thereafter assign appropriate unit traffic numbers to all the
original divided data pieces. Finally, the IoT traffic is represented by a series of unit traffic
numbers as a time series representation. This process is illustrated in Figure 2.

Here, we consider the treatment of traffic data when an IoT device has no communi-
cation in terms of the unit of time. Some IoT devices tend to have long intervals between
communication periods because of periodic sensing operations or passive response behav-
iors, particularly in response to user requests. When the traffic data generated by such
IoT devices are divided into a series of data pieces according to the value of the unit of
time, a significant number of data pieces do not contain any communication information,
which could affect the clustering results. However, a traffic data piece without any packet
transmission can be clearly and easily recognized at the stage of capturing the IoT traf-
fic. Therefore, traffic data pieces without any communication were removed from the
datasets for the first and second clusters. Meanwhile, since the no-communication state is
still important for characterizing IoT traffic, we defined the traffic data piece without any
communication as zero traffic, which is one of the units of traffic patterns.

Cloud 
server
Cloud 
server

IoT traffic

…

Extracting
cluster features 

Extracting 
cluster features 

Extracting
cluster features 

First 
clustering

… … …

Gathering all cluster features

…

IoT traffic First 
clustering

IoT traffic First 
clustering

Cluster feature

Gateway 1Gateway 1 Gateway nGateway nGateway 2Gateway 2

All cluster features
Second 

clustering

Unit traffic

Figure 1. Mechanism of the two-stage clustering. Each gateway router preliminarily divides IoT
traffic data into data pieces per unit of time. Some feature values are extracted from the divided traffic
data pieces and then clustered for each IoT device. The cluster features are sent from each gateway
router to the cloud server and clustered again. The clusters extracted by the second clustering on the
cloud server are defined as the unit traffic.
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…
5 4 5 5 1 5 3 45 5

2 3 2 2 2 222 2 3

Time-series 
representation

…

45 5 54 34 32 2

344 4 433 3 3 5

Time-series 
representation

… …

15 5 5 1 5 5 5 1 5

1 11 55 1 54 5 4

Time-series 
representation

Gateway 1Gateway 1 Gateway nGateway nGateway 2Gateway 2

IoT traffic IoT traffic IoT traffic

Cloud 
server
Cloud 
server

All cluster features
Second 

clustering

Sending unit traffic 
( = all cluster features with 

unit traffic numbers)

Unit traffic

Figure 2. Mechanism for transforming IoT traffic into time series representation using unit traffic
patterns. The unit traffic patterns resulting from the second clustering are sent back from the cloud
server to the gateway routers. After comparing the results of the first and second clustering, the
appropriate unit traffic numbers are assigned to all the original divided data pieces. Finally, IoT
traffic will be represented by the series of unit traffic numbers as the time series representation.

3.3. Experimental Conditions

In these experiments, k-means clustering [21] was used as the clustering method. The
k-means clustering algorithm is a nonhierarchical clustering algorithm in which the number
of clusters must be specified in advance, and the samples are divided into a predetermined
number of clusters. It has the advantages of high computing efficiency and generality
regardless of the data size. However, it is necessary to determine the number of clusters.
Furthermore, the results of k-means clustering depend on the initial values of the cluster
centroids, which are generally randomly determined. The procedure for k-means clustering
is as follows [21]:

1. Set k centroids of clusters randomly (initialization). The number of clusters, k, must
be determined in advance.

2. Traverse all data points and calculate the distances between all centroids and data
points. Clusters are formed based on the minimum distance from the centroids.

3. The average value of the data in each cluster is calculated as the new cluster centroid.
4. The second and third steps are repeated until the centroids stop moving; that is, the

centroids no longer change their positions and become static.

In k-means clustering, the number of clusters must be determined in advance, and
the appropriateness of this value should be verified. Therefore, in this paper, we used
silhouette analysis [22] as a metric to evaluate the validity of the number of clusters.
Silhouette analysis is based on the silhouette coefficient in which a data point xi classified
into cluster Cin is calculated, which is defined as follows:
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1. Calculate the average distance ai between xi and the other data points within Cin by
using the following equation:

ai =
1

|Cin| − 1 ∑
xj∈Cin

‖xi − xj‖. (1)

2. Calculate the average distance bi between xi and all data points assigned to Cnear,
which is the cluster nearest to xi other than Cin, using the following equation:

bi =
1

|Cnear| ∑
xj∈Cnear

‖xi − xj‖. (2)

3. Calculate the silhouette coefficient si using ai and bi through the following equation:

si =
bi − ai

max (ai, bi)
. (3)

As expressed in Equation (3), the range of si is [−1, 1]. The clustering performance was found
to be the best when si = 1. Meanwhile, we found that data point xi may not be correctly
clustered if si < 0. After calculating the silhouette coefficient for all data points using the
aforementioned steps, the clustering performance was measured using the average value.

For feature values, we selected 10 indices consisting of both sending and receiving
features of the following five factors: average throughput (abbreviated as ave, particularly
in figures; the same applies hereafter), maximum throughput (max), the variation coefficient
of throughput (CV), the number of IP addresses (IP), and the number of ports (port) in units
of time. The units of time were set at 30, 60, 120, 300, 600, and 900 s. We used the dataset
captured by Sivanathan et al. on 28 September and 4 October 2016 [23], which contains the
traffic data of 21 IoT devices, as summarized in Table 1.

Table 1. IoT devices and their categories in the dataset used in this paper [23]. The dataset consists of
21 IoT traffic datasets and six device categories: two smart speakers, three smart sensors, four smart
plugs, three healthcare devices, six smart cameras, and three smart gadgets.

Device Category IoT Device

Smart speakers Amazon Echo
Smart Things

Smart sensors
Belkin Wemo Motion Sensor
Netatmo Weather Station
NEST Protect Smoke Alarm

Smart plugs

Belkin Wemo Switch
TP-Link Smart Plug
iHome
Light Bulbs LiFX Smart Bulb

Healthcare devices
Blipcare Blood Pressure Meter
Withings Smart Scale
Withings Aura Smart Sleep Sensor

Smart cameras

Dropcam
Insteon Camera
Netatmo Welcome
Samsung Smart Camera
Withings Smart Baby Monitor
TP-Link Day Night Cloud Camera
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Table 1. Cont.

Device Category IoT Device

Smart gadgets
HP Printer
Triby Speaker
Pix-Star Photo Frame

4. Analytical Results

In Section 3, we explain the IoT traffic analysis of the proposed method, thereby as-
suming its implementation in a smart home environment. Before implementation, we must
confirm the effectiveness of the IoT traffic analysis using two-stage clustering. Therefore,
in this paper, we implemented one-stage clustering on a single computer and verified
whether IoT traffic analysis using two-stage clustering functioned properly based on the
analytical results.

4.1. One-Stage Clustering as a Comparison Target

To evaluate the two-stage clustering, we used one-stage clustering for comparison
purposes. Figures 3 and 4 present an overview of the one-stage clustering method for
IoT traffic analysis. First, the IoT traffic data are divided into data pieces per unit of
time. Feature values are extracted from the divided data in each gateway router following
the same steps as the two-stage clustering explained in Section 3. Second, unlike the
proposed method with two-stage clustering, the feature values of all the divided data
pieces are sent to the cloud server without clustering at the gateway routers. These values
are clustered simultaneously on the cloud server. The clusters generated in this one-stage
clustering are treated as unit traffic patterns, which is similar to the clusters extracted in
the second clustering using the proposed method. Zero traffic, which is a type of unit
traffic pattern without any communication, is also used in one-stage clustering. The unit
traffic information, which consists of the feature values of the original divided data pieces
and their assigned unit traffic numbers, is sent to the gateway routers. In this paper, we
implemented a one-stage clustering method on a single computer as a conventional method
for comparison.

…

Gathering feature values of all 
the divided traffic data pieces

Extracting
feature values

Extracting
feature values

Extracting
feature values

IoT traffic IoT traffic IoT traffic

… … …

Cloud 
server
Cloud 
server

Gateway 1Gateway 1 Gateway nGateway nGateway 2Gateway 2

ClusteringFeature values of all 
the divided traffic 

data pieces

Feature 
values

Feature 
values

Feature 
values

Unit traffic 

Figure 3. Mechanism of one-stage clustering. IoT traffic data are divided into data pieces per unit of
time. From the divided data, some feature values are extracted. Then, the feature values of all the
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divided data pieces are sent to the cloud server without clustering at the gateway routers and
clustered simultaneously on the cloud server. The clusters generated in the one-stage clustering are
treated as unit traffic patterns.

Time-series 
representation

Time-series 
representation

Time-series 
representation

3 4 5 5 1 5 4 43 3

2 2 1 2 2 222 2 2

43 3 34 24 22 2

344 4 433 3 3 5

13 3 3 3 3 3 3 3 3

1 11 53 1 54 3 4

…

… … …

IoT traffic IoT traffic IoT traffic

Cloud 
server
Cloud 
server

Gateway 1Gateway 1 Gateway nGateway nGateway 2Gateway 2

ClusteringFeature values of all 
the divided traffic 

data pieces

Sending unit traffic ( = all the 
divided traffic data pieces
with unit traffic numbers) 

Unit traffic 

Figure 4. Mechanism for transforming IoT traffic into time series representation with unit traffic pat-
terns. Unit traffic patterns extracted using clustering on the cloud server are sent to gateway routers,
and IoT traffic is transformed into a time-series representation that is a series of unit traffic numbers.

4.2. Unit Traffic Patterns Extracted by One/Two-Stage Clustering

Figure 5 shows the number of unit traffic patterns extracted using one- and two-stage
clustering in red and blue, respectively. A larger number of unit traffic patterns was
extracted by two-stage clustering than by one-stage clustering, except when the unit of time
was set at 600 s. In addition, the number of unit traffic patterns extracted using two-stage
clustering varied significantly depending on the length of the unit time.
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Figure 5. Number of unit traffic patterns extracted using one- and two-stage clustering. A larger
number of unit traffic patterns was extracted by two-stage clustering than by one-stage clustering
when the unit of time was set to 30, 60, 120, 300, and 900 s. The amount of unit traffic patterns
extracted using the two-stage clustering varied greatly depending on the length of the unit of time.

Figures 6 and 7 show the cluster features of the unit traffic patterns extracted using
one- and two-stage clustering using radar charts, respectively. Comparing these two figures,
although some types of characteristic shapes can be extracted, there were several overlapping
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parts in the radar charts when the two-stage clustering was used. Since the overlap of shapes
in the radar chart indicates the similarity of features, two-stage clustering tends to redundantly
extract unit traffic patterns with similar features. In contrast, while it could be considered that
the one-stage clustering can extract the minimum number of unit traffic patterns necessary to
express the features of IoT traffic in several cases, these patterns may appear overly simplistic,
since all 10 feature values are solely classified as large or small.
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Figure 6. Cluster features of unit traffic patterns extracted using one-stage clustering.
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Figure 7. Cluster features of unit traffic patterns extracted using two-stage clustering.

Figures 8 and 9 show the frequency distributions of the Euclidean distances of the
feature values of each divided traffic data piece (i.e., representative vector) from the cluster
features of the unit traffic corresponding to that data piece (i.e., cluster centroid) for one- and
two-stage clustering, respectively. These two figures show that the spread of the distance
distributions for two-stage clustering was narrower than that for one-stage clustering.
Table 2 lists the statistical data of the Euclidean distances shown in Figures 8 and 9. The left
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column of Table 2 presents the four statistical metrics: the average, maximum, minimum,
and variance in distances from the corresponding cluster features when the unit time was
120 s. For two-stage clustering, all the metrics were significantly smaller than those for
one-stage clustering. Thus, two-stage clustering can be used to classify segmented traffic
data with similar characteristics. The right column of Table 2 presents the metrics at all
the settings of the unit of time. The average and maximum distances were greater for the
two-stage clustering. Although the minimum distance of two-stage clustering was less than
that of one-stage clustering, this does not indicate poor clustering performance when the
number of unit traffic patterns extracted using one- and two-stage clustering is considered.
According to the results regarding the Euclidean distances of the traffic data pieces from
the corresponding cluster centroids, two-stage clustering can extract unit traffic patterns
with different characteristics and is less likely to misclassify traffic patterns with different
features into the same unit traffic pattern.
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(f) Unit time: 900 s.

Figure 8. Frequency distributions of the Euclidean distance of each traffic data piece from the
corresponding cluster features derived from one-stage clustering.

Table 2. Statistical data regarding the distances of the feature values of divided traffic data pieces
from the cluster features of the corresponding unit traffic pattern. The left column represents the
statistical metrics when the unit of time was 120 s, and the right column shows the same metrics at all
settings of the units of time. The proposed two-stage clustering method can classify divided traffic
data pieces with more similar characteristics.

Clustering
Distance from Cluster Feature

(Unit of Time: 120 s)
Distance between Cluster Features

(All Settings of Units of Time)

Ave Max Min Var Ave Max Min Var

One-stage 2.70 31.9 0.84 1.76 2.93 9.99 0.55 2.41
Two-stage 0.82 18.5 0.00 0.81 3.84 11.4 0.15 2.09
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Figure 9. Frequency distributions of the Euclidean distance of each traffic data piece from the
corresponding cluster features derived from two-stage clustering.

4.3. Execution Time

As mentioned in Section 2, it is necessary to evaluate whether the proposed method
can cope well with model updating and processing significant amounts of traffic data,
particularly regarding the computational load. Therefore, we measured the processing time
using the time module in Python [24] when one- and two-stage clustering executed all the
processes mentioned in Sections 4.1 and 3.2, respectively. The processing time includes
dividing each traffic data into data pieces to extract unit traffic patterns for each unit of
time for the 21 IoT traffic datasets.

Figure 10a shows the processing time transition of one- and two-stage clustering
with respect to the number of divided data pieces, thereby representing the granularity of
the data division, which can be proportionally expressed as the reciprocal of the unit of
time. When the granularity was less than 0.005, that is, when the unit of time was 300 s or
larger, one-stage clustering required a shorter time than two-stage clustering. However, the
processing time of the one-stage clustering rapidly increased as the granularity exceeded
0.005, whereas that of the two-stage clustering remained almost flat. From this perspective,
the proposed two-stage clustering method has the advantage of increasing the amount of
IoT traffic data that can be processed.
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Figure 10. Comparison of processing time for the one- and two-stage clustering. (a) Processing time
of clustering vs. the granularity of data division. The increase in processing time for the one-stage
clustering is much larger than the two-stage clustering. (b) Total processing time of clustering for all
the six values of units of time. The two-stage clustering took approximately 61% less time than the
one-stage clustering.
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In this paper, we not only performed clustering but also created the combined time
series representation of IoT traffic data using six values of units of time to grasp the more
specific time variability properties of IoT traffic. The total time to perform clustering six
times while varying the unit of time from 30 to 900 s is thus more important. Figure 10b
shows the total time spent when executing the one- and two-stage clustering methods.
The two-stage clustering took approximately 61% less time than the one-stage clustering.
Therefore, even in terms of the total processing time, the proposed two-stage clustering
outperformed the one-stage clustering.

4.4. Time Series Representation

The set of unit traffic patterns extracted by the clustering methods was used to convert
the IoT traffic into a time series representation. In this paper, we set the following two rules
to express the time series features of IoT traffic. The first is the scale of the unit traffic
pattern. In Section 4.2, six sets of unit traffic patterns were obtained when the unit time was
set at 30, 60, 120, 300, 600, and 900 s. Therefore, we leveraged all sets of unit traffic patterns
as displayed in two dimensions: the vertical direction represents the set of the unit of time;
thus, each representation has six rows from 30 to 900 s. The horizontal direction represents
the passage of time from left to right; the width is set at 1800 s as the least common multiple
(LCM) of the six values of units of time. The sequence of numbers in each row indicates
the time series unit traffic numbers. Thus, the width of two 900-second units (=1800 s) is
equal to that of three 600-second units, six 300-second units, 15,120-second units, and so
on. The second rule concerns the color of the unit traffic pattern. In this paper, the colors
of all unit traffic patterns extracted at all sets of units of time were selected according to
the Euclidean distances of their 10 dimensional features from unit traffic patterns; No. 1
was extracted when the unit of time was 900 s, which is the basis of the unit traffic patterns.
The color of the basis of the unit traffic patterns was set to red, and the other traffic units
were colored yellow, green, blue, or purple, depending on the distance from the basis.
Therefore, the unit traffic pattern close to the feature space (i.e., with similar features) has
a similar color. However, since color is determined only by the Euclidean distance in the
10 dimensional feature space, unit traffic patterns with different features may exhibit similar
colors. Zero traffic is indicated in white. Note that the color and number of traffic units
were assigned without any relation to the features of the unit traffic.

Figures 11 and 12 show the time series representations of six IoT devices based on
one- and two-stage clustering: the Amazon Echo (smart speaker), Belkin Wemo Motion
Sensor (smart sensor), Belkin Wemo Switch (smart plug), Blipcare Blood Pressure Meter
(healthcare device), and Pix-Star Photo Frame (smart gadget), respectively. Since we
defined zero traffic as one of the unit traffic patterns and colored it white, the time series
representations based on both clustering methods could be described whenever each IoT
device communicated. In Figure 11, the representations of all IoT devices obtained using
one-stage clustering consist of the same unit traffic pattern and/or zero traffic except for
the 600-second unit of time and thus do not represent how each IoT device communicates
in each unit of time. These phenomena are derived from the fact that only two unit traffic
patterns were extracted in several cases using one-stage clustering, as shown in Figure 7.
In contrast, Figure 12 shows that the representations obtained using two-stage clustering
exhibit various colors. Therefore, the representations based on two-stage clustering can
better represent the differences in the communication traffic behavior of IoT devices.
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(a) Amazon Echo (Smart speaker)

(b) Belkin Wemo Motion Sensor (Smart sensor)

(c) Belkin Wemo Switch (Smart plug)

(d) Blipcare Blood Pressure Meter (Health care device)

(e) Withings Smart Baby Monitor (Smart camera)

(f) Pix-Star Photo Frame (Smart gadget)
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Figure 11. Time series representations of six IoT devices with one-stage clustering applied. These
results do not sufficiently represent how each IoT device communicates in each unit of time, since
they consist of the same unit traffic pattern with the same color and/or zero traffic except for the
600-second unit of time.
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(b) Belkin Wemo Motion Sensor (Smart sensor)
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Figure 12. Time series representations of six IoT devices with two-stage clustering applied. Compared
to Figure 11, the results of the two-stage clustering exhibit various colors and sufficiently represent
the communication traffic behavior of each IoT device.

Figure 13 shows the occurrence rate of the unit traffic patterns, including zero traffic, in
the time series representations of the 21 IoT traffic datasets when the unit of time was set at
900 s. Although one-stage clustering extracts only two unit traffic patterns, the occurrence
rate has a significant bias between them: more than 99% of the divided data pieces, except
for zero traffic, exhibit the same unit traffic pattern. However, the time series representation
extracted using two-stage clustering when the unit of time was set at 900 s comprises
various unit traffic patterns with a certain proportion. Hence, time series representations
based on two-stage clustering can represent the time series characteristics of each IoT traffic
item in more detail than one-stage clustering.

4.5. Summary

In this section, we evaluate the proposed two-stage clustering method by comparing
it with one-stage clustering in terms of the clustering performance, unit traffic patterns,
and time series representations of the extracted unit traffic patterns. The comparison
results indicate that the IoT traffic analysis with two-stage clustering can provide more
detailed communication features for IoT devices. Moreover, we demonstrated that two-
stage clustering can reduce the impact of an increase in traffic data volume on the processing
load in clustering.

In this paper, we implemented the proposed two- and one-stage clustering methods
on a single computer to analytically verify whether they function properly. However, when
implementing the proposed method in real environments, data communication occurs
between the gateway routers in smart home environments and the cloud server to exchange
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the feature values of the divided traffic data pieces and their cluster features. In the future,
we will investigate the impact of communication in real network situations.
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Figure 13. Occurrence rate of unit traffic patterns, including zero traffic, in time series representations
of 21 IoT traffic datasets when the unit time was 900 s. In spite of only two unit traffic patterns being
extracted using one-stage clustering, the occurrence rate has an extremely large bias between them. In
contrast, the results of the two-stage clustering consist of various unit traffic patterns, each of which
has a certain proportion.

5. IoT Device Identification Based on Time Series Representations

In Section 3, the IoT traffic analysis phase of the proposed method was introduced.
By analyzing the IoT traffic using two-stage clustering and transforming it into time
series representations, we successfully extracted and visualized the time series features of
IoT traffic. In this section, we propose an IoT device identification phase based on time
series representations.

5.1. Procedure of IoT Device Identification

First, we describe the creation of a dataset for IoT device identification. Figure 14
shows an example of a representative feature matrix, which can be easily obtained from
the time series representations shown in Figures 11 and 12. Similar to these figures, the
rows show the time series representations of IoT traffic when the units of time were 30,
60, 120, 300, 600, and 900 s from top to bottom. In addition, the horizontal direction from
left to right represents the passage of time, whose width was set at 1800 s as the LCM
of the six values of units of time. The width scale of every unit of time was unified to
1800 s. To use time series representations as a representative feature matrix for IoT device
identification, the unit widths of the time series representations at every unit of time must
be aligned. Therefore, the width of the time element in the feature matrix was set at 30 s,
which is the greatest common divisor of the six values of units of time. The first row of the
feature matrix consists of 60 continuous unit traffic numbers of independently divided data
pieces extracted when the unit of time is 30 s. Similarly, the bottom row has two sets of
continuous unit traffic patterns when the unit of time is 900 s; however, each is divided into
30 blocks with the 30-second time element and assigned the same unit traffic number. Thus,
the matrix of the time series representations created using the aforementioned approach
has 6× 60 elements and is treated as a set of feature values labeled for each IoT device.
Zero matrices, which consisted of zero traffic only, were excluded from the dataset for IoT
device identification.

To identify the IoT devices, this paper applied an LSTM network [17], which is a
well-known time series analysis method. Adaptive moment estimation (Adam) [25], which
is also popular in optimization methods in deep learning, was used as the optimization
algorithm. For the processing flow of the device identification, a series of feature matrices
created from the time series representations were input into the identification model using
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LSTM. Thereafter, the model predicted which IoT device the input dataset belonged to and
output one data label corresponding to the device.
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Figure 14. Example of the 6× 60 representative feature matrix based on time series representations
for the proposed IoT device identification. The width of the time element in the feature matrix is set
to 30 s as the GCD of the six values of units of time, and the total time of the horizontal direction is
1800 s (=30 s × 60) as the LCM of the six values of units of time. Each unit traffic pattern, when the
unit of time was longer than 30 s, was divided into multiple blocks with the 30-second time element
and assigned the same unit traffic number.

5.2. Experimental Conditions

In the experiments, two comparison targets were prepared to evaluate the effectiveness
of the proposed method. First, we used the matrices based on the time series representations
with one- and two-stage clustering as the datasets. Second, the n× 60 (n = {1, 2, · · · , 6})
matrices obtained by extracting n rows from the top of the representation shown in Figure 14
were used as the input data. The second comparison evaluated whether analyzing IoT
traffic with multiple values of units of time can reveal time variability in more detail.

For the parameters of the identification model, the number of LSTM layers and
their hidden layers were set at 2 and 64, respectively. As the input traffic data, the same
dataset [23] consisting of 21 types of IoT devices listed in Table 1 used for the IoT traffic
analysis in Section 3 was used. For the training phase of the LSTM network, the traffic
data captured on 28 September 2016 were used: 80% of them were randomly selected as
the training dataset, and the remaining 20% were used as the validation dataset. For the
evaluation phase of the trained model, traffic data captured on 4 October 2016 were used
as the test dataset.

As indices for performance evaluation, we introduced four typical machine learning
metrics: accuracy, recall, precision, and F-measure. As the recall, precision, and F-measure
were obtained for each IoT device classification, we used their averages to evaluate the
overall classification performance.

5.3. Results

Figure 15 shows the accuracy of the proposed IoT device identification method using
six types of time series representations as the input data. IoT device classification was found
to be more accurate when the time series representations had more types of time units. The
obtained identification results can be attributed to the increase in the number of feature
values included in each matrix. In addition, by training the identification model using input
data with multiple values of time units, it can address differences in communication timing
and cycles among IoT devices and thereafter extract the characteristics and differences in
IoT traffic in more detail. This tendency was observed regardless of the clustering method
used. Nevertheless, when the input data had the same format, the identification model
with two-stage clustering always outperformed that with one-stage clustering.
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Figure 15. Accuracies of the proposed IoT device identification using six types of time series represen-
tations as the dataset. Red and blue bars represent accuracies for the one- and two-stage clustering,
respectively. The results show that the IoT device classification became more accurate when the time
series representations have more types of time units, as well as when two-stage clustering was used.

Table 3 lists the performance outcomes of the identification models when using the
datasets generated using the one- and two-stage clustering methods. Based on all four eval-
uation metrics, it is clear that the identification model using two-stage clustering exhibited
a better identification performance than that using one-stage clustering. Figure 16 shows
the confusion matrices of the 21 IoT device identifications. In terms of the identification
accuracy per IoT device, the identification model using two-stage clustering also performed
better than that using one-stage clustering. Specifically, the difference was particularly
significant in the identification accuracies of the smart camera categories: Dropcam, In-
steon Camera, Netatmo Welcome, and Samsung Smart Camera. Smart cameras typically
maintain a continuous communication process by regularly uploading video data to the
cloud. As mentioned in Section 4.2, one-stage clustering can only extract two unit traffic
patterns, and the occurrence rate of one was greater than 99%. This means that the feature
matrices can only recognize that the device always communicates and cannot distinguish
traffic differences, such as throughput and the number of IP addresses and ports. Therefore,
time series representations using one-stage clustering cannot adequately identify smart
camera devices. Hence, as also shown in Figures 11 and 12, we can conclude that two-stage
clustering can more appropriately extract features that are important to describe IoT traffic,
and the time series representations based on two-stage clustering can express not only
whether but also whatever an IoT device communicates.

Table 3. Performance outcomes of the identification models. Based on all four evaluation metrics, the
identification model based on two-stage clustering clearly exhibits a better identification performance.

Clustering Accuracy Recall Precision F-Measure

One-stage 0.619 0.533 0.499 0.490
Two-stage 0.869 0.795 0.793 0.762

Table 4 shows a comparison of the identification performance outcomes between the
proposed method and the conventional methods [6–14]. Although it is difficult to strictly
compare among them due to the lack of detailed data, the identification accuracy of the
proposed method is higher than some of the conventional methods [6–8] but slightly lower
than the others [9–14]. This could be because some traffic features were lost due to feature
extraction by clustering. On the other hand, our method has an advantage of being able to
be implemented in a distributed environment. We will try to improve the identification
performance in the future.
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(a) Using datasets based on one-stage clustering.
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(b) Using datasets based on two-stage clustering.

Figure 16. Confusion matrices of 21 IoT device identification based on (a) one- and (b) two-stage
clustering. In terms of the accuracy of each IoT device, the identification model using time series
representations based on two-stage clustering can more precisely identify devices. Specifically, the
difference was particularly significant in the identification accuracies of the smart camera categories.
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Table 4. Comparison of identification performance outcomes between the proposed method and the
conventional methods [6–14].

Method Data
Processing Accuracy Recall Precision F-

Measure

Proposed Distributed 0.869 0.795 0.793 0.762
Takasaki et al. [6] Centralized 0.837 - - -

Koike et al. [7] Centralized 0.561 - - -
Koike et al. [8] Centralized 0.898 - - -

Hattori et al. [9] Centralized 0.910 - - -
Ammer et al. [10] Centralized 0.980 - - -

Nguyen-An et al. [11] Centralized 0.940 - - -
Okui et al. [12] Centralized - - 0.985 -

Trad et al. [13,14] Centralized - - - 0.858

6. Conclusions

In this paper, we proposed a method for IoT traffic analysis and device identifica-
tion based on two-stage clustering in smart home environments and verified whether the
proposed method functioned properly by comparing it with one-stage clustering. Conse-
quently, IoT traffic analysis using two-stage clustering grasped the features of IoT traffic
more specifically and appropriately with a shorter computation time. Moreover, IoT device
identification using representative feature matrices based on two-stage clustering enabled
the identification of 21 devices with an accuracy of 86.9%. Therefore, we observed that
the distributed IoT traffic analysis and device identification based on two-stage clustering
performed appropriately. On the other hand, compared to some conventional methods, the
proposed method showed poor identification performance. This is because machine learn-
ing was used for both feature extraction and identification phases. However, the proposed
method is intended not only to ensure security through the automatic identification, but
also to perform load balancing and to protect user privacy. Therefore, in order to verify the
overall effectiveness of the proposed method, the evaluation from such the perspectives is
necessary as well.

Here, we discuss two points to be expected when the proposed method is implemented
in a real environment. The first point is scalability. In the proposed method, gateway routers
installed in smart homes send cluster features to a cloud server instead of raw traffic data.
This makes it possible to suppress the increase in communication and computation load
compared to the conventional methods. Therefore, higher scalability in real environments
can be expected. In addition, the proposed method identifies IoT devices based on their
time series behavior. Thus, the proposed method would also be applicable to category and
called function estimation. The second point is versatility. Once the identification model is
built on each gateway router, the device identification can be performed using the model
specific to each smart home. In contrast, the identification model built on the cloud server is
a more versatile model. In other words, we believe that the generality of the identification
model can be adjusted as needed.

In future studies, we aim to implement a prototype of the proposed method in smart
home environments. This paper only proposed the traffic analysis method to be distributed
on gateway routers and a cloud server, and the experiments were only conducted on a single
computer. We will actually implement the proposed method on these two locations and
identify IoT devices connected to gateway routers. We will also evaluate this model not only
based on identification performance but also considering calculation and communication
costs. Moreover, we aim to improve the performance of IoT device identification by
examining the feature values extracted from IoT traffic and investigating identification
methods for IoT devices with low communication frequency.
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