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Abstract: With the advent of the “Internet of Things” (IoT), insurers are increasingly leveraging
remote sensor technology in the development of novel insurance products and risk management
programs. For example, Hartford Steam Boiler’s (HSB) IoT freeze loss program uses IoT temperature
sensors to monitor indoor temperatures in locations at high risk of water-pipe burst (freeze loss) with
the goal of reducing insurances losses via real-time monitoring of the temperature data streams. In the
event these monitoring systems detect a potentially risky temperature environment, an alert is sent to
the end-insured (business manager, tenant, maintenance staff, etc.), prompting them to take remedial
action by raising temperatures. In the event that an alert is sent and freeze loss occurs, the firm is not
liable for any damages incurred by the event. For the program to be effective, there must be a reliable
method of verifying if customers took appropriate corrective action after receiving an alert. Due to
the program’s scale, direct follow up via text or phone calls is not possible for every alert event. In
addition, direct feedback from customers is not necessarily reliable. In this paper, we propose the use
of a non-linear, auto-regressive time series model, coupled with the time series intervention analysis
method known as causal impact, to directly evaluate whether or not a customer took action directly
from IoT temperature streams. Our method offers several distinct advantages over other methods as
it is (a) readily scalable with continued program growth, (b) entirely automated, and (c) inherently
less biased than human labelers or direct customer response. We demonstrate the efficacy of our
method using a sample of actual freeze alert events from the freeze loss program.

Keywords: Gaussian process regression; Student-t process; impact of interventions; IoT sensor data;
time series analysis; variational inference

1. Introduction

With the advent of the “Internet of Things”, it has become increasingly commonplace
to develop real-time alerting and monitoring systems capable of mitigating the risk of
mechanical failures via human intervention. Indeed, there are several challenges posed
by such systems. First, the multiple time series generated in these scenarios often exhibit
non-linear/non-Gaussian temporal dependencies. Next, in order for alerting mechanisms
to be effective, there is a need to develop statistical methods capable of assessing the impact
of exogenous interventions (alerts) in the form of spurring prompt human intervention.
Finally, because there are likely thousands of such sensors involved in these types of IoT
programs, any modeling paradigm must be readily scalable. In this paper, we propose a
latent autoregressive Student-t process model to accomplish all three of these goals.

Intervention analysis is a well-established time series approach. An integral compo-
nent of a successful intervention analysis is the use of a suitable time series model to learn
the pre-intervention time series behavior. Linear models have traditionally been employed
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for this purpose. These include Gaussian autoregressive moving average (ARIMA) mod-
els [1,2], Gaussian dynamic linear models (DLM) [3,4], or Bayesian structural time series
(BSTS) models [5,6].

In the Bayesian framework, the pre-intervention model is used to derive the joint pos-
terior predictive distribution of post-intervention observations. Samples from this posterior
predictive distribution serve as counterfactuals to the post-intervention observations. By
measuring the difference between these forecast values and the observed post-intervention
data, a semi-parametric posterior estimate for the impact of the intervention is constructed.
Due to its simplicity and versatility, this methodology described in [6] has been employed
across a wide array of disciplines. For instance, Ref. [7] adapted the BSTS model to evaluate
the impact of rebates for turf removal on water consumption across many households. In
the public health context, Ref. [8] evaluated the impact of bariatric surgery (used for weight
loss) on health care utilization in Germany. Another interesting example is given by [9],
who used the impact framework in conjunction with a variety of climate time series to
assess whether an anomalous climate change event can be credibly linked to the collapse of
several Bronze age civilizations in the Mediterranean region.

For intervention impact analysis to be successful, it is critical that the underlying time
series model adequately captures the pre-intervention time series dynamics. Traditional
linear, Gaussian models can be inadequate for capturing the dynamics of time series
that exhibit complex non-linear and/or long-term dependencies, and/or non-Gaussian
behavior. As a consequence, the counterfactual forecasts may be inadequate to give a useful
assessment of the impact. For example, multiple time series generated by “Internet of
Things” (IoT) sensors often exhibit nonlinear temporal dependence that cannot be easily
modeled by BSTS models. Successful intervention analysis of such time series requires
sophisticated models of pre-intervention data such as those described in this paper.

For intervention impact analysis in multiple IoT time series, Ref. [10] proposed a
Gaussian process (GP) prior regression model [11] with a covariance kernel tailored for
these series as the underlying predictive model. This model is effective in that it can
incorporate typical time series behavior such as seasonality and local linear trends but
also non-linear time trends and dependencies between the target variable and exogenous
predictors. While this model was demonstrated to be effective at capturing a wide array
of time series dynamics, it does not directly incorporate information from past values
of the time series. In addition, the GP prior can fail for time series that exhibit a heavy-
tailed behavior.

With this in mind, we propose an extension to the latent Gaussian process time series
model presented in [12] in which we replace the latent GP with that of a Student-t process
(TP) [13,14] that we then use as the underlying model for a time series impact analysis
using both simulated and real-world time series data from the IoT domain. In addition to
going beyond the GP functional prior, our model had the added versatility in that it can
accommodate arbitrary likelihoods, allowing for heavy-tailed observations to be modeled
in a more robust way.

Note that because we require a model that allows for posterior sampling, mixture
autoregressive models such as the one proposed in [15] are not suitable for solving our
problem. In addition, the mixture autoregressive assumptions described in [15] may be
unsuitable to describe the data generating process of IoT time series data.

The format of this paper is as follows: Section 2 describes the IoT temperature sensors
and their associated data streams; Section 3 gives an overview of GP regression, including
descriptions of existing GP regression models tailored for time series. Section 4 details
the requisite background information regarding TP regression; we also introduce our
autoregressive TP model. Section 5 compares the performance of our proposed model with
existing methods on a time series intervention analysis problem. Section 6 summarizes our
findings and discusses potential avenues for future research.
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2. Background

One domain in which IoT sensor technology has been successfully deployed is the
insurance context. For example, insurers have used IoT temperature sensors part of freeze
loss prevention programs. The goal of these programs is to reduce insurance losses due
to water-pipe burst (freeze loss) by providing temperature sensors to end users (insured
property owners) to be installed in areas with a high risk of water pipe burst. In an ideal
scenario, losses are prevented (or at least mitigated) by sending real-time alerts to customers
to promptly take remedial action (i.e., raising temperatures to a safe level) in the event of
dangerously low temperatures within the monitored space.

In this paper, we apply our methods to sensor temperature readings that are relayed in
real time at a 15 min frequency. For each sensor stream, a decision rule algorithm combines
information from (a) recent sensor readings and (b) outdoor temperatures from nearby
weather stations to alert end users of potential imminent freeze loss. After receiving an
alert, an end user is expected to take remedial action within 12 h of receiving the alert. Due
to the program’s scale, it is impossible to directly verify whether a customer took corrective
action. Therefore, methods must be developed that can infer customer action only from the
observed post-alert sensor streams themselves. To that end, we employ the causal impact
methodology proposed by [6], which uses a counter-factual forecasting model to infer
whether the alert system is effective in instigating customer action for a given alert event.
More details, as well as an example of an alert event, can be found in Section 5.

3. Review of Gaussian Process Regression Models

We review the basic Gaussian process (GP) regression and its extensions for analyzing
time series. Section 3.1 summarizes standard GP and regression techniques. Section 3.2
reviews the current literature on using nonlinear auto-regressions with exogenous predic-
tors (NARX) in conjunction with GP regression (GP-NARX) models. In Section 3.3, we
give a detailed review of the GP-RLARX model, a robust time series regression model that
uses an auto-regressive latent state whose transition functions follow a GP prior, and the
observations follow a normal distribution with time-varying scale.

3.1. GP and Sparse GP Regression

Gaussian processes (GP) are a set of methods that generalize the multivariate normal
to infinite dimensions. Not only do GPs have a flexible non-parametric form, GP methods
are also attractive because they offer principled uncertainty quantification via a predic-
tive distribution. For supervised learning problems, GP prior models have the distinct
advantage of allowing the user to automatically learn the correct functional form linking
the input space X to the output space Y . This is achieved by specifying a prior over the
distribution of functions, which then allows the derivation of the posterior distribution
over these functions once data have been observed. Throughout this paper, we use the
notation f (·) ∼ GP(µ(·), k(·, ·)) to denote a generic GP prior with mean function µ(·) and
covariance function k(·, ·). Let yi ∈ R denote an observed response and xi and xj be two
distinct input vectors in Rp. The GP regression model is defined as

yi = f (xi) + εi, εi ∼ N (0, σ2
y ), (1)

f (·) ∼ GP(µ(·), k(·, ·)), (2)

where the mean function and the covariance kernel are, respectively,

µxi = E[ f (xi)], (3)

kxi ,xj = E[( f (xi)− µ(xi))( f (xj)− µ(xj))], (4)

where X = (x1, . . . , xn) are fixed predictors, and f = ( f (x1), . . . , f (xn))′ is an n-dimensional
vector. Given observed responses y = (y1, . . . , yn)

′ ∈ Rn, it follows that the Gaussian
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process in (2) has a multivariate normal distribution with mean vector µ = (µx1 , . . . , µxn)
′

and variance–covariance matrix Kxx = {kxi ,xj} ∈ Rn×n.
Standard GP regression provides convenient closed forms for posterior inference.

The posterior distribution p( f (xi)|X, y) is Gaussian with mean and variance, respectively,
given by

µi = µxi + k′i
[
Kxx + σ2In

]−1
(y− µ),

ki = kxi ,xi − k′i
[
Kxx + σ2In

]−1
ki, (5)

where ki = (kxi ,xj , j = 1, . . . , n)′.
Given a new set of inputs X∗ ∈ Rp×m, the joint distribution of the observed response y

and the GP prior f (·) and the posterior predictive evaluated at new input set X∗ are[
y
f∗

]
∼ Nn+m

([
µf
µ∗

]
,
[

Kxx + σ2In Kx,∗
K∗,x K∗,∗

])
, (6)

Thus, we have the posterior prediction density for f∗ as

p
(
f∗
∣∣X∗, X, y

)
= Nm

(
µ∗|x, Σ∗|x

)
, (7)

where

µ∗|x = µ∗ + K∗x
[
Kxx + σ2In

]−1
(y− µf), (8)

Σ∗|x = K∗∗ −K∗x
[
Kxx + σ2In

]−1
Kx∗. (9)

One notable drawback of the GP model is its difficulty in scaling to large datasets due
to inversion of the kernel covariance matrix K ∈ Rn×n (which has O(n3) time complexity).
Sparse GP methods [16–19] remedy this issue and reduce the computational cost of fitting
GP models to long time series.

For m << n, they approximate the GP posterior in (5) by learning inducing inputs
Z = {z1, . . . , zm} ∈ X , which lead to a finite set of inducing variables U = {u1, . . . , um}
with ui = f (zi), where f (·) was defined in (2). Let u = ( f (z1), . . . , f (zm))′. Their joint
distribution is (

f
u

)
∼ Nn+m

((
µx
µz

)
,
(

Kxx Kxz
Kzx Kzz

))
, (10)

and using properties of the multivariate normal distribution,

p(f|u) = Nn

(
µx + KxzK−1

zz (u− µz), Kxx −KxzK−1
zz Kzx

)
, (11)

p(u) = Nm(µz, Kzz). (12)

The conditional distribution in (11) now only requires inversion of the m×m matrix
Kzz instead of the n× n matrix Kxx. The target is the n-dimensional marginal distribution
of f given by

p(f) =
∫

p(f|u)p(u)du. (13)

To facilitate this computation, we replace p(u) given in (12) by its variational approximation

q(u) = Nm(mz, Σzz), (14)
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which in turn leads to approximating p(f) by q(f). Again, using properties of the multivari-
ate normal distribution, q(f) is given by

q(f) =
∫

p(f|u)q(u)du.

= Nn

(
µx + KxzK−1

zz (mz − µz), Kxx + KxzK−1
zz (Σzz −Kzz)K−1

zz Kzx

)
. (15)

Furthermore, given a new set of test inputs X∗, the approximate posterior predictive
density for f∗ has form

p(f∗|y) ≈
∫

p(f∗|f, u)p(f, u|y)q(u)dfdu

=
∫

p(f∗|u)q(u)du. (16)

The integral in (16) is tractable and takes a form analogous to that in (15).
Given observed data y ∈ Rn, the variational inference approach for approximating

the exact posterior of f in sparse GP regression reduces to minimizing the evidence lower
bound (ELBO) [20]

log p(y) ≥ Eq(u)

[
Ep(f|u) log p(y|f)

]
−KL[q(u) ‖ p(u)]

= Eq(f)[log p(y|f)]−KL[q(u) ‖ p(u)], (17)

where q(f) is defined as in (15). For more details on the ELBO optimization procedure, refer
to Section 4 of [19].

3.2. GP-NARX Models

Quite often, we seek to model time series data as a function of exogenous inputs and
an autoregressive function of past observations. A class of GP models incorporating both
non-linear autoregressive structure and exogenous predictors (typically abbreviated as
GP-NARX) offer a principled way to propagate uncertainty when forecasting.

An early example comes from [21], who proposed a GP-NARX model in which the
inputs at time t consist of the past L lags of the response time series yt, as well as available
exogenous inputs ct ∈ Rnc . The input vector at time t in the GP-NARX model is the tuple
(x′t, c′t)

′, where xt = (yt−1, . . . , yt−L)
′
. Since yt−1, . . . , yt−L are known during the training

phase of model fitting, estimation is performed using maximum likelihood or maximum a
posteriori methods.

Although training the GP-NARX model is similar to training the GP regression model
and is straightforward, predicting future values is more challenging. Suppose our goal is
to generate k-step ahead forecasts for future responses yT+1, . . . , yT+k given training data
y = (y1, . . . , yT)

′ ∈ RT . Because all or part of xt is unobserved in the holdout period (since
it involves yT+j−1, . . . , yT+j−L, j = 1, . . . , k) and is an uncertain input during forecasting,
direct application of (8) would fail to take into account this inherent uncertainty.

Ref. [21] deals with the uncertain inputs issue by assuming that for each j = 1, . . . , k,
xT+j ∼ NL

(
µxT+j , ΣxT+j

)
. Then, given the training data D = {ct, xt, yt}T

t=Lx+1, and a set of
exogenous inputs cT+j, j = 1, . . . , k, the posterior predictive distribution for yT+j is

p( fT+j) =
∫

p( fT+j|xT+j, wT+j,D)p(xT+j)dxT+j. (18)

Although there is no closed form for (18), the moments of the posterior predictive
distribution can be obtained via Monte Carlo sampling or one of several different approxi-
mation methods [22].

Recently, these ideas have been extended to sparse GP models. Ref. [23] developed an
approximate uncertainty propagation approach to be used alongside the sparse pseudo-
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input GP regression method, known as the Fully Independent Sparse Training Conditional
(FITC) model [16]. Ref. [24] derived uncertainty propagation methods for a wide variety of
competing sparse GP methods, and [25] extended sparse GP-NARX time series modeling
to an online setting.

3.3. GP-RLARX Models

Ref. [12] proposed an alternative to the GP-NARX model. Their GP-RLARX model
assumes a latent autoregressive structure for the lagged inputs, leading to the descrip-
tion below:

yt = xt + ε
(y)
t (19a)

xt = f (xt−1, . . . , xt−Lx , ct−1, . . . , ct−Lc) + ε
(x)
t (19b)

f (·) = GP(µ(·), k(·, ·)) (19c)

ε
(x)
t ∼ N (ε

(x)
t |0, σ2

x) (19d)

ε
(y)
t ∼ N

(
ε
(y)
t |0, τt

)
(19e)

τt ∼ IG(τt|α, β). (19f)

where ct−1, . . . , ct−Lc are lagged exogenous inputs with maximum lag Lc, and xt−1, . . . , xt−Lx

are the lagged latent states with maximal lag Lx.
This framework is reminiscent of a state-space model in which (19a) denotes the

observation equation at time t and (19b) is the corresponding state equation, where xt is an
autoregressive function of the preceding Lx lags of the latent state.

To facilitate inference in the GP-RLARX model, Ref. [12] used a sparse variational
approximation similar to that described in Section 3.1, where u ∈ Rm are inducing points
generated by evaluating the GP prior over pseudo-inputs Z = {z1, . . . , zm}, zi ∈ RLx+Lc , i =
1, . . . , m. It follows that p(u) = N (u|0, Kzz), where Kzz denotes the kernel covariance
matrix evaluated over the pseudo-inputs Z. Then, the GP-RLARX hierarchical model takes
the form

p(u) = N (u|0, Kzz) (20a)

p( ft|u, x) = N ( ft|[ax]t, [Σxx]tt) (20b)

p(xt) = N (xt|µt, λt), ∀ t ∈ {1, . . . , Lx} (initial state) (20c)

p(xt| ft) = N
(

xt| ft, σ2
x

)
, ∀ t ∈ {Lx + 1, . . . , T} (20d)

p(τt) = IG(τt|α, β), ∀ t ∈ {Lx + 1, . . . , T} (20e)

p(yt|xt, τt) = N (yt|xt, τt), ∀ t ∈ {Lx + 1, . . . , T}, (20f)

where ax = KxzK−1
zz u, Σxx = Kxx − KxzK−1

zz Kzx, and ft = f (xt−1, . . . , xt−Lx , wt−1, . . . ,
wt−Lw), with f (·) ∼ GP(0, k(·, ·)). For brevity, we denote x̃t = (xt−1, . . . , xt−Lx , wt−1, . . . ,
wt−Lw)

′
in the remainder of the paper. The joint distribution is succinctly expressed as

p(y, x, f, u, τ) =

(
T

∏
t=Lx+1

p(yt|xt, τt)p(xt| ft)p(τt)p( ft|u, x̃t)p(u)

)
Lx

∏
t=1

p(xt). (21)

Ref. [12] used a variational inference approach [20] to estimate the latent variables,
adopting the variational approximation

q(x, τ, f, u) =

[
T

∏
t=1

q(xt)

][
T

∏
t=Lx+1

q(τt)

][
T

∏
t=Lx+1

p( ft|u, x̃t)

]
q(u), (22)
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where q(xt) = N (xt|µ(x)
t , λ

(x)
t ), q(τt) = IG(τt|at, bt), p( ft|u, x̃t) = N (f|[ax]t, [Σxx]tt), and

q(u) = N (u|mz, Σzz). In this framework, µ
(x)
t , λ

(x)
t , mz, Σzz, at, bt are variational parame-

ters that are optimized according to a variational inference strategy, similar to that found
in [26]. We refer readers to Section 5.1 of [12] for more details, including the exact expression
of the ELBO.

Table 1 summarizes the basic characteristics of the GP-NARX and GP-RLARX models
as well as their main pros and cons.

Table 1. Comparison of GP-NARX and GP-RLARX methods.

Model Characteristics Pros Cons

GP-NARX

1. Target is a non-linear,
autoregressive function of
observed past values
and exogenous predictors.
2. Trained via Type II MLE
3. Forecasts attained via
simple Monte
Carlo sampling

1. Fast to train
2. Non-parametric
GP prior
3. Predictive uncertainty

1. Incapable of handling
heavy-tailed noise outliers
2. Assumes a
Gaussian likelihood

GP-RLARX

1. Target variable is
assumed to equal a latent
state plus noise
2. Autoregressive behavior
captured through
latent state dynamics
3. Exogenous predictors
can be placed at observed
and latent level
4. Trained using variational
Bayesian and sparse
GP methods
5. Forecasts by sampling
from approximate posterior

1. Robust to
heavy-tailed noise
and outliers
2. Non-parametric
sparse GP prior
3. Predictive uncertainty
4. Arbitrary likelihoods

1. Slower to train
than GP-NARX
2. Somewhat more
challenging to train

4. Proposed Methods: Autoregressive TP Models

Recently, there has been growing interest in extending Gaussian process models to
other types of elliptical process models, with particular emphasis on Student-t process
models (TP) [13,14]. In this section, we present extensions to both the GP-NARX and GP-
RLARX models by replacing the GP functional prior by a Student-t process prior. Section 4.1
gives an overview of the Student-t process as well as a recently developed method for
sparse Student-t processes. Next, Section 4.2 describes the TP-NARX model as an extension
of the GP-NARX model. Finally, Section 4.3 gives details of the proposed extension of the
GP-RLARX model to the TP-RLARX model. To the authors’ best knowledge, there has been
no research on the development or implementation of a NARX model or RLARX model
using TP priors. These are useful additions to the literature, and they are discussed in the
following sections.

4.1. Review and Notation for Student-t Processes

We say that f ∈ Rn follows a multivariate Student’s-t distribution with degrees of
freedom v ∈ R+, location µ ∈ Rn, and positive definite scale matrix K ∈ Rn×n if and only
if it has the following density:

p(f) =
Γ((v + n)/2)

(vπ)n/2Γ(v/2)|K|1/2

(
1 +

1
v
(f− µ)

′
K−1(f− µ)

)− v+n
2

, (23)
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which can be written succinctly as f ∼ Tn(v, µ, K). Now, suppose that we have f ∈ Rn and
f∗ ∈ Rm with joint density

[
f
f∗

]
∼ Tm+n

(
v,
[

µf
µ∗

]
,
[

Kff Kf∗
K∗f K∗∗

])
. (24)

By properties of the multivariate Student-t distribution, we have

f ∼ Tn(v, µf, Kff) and f∗|f ∼ Tm

(
v + n, µ̃∗,

v + β− 2
v + n− 2

K̃∗∗

)
(25)

where

µ̃∗ = µ∗ + K∗fK−1
ff (f− µf), β = (f− µf)

′
K−1

ff (f− µf), K̃∗∗ = K∗∗ −K∗fK−1
ff Kf∗. (26)

Finally, we say that f (·) follows a Student-t process on X , denoted T P(v, µ(·), k(·, ·)),
where v > 2 denotes the degrees of freedom, µ(·) ∈ R denotes the mean function, and
k(·, ·) ∈ R is the covariance function, if for any finite collection of function values, we have
f = ( f (x1), . . . , f (xn))

′ ∼ Tn(v, µ, K).
While less popular than GP models, Student-t processes have still been employed in a

number of contexts. For instance, Ref. [27] proposed an online time series anomaly detec-
tion algorithm that employs TP regression to simultaneously learn time series dynamics
in the presence of heavy-tailed noise and identify anomalous events. Another example
comes from [28], in which the authors proposed a Student-t process latent variable model
with the goal of identifying a low-dimensional set of latent factors capable of explaining
variation among non-Gaussian financial time series. Ref. [29] employed Student-t pro-
cesses in the development of degradation models used to analyze the lifetime reliability of
manufactured products.

Recently, Ref. [30] proposed a variational inference approach for sparse Student-t
processes, similar to the sparse GP methods described in Section 3.1. Suppose that we have
r ∼ IG(α, β). Now, if we let Z = [z1, . . . , zm] ∈ X with m << n denote a set of inducing
inputs, then we can define a corresponding inducing variables u|r = [ f (z1), . . . , f (zm)] ∼
Nm(0, rKzz). It follows that the joint density of f, u, r is

p(f, fz, r) = p(f|u, r)p(u|r)p(r)

= Nn

(
KxzK−1

zz u, r(Kxx −KxzK−1
zz Kzx)

)
Nm(0, rKzz)IG(α, β). (27)

The goal is to develop an approximate distribution q(f, u, r) capable of accurately
approximating p(f, u, r). Ref. [30] proposed the following variational distribution:

q(f, u, r) = p(f|u, r)q(u|r)q(r)

= Nn

(
KxzK−1

zz u, r(Kxx −KxzK−1
zz Kzx)

)
Nm(mz, rΣzz)IG(a, b). (28)

It follows that the evidence lower bound (ELBO) is

log p(y) ≥ Eq(f,u,r)[log p(y|f, u, r)]−KL[q(f, u, r) ‖ p(f, u, r)] (29)

where KL(·) denotes the KL divergence between the respective joint densities. The KL term
can be re-expressed as

KL(q(f, u, r) ‖ p(f, u, r)) =
∫ ∫

q(u, r) log
[

q(u, r)
p(u, r)

]
dudr (30)
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since the p(f, u, r) terms are canceled out. Furthermore, we can evaluate the likelihood
component as

Eq(f,u,r)[log p(y|f, u, r)] =
∫ ∫ ∫

q(f, u, r) log p(y|f, u, r)dfdudr

=
∫

q(f) log p(y|f)df (31)

where
q(f) =

∫ ∫
p(f|u, r)q(u|r)q(r)dudr

which can be expressed as

q(f) = Tn

(
2a, KxzK−1

zz mz,
b
a
(Kxx −KxzK−1

zz Kzx + KxzK−1
zz ΣK−1

zz Kzx)

)
. (32)

Assuming that we have a set of test inputs X∗, we can attain the approximate predictive
distribution for f∗ as

p(f∗|y) =
∫ ∫

p(f∗|u, r)q(u|r)q(r)dudr

=
∫ ∫

Nn

(
K∗zK−1

zz u, r(K∗∗ −K∗zK−1
zz Kz∗)

)
Nm(mz, rΣzz)IG(a, b)dudr

= Tn

(
2a, K∗zK−1

zz mz,
b
a
(K∗∗ −K∗zK−1

zz Kz∗ + K∗zK−1
zz ΣzzK−1

zz Kz∗)

)
which, as we can see, is structurally quite similar to its sparse GP counterpart described
in (16).

4.2. TP-NARX Model

Our first proposed model is the TP-NARX model, which is a straightforward extension
of the GP-NARX model (see Section 3.2) obtained by replacing the GP functional prior with
that of a t-process prior defined in Section 4.1. Further, during the forecasting phase, rather
than assuming xT+j from (18) follows an approximately multivariate normal distribution,

we assume instead that xT+j
approx.∼ TL

(
v, µxT+j , ΣxT+j

)
, where v > 2 denotes the degrees of

freedom for the multivariate Student-t distribution. A Monte Carlo sampling approach is
used to approximate the integral in (18).

4.3. TP-RLARX Model

For our second proposed model, we extend the GP-RLARX model by replacing the
Gaussian process prior with a Student-t process prior. Similar to the GP-RLARX model’s
sparse approximation approach, we employ a sparse variational Student-t process (SVTP)
framework presented in [30] to act as the functional prior over our state transition. There-
fore, the TP-RLARX generative model is

p(r) = IG(r|α, β) (33a)

p(u|r) = Nm(u|0, rKzz) (33b)

p( ft|u, x, r) = N ( ft|[ax]t, [rΣxx]tt) (33c)

p(xt) = N (xt|µt, λt), ∀ t ∈ {1, . . . , Lx} (33d)

p(xt| ft) = N (xt| ft, σ2
x), ∀ t ∈ {Lx + 1, . . . , T} (33e)

p(τt) = IG(τt|κ, θ), ∀ t ∈ {Lx + 1, . . . , T} (33f)

p(yt|xt, τ) = N (yt|xt, τt), (33g)
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where ax and Σxx are the same as in Section 3.3, whereas f (·) is now marginally distributed
as T P

(
2α, 0, β

α k(·, ·)
)

. We employ a variational inference approach to approximate the
generative model described in (33). The variational distribution has form

q(f, u, x, τ, r) = q(x)q(τ)
T

∏
t=Lx+1

p( ft|u, r, x̃t)q(u|r)q(r), (34)

where each term is identical to that found in Section 3.3 with the exception of q(τt) =
IG(at, bt), q(u|r) = Nm(mz, rΣzz), ∏T

t=Lx+1 p( ft|u, r, x̃t) = ∏T
t=Lx+1N ( ft|[ax]t, r[Σxx]tt),

and the additional variational distribution q(r) = IG(r|γ, σ). The evidence lower bound
(ELBO) for this model takes form

log p(y) ≥ Eq(τ,x,f,u,r)

[
log

p(y, τ, x, f, u, r)
q(τ, x, f, u, r)

]
= Eq(τ,x,f,u,r)[log p(y|τ, x, f, u, r)]

+ Eq(τ,x,f,u,r)

[
log

p(τ, x, f, u, r)
q(τ, x, f, u, r)

]
= Eq(τ,x,f,u,r)[log p(y|τ, x, f, u, r)]

−KL[q(τ, x, f, u, r) ‖ p(τ, x, f, u, r)]
= Eq(τ,x,f,u,r)[log p(y|τ, x, f, u, r)]

−KL[q(τ) ‖ p(τ)]
−KL[q(x) ‖ p(x|f)]
−KL[q(u, r) ‖ p(u, r)]. (35)

With the exception of the additional scale parameter for the Student-t process, the
derivation of the ELBO terms follows similarly to [12]. For the likelihood term, we have

Eq(·)[log p(y|τ, x, f, u, r)] =
T

∑
t=Lx+1

Eq(xt ,τ)[log p(yt|xt, τ)]

=
T

∑
t=Lx+1

Eq(xt ,τ)

[
1
2

(
− log 2π − log τ − (yt − xt)2

τ

)]

=
T

∑
t=Lx+1

Eq(xt)

[
1
2

(
− log 2π + Eq(τ)[− log τ]− Eq(τ)

[
(yt − xt)2

2τ

])]

∝
T

∑
t=Lx+1

[
at + log(btΓ(at))− (at + 1)ψ(at)−

at

bt
Eq(xt)

[
(yt − xt)

2
]]

∝
T

∑
t=Lx+1

[
at + log(btΓ(at))− (at + 1)ψ(at)−

at

bt

(
y2

t − 2µ
(x)
t yt + λ

(x)
t + (µ

(x)
t )2

)]
(36)

where ψ(·) denotes the digamma function. Next, for the KL divergence between q(τ) and
p(τ), we have

KL[q(τ) ‖ p(τ)] =
T

∑
t=1

[
(at − κ)ψ(at)− log Γ(at) + log Γ(κ) + κ log

bt

θ
− log θ) + at

(
θ − bt

bt

)]
. (37)

For the KL divergence of the latent states, we have
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KL[q(x) ‖ p(x|f))] =
Lx

∑
t=1

KL[q(xt) ‖ p(xt))] +
T

∑
t=Lx+1

KL[q(xt) ‖ p(xt| ft)]

=
1
2

Lx

∑
t=1

[
λ
(x)
t + (µt − µ

(x)
t )2

λt
− log

λ
(x)
t
λt
− 1

]
+

T

∑
t=Lx+1

Eq(xt ,τt , ft ,u,r)

[
log

q(xt)

p(xt| f t)

]

=
1
2

Lx

∑
t=1

[
λ
(x)
t + (µt − µ

(x)
t )2

λt
− log

λ
(x)
t
λt
− 1

]

+
T

∑
t=Lx+1

1
2

[
log 2πλ

(x)
t + 1

]
−

T

∑
t=Lx+1

∫
q(x)q(u, r)p( ft|x̃t, u, r) log p(xt| ft)dxdfdudr. (38)

Closed forms are not available for the third term in KL[q(x) ‖ p(x|f)] for most kernel
configurations; therefore, we apply employ a black box variational inference procedure as
described in [31].

Finally, from [30], we have

KL[q(u, r) ‖ p(u, r)] =
∫ ∫

q(u, r) log
[

q(u, r)
p(u, r)

]
dudr

=
( γ

2σ

)
m′zK−1

zz mz +
1
2

Tr
(

K−1
zz Σzz

)
+

1
2

log
|Kzz|
|Σzz|

− m
2
+ α log

σ

β

− log
Γ(γ)
Γ(α)

+ (γ− α)ψ(γ) + (β− σ)
γ

σ
. (39)

where Tr(·) denotes the matrix trace. Model fitting is done using the Python library
Pyro [32], which is dedicated to probabilistic programming with a particular emphasis on
BBVI and SVI methods.

Table 2 summarizes our contributions discussed in this section as well as our findings
that are more thoroughly presented in Sections 5.2 and 5.3.

Table 2. Summary of contributions and findings.

Proposed Contributions Summary Findings

TP-NARX

Extends the GP-NARX model
to the Student-t likelihood
in order to accommodate
heavy-tailed noise and outliers

1. Gain robustness of a
heavy-tailed likelihood
without increasing computational
speed relative to GP-NARX

TP-RLARX

Extends the GP-RLARX by
substituting the
latent GP prior with a
Student-t process prior.
Proposed method is now
robust to heavy-tailed noise
at the observational and
latent levels.
Derived the ELBO for
this proposed model

1. Gain robustness of a heavy-tailed
latent state with minor increase
to computational speed relative to
GP-RLARX
2. TP-RLARX has performance at
least as good as GP-RLARX on
intervention analysis task.

5. Application: IoT Temperature Time Series

We apply the TP-NARX and TP-RLARX models to perform impact analysis on tem-
perature time series. First, Section 5.1 describes the IoT sensor data and the objective
of the intervention impact analysis. Section 5.2 shows the performance for each model



Future Internet 2024, 16, 8 12 of 17

on a number of different forecasting metrics and shows some example forecasts. Finally,
Section 5.3 presents detailed results from the impact analysis and a thorough interpretation
of the findings. We compare the TP-NARX and RLARX approaches with their Gaussian
process counterparts.

5.1. Data Description

We analyze data spanning the time period from 1 October 2020 to 25 February 2021
on a sample of N = 50 sensors that are distributed across the contiguous US, with a
concentration in the Upper Midwest, Southeast, and the East coast. A sensor measures the
internal room temperature at 15 min intervals. Figure 1 shows an example of a sensor’s
temperature stream and when an alert was sent (the alert time is denoted by the vertical
black line). We see that, just prior to the alert, internal temperatures plunge, while the
external temperature is at a low level.

In order for this program to be effective, it is imperative that there is accurate information
on whether a customer actually takes meaningful action in a timely manner after receiving
an alert in order to avoid freeze loss. Although ideally, this information would be directly
obtained from the customer, this is rarely possible in practice. As such, the effectiveness of the
alert must be ascertained purely based on the observed pre-alert and post-alert time series.
We refer to this analysis as intervention impact analysis. Essentially, a customer action has
likely occurred if there is a large increase in post-alert temperatures that are incongruous with
forecasts generated by a suitable time series model trained on pre-alert temperatures.

Figure 1. Example of an alert event. The black dotted line denotes the time of an alert.

Since many of the IoT temperature time series exhibit non-linear behavior, methods
such as Bayesian structural time series are inadequate for intervention impact analysis.
Alternatively, the NARX and RLARX models are capable of learning non-linear behavior
directly from the data, thus, we will use them in substitution of BSTS models for our impact
analysis. Performance will be compared to both GP-NARX and GP-RLARX models.

5.2. Results

Once again, we apply the TP-NARX and TP-RLARX models to each alert event in
our dataset and then compare the results to the GP-NARX and GP-RLARX models. For
each model, we use one of four covariance kernels: radial basis function (RBF), Matérn
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3/2, Matérn 5/2, or Ornstein–Uhlenbeck (OU). Outdoor (external) temperature is the only
exogenous predictor used in the experiment.

Figures 2 and 3 depict the forecasts for the GP-RLARX and TP-RLARX models with RBF
kernel on the same alert event. As expected, the point estimates (red lines) are similar for
both models; however, the predictive interval (red shaded areas) for TP-RLARX is slightly
wider. For the results depicted in Figures 2 and 3, the average difference between the 0.025
quantile and 0.975 quantile for GPRLARX is ≈ 11.76, whereas the average difference between
the 0.025 quantile and 0.975 quantile for TPRLARX is ≈ 15.703. The wider predictive interval
of TP-RLARX means that our decision on whether a customer has taken appreciable action
will be more conservative. Firms wishing to be more conservative in assessing customer
behavior or those with noisier time series data might prefer the TP-RLARX model.

Figure 2. Forecasts for GP-RLARX.

Figure 3. Forecasts for TP-RLARX.

Furthermore, Table 3 shows the root mean squared error (RMSE), symmetric mean
absolute percentage error (sMAPE), and continuous ranked probability score (CRPS) [33]
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for each combination of model and kernel. Each metric is calculated by averaging the
metrics for each alert event within each model combination. In addition, Table 3 also gives
CPU times for each model. Overall, we find that the TP-RLARX model using the Ornstein–
Uhlenbeck kernel provides the best average RMSE, followed by the TP-NARX using the
Matérn 5/2 kernel. Furthermore, we find that the GP-RLARX models give considerably
worse performance than both TP-NARX and TP-RLARX models, regardless of kernel.

Table 3. Forecast metrics and CPU times.

Model RMSE sMAPE CRPS CPU Time

GP-NARX RBF 13.456 0.046 10.705 33.69
GP-NARX Matérn 3/2 13.605 0.046 10.882 34.88
GP-NARX Matérn 5/2 13.669 0.047 10.875 34.63

GP-NARX OU 13.385 0.046 10.717 32.51

GP-RLARX RBF 15.748 0.051 12.253 741.50
GP-RLARX Matérn 3/2 15.610 0.051 12.429 889.78
GP-RLARX Matérn 5/2 15.453 0.051 12.309 954.87

GP-RLARX OU 14.831 0.049 11.798 907.22

TP-NARX RBF 13.110 0.044 10.340 31.95
TP-NARX Matérn 3/2 13.234 0.046 10.361 30.72
TP-NARX Matérn 5/2 13.073 0.046 10.361 31.27

TP-NARX OU 13.728 0.047 10.707 28.82

TP-RLARX RBF 13.666 0.046 10.886 967.20
TP-RLARX Matérn 3/2 13.149 0.046 10.481 1131.45
TP-RLARX Matérn 5/2 13.312 0.046 10.574 1129.89

TP-RLARX OU 13.003 0.045 10.394 1104.85

5.3. Intervention Impact Analysis and Interpretation

For each alert event in this experiment, we are given a label indicating whether a panel
of domain experts believed the customer took corrective action based on visual inspection
of time series plots similar to Figure 1. If a majority of experts thought that action had been
taken, an alert was labeled as “Action”, indicating that appreciable customer action likely
occurred; otherwise, it was labeled as “No Action”. In the absence of observed labels, this is
the closest approximation to the ground truth that we have and constitutes the benchmark
we will compare against.

Due to this inherently biased labeling scheme, the labels we have are more aptly
described as “pseudo-labels” in that they do not represent an objective truth. For alerts
that experts labeled as “No Action”, we find that there is a high degree of correspondence
between the model and expert labels, as indicated in Table 4. This result is unsurprising, as
it is quite obvious to both experts and the models when no action has been taken because the
observed internal temperature will remain flat or even decrease after the alert. Conversely,
for instances labeled “Action” by experts, every model is likely to disagree, as shown in
Table 4. This is attributable to the fact that whenever post-alert temperatures experience a
sharp positive increase, human labelers are biased towards labeling it an action, regardless
of the historical time series behavior or its correlation with the exogenous predictor. For
example, Figure 4 shows an alert event labeled as “Action” by domain experts; however,
there is clearly a strong, positive correlation between the internal and external temperatures
that appears to instigate the increase in post-alert internal temperature. Furthermore, the
post-alert increase in the response variable is quite modest and is congruent with pre-
intervention temperature levels. Unsurprisingly, every possible combination of model and
kernel tested returns a decision of “No Action” for this alert.

Indeed, the results of the impact analysis are congruent with our goals in that the
models are far more conservative in assessing customer intervention. Expert opinion is that
customers typically do not take action, so it is desirable to have models that require a large
shift in post-alert behavior in order to declare an alert event as having been addressed. To
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that end, the RLARX models yield the best results in that they are both highly unwilling to
assume an intervention has been successful without significant evidence.

Table 4. Confusion matrices for each model (RBF kernel).

(a) GP-NARX (b) GP-RLARX

Human Labels Human Labels

Predicted Labels No Action Action Predicted Labels No Action Action

No Action 33 7 No Action 38 10
Action 7 3 Action 2 0

(c) TP-NARX (d) TP-RLARX

Human Labels Human Labels

Predicted Labels No Action Action Predicted Labels No Action Action

No Action 24 8 No Action 39 9
Action 16 2 Action 1 1

Figure 4. Alert event mislabeled by human labelers as “Action”.

6. Conclusions

In this paper, we have proposed extensions to both the GP-NARX and GP-RLARX
models by replacing the GP functional prior with a Student-t process prior. The goal is
to use these models as underlying forecasting models for intervention impact analysis of
IoT temperature data streams. We have demonstrated that the TP-NARX and TP-RLARX
models provide improved forecasting accuracy relative to the GP-NARX and GP-RLARX
models. Furthermore, we have shown that the TP-RLARX model has the desirable trait of
being more conservative, relative to both the GP models and human labelers, in declaring
that an intervention was effective in instigating appreciable customer action in Section 5.
As such, the TP-RLARX model is preferable in impact analyses where the ground truth is
not necessarily known and there is a high cost associated with false positives.

The analysis performed here opens several avenues for future research. First, it would
be interesting to apply the same Student-t process extension to Gaussian process state space
models, such as those presented in [34–36], and compare their performance with models
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presented in this research. Furthermore, a comparison of our model with parametric non-
linear time series models, such as the deep state space framework proposed in [37], would
also be a worthwhile endeavor. The authors intend to explore these ideas in future research.
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