
Citation: Kim, H.; Park, S.; Hong, H.;

Park, J.; Kim, S. A Transferable Deep

Learning Framework for Improving

the Accuracy of Internet of Things

Intrusion Detection. Future Internet

2024, 16, 80. https://doi.org/

10.3390/fi16030080

Academic Editor: Massimo Cafaro

Received: 8 January 2024

Revised: 22 February 2024

Accepted: 25 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Transferable Deep Learning Framework for Improving the
Accuracy of Internet of Things Intrusion Detection
Haedam Kim , Suhyun Park , Hyemin Hong, Jieun Park and Seongmin Kim *

Department of Convergence Security Engineering, Sungshin Women’s University, Seoul 02844, Republic of Korea;
haedam615@naver.com (H.K.); suhyunpark0410@naver.com (S.P.); haemin1107@gmail.com (H.H.);
pjieun73@gmail.com (J.P.)
* Correspondence: sm.kim@sungshin.ac.kr

Abstract: As the size of the IoT solutions and services market proliferates, industrial fields utilizing
IoT devices are also diversifying. However, the proliferation of IoT devices, often intertwined with
users’ personal information and privacy, has led to a continuous surge in attacks targeting these
devices. However, conventional network-level intrusion detection systems with pre-defined rulesets
are gradually losing their efficacy due to the heterogeneous environments of IoT ecosystems. To
address such security concerns, researchers have utilized ML-based network-level intrusion detection
techniques. Specifically, transfer learning has been dedicated to identifying unforeseen malicious
traffic in IoT environments based on knowledge distillation from the rich source domain data sets.
Nevertheless, since most IoT devices operate in heterogeneous but small-scale environments, such
as home networks, selecting adequate source domains for learning proves challenging. This paper
introduces a framework designed to tackle this issue. In instances where assessing an adequate data
set through pre-learning using transfer learning is non-trivial, our proposed framework advocates
the selection of a data set as the source domain for transfer learning. This selection process aims to
determine the appropriateness of implementing transfer learning, offering the best practice in such
scenarios. Our evaluation demonstrates that the proposed framework successfully chooses a fitting
source domain data set, delivering the highest accuracy.

Keywords: IoT; intrusion detection; transfer learning

1. Introduction

The rapid innovation in Internet of Things (IoT) technology has accelerated data-driven
strategies, harnessing vast volumes of data originating from a tremendous number of IoT
devices in various domains, including digital healthcare [1], smart factories [2], industrial
control systems [3], and transportation systems [4]. The IoT service market is poised to
reach $575 billion in 2027 with an impressive annual growth rate of 18.8% [5]. Nevertheless,
the ubiquitous deployment of IoT devices poses numerous threats to IoT networks, such
as Distributed Denial-of-Service (DDoS), Botnets, and Backdoors, echoing the security
concerns commonly encountered in traditional networked systems [6]. Unfortunately,
the conventional Network Intrusion Detection Systems (NIDSs) based on Deep Packet
Inspection (DPI) with pre-defined rulesets to address vulnerabilities within IoT networks
are gradually losing their efficacy. Such ineffectiveness is attributable to the growing
prevalence of zero-day attacks and the widespread adoption of encryption protocols [7].

To address this problem, researchers have leveraged machine learning algorithms on
intrusion detection systems to analyze incoming network traffic to identify suspicious or
anomalous activities in IoT environments [8–12]. Based on the labeled data categorizing
packets as either benign or malicious, these models acquire the ability to discern patterns
associated with different types of attacks. Throughout the training phase, relevant fea-
tures representing various aspects of network behavior (e.g., inter-arrival time and flow

Future Internet 2024, 16, 80. https://doi.org/10.3390/fi16030080 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16030080
https://doi.org/10.3390/fi16030080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0005-1376-6245
https://orcid.org/0009-0001-7870-3588
https://orcid.org/0009-0006-6603-2920
https://orcid.org/0000-0002-8183-0641
https://doi.org/10.3390/fi16030080
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16030080?type=check_update&version=1

Future Internet 2024, 16, 80 2 of 17

rates) are used [13–15]. One of the remarkable advantages of ML-based intrusion detec-
tion mechanisms is their capacity to detect unforeseen attacks and adapt to varying IoT
network environments.

Nonetheless, there are several obstacles to building an effective intrusion detection
model. Unlike rule-based Deep Packet Inspection (DPI), the ML-based approach is suscep-
tible to generating false alarms, potentially misidentifying legitimate activities as malicious.
The quality and completeness of the training data profoundly impact the model’s perfor-
mance, particularly its ability to detect unseen attacks. In practice, obtaining sufficient
labeled data for various attack types is challenging. Furthermore, the class imbalance (e.g.,
benign data substantially outweighing malicious ones) within the training data can intro-
duce bias into the model, and, consequently, overfitting becomes a risk in such scenarios.
These limitations become even more pronounced in the diverse and dynamic landscapes of
IoT networks and environments, accentuating the challenges faced in developing robust
intrusion detection systems.

Notably, the emergence of Transfer Learning [16] helps IDSs improve the detection
performance in the context of IoT environments. Transfer learning entails the process of
addressing a new problem, known as the target domain, by leveraging knowledge gleaned
from a previously well-understood domain, termed the source domain. This approach
capitalizes on the wealth of knowledge from the source domain to bolster performance
and expedite the learning process in the target domain. Researchers have elaborated on
enhancing the detection accuracy of IDSs in IoT environments by utilizing various machine
learning and deep learning models with knowledge transfer [17–19]. These endeavors
have predominantly focused on enhancing the models themselves by exploring knowledge
transfer strategies. However, there remains a gap when it comes to determining which
data sets are suitable as source domains. From the perspective of the target domain, it
remains unclear which data set is appropriate as a source domain to optimize the margin
of improvement and contribute most effectively to the transfer learning process.

In this paper, we propose a novel framework to identify the most analogous source
domain to a given target domain, leveraging deep learning as our foundational approach.
Through a meticulous comparative analysis of the outcomes of similarity assessments and
intrusion detection based on deep transfer learning, we significantly enhance the overall
rigor of our experimental methodology. To explain in detail, similarity assessment consists
of a framework that uses deep learning to determine which source domains are most similar
to the target domain when there are multiple source domains. Furthermore, in intrusion
detection based on deep transfer learning, we conduct an accuracy experiment, which
exists to make sure that the results obtained in a similarity assessment are appropriate.
Then, by comparing the results of these two steps, the source domain that is most similar
to the target domain is finally selected. This study can provide a guide for identifying
which data sets are best suited to the source domain in the transfer learning process and,
in turn, contribute to improving the detection accuracy of IDSs in IoT environments. By
utilizing four public intrusion detection data sets, we demonstrate the effectiveness of our
framework in successfully choosing a fitting source domain data set, ultimately achieving
the highest performance in transfer learning.

The organizational structure of this paper is outlined as follows: Section 2 is dedicated
to substantiating the research’s necessity through an exhaustive examination of the relevant
literature. Section 3 systematically organizes crucial contextual information. Subsequently,
in Section 4, we delve into an intricate exposition of the framework conceived by our
research team, accompanied by a detailed presentation of the experimental methodology
executed within this framework. Section 5 adeptly illustrates the results obtained through
the proposed experimental approach. Lastly, Section 6 summarizes our research findings
and delineating prospective avenues for future research endeavors.

Future Internet 2024, 16, 80 3 of 17

2. Related Work
2.1. ML-Based Intrusion Detection

For several decades, there has been a surge in research pertaining to Intrusion De-
tection Systems (IDSs), aiming to enhance intrusion detection performance across diverse
security frameworks. Rule-based Deep Packet Inspection (DPI) has persisted as the domi-
nant approach in network-based intrusion detection, particularly for proactively alerting
and the identifying anomalies. Nonetheless, the situation exacerbates with the emergence
of attack variants that exploit zero-day vulnerabilities, rendering the existing rule-sets
for pattern matching increasingly ineffective and obsolete [7]. Moreover, the pervasive
adoption of cryptographic protocols (such as HTTPS, SSH, and SSL) to establish end-
to-end encryption has gained substantial traction, posing a formidable challenge to the
comprehensive scrutiny of packet payloads [20,21].

Within this realm, there is a notable emphasis on leveraging machine learning tech-
niques to improve the efficacy of intrusion detection processes. Numerous methodologies
and models have emerged with the intent of bolstering the efficiency of IDSs, catering to the
detection of an array of attack types. Notably, a significant focus lies on scrutinizing intru-
sion detection approaches that harness deep learning strategies. M. El-Shrkaway et al. [8]
proposed the Multi-layer Feature Selection and Reduction IDS (MFSR-IDS) algorithm to
provide a high level of protection against DoS and Probe attacks using an anomaly-based
approach. Liloja et al. [11] developed an effective intrusion detector using both a deep
learning model and a machine learning model. To obtain high-accuracy scores, a deep
learning model was used in the process of extracting features, and a machine learning
model was used to measure the intrusion detection performance of intrusion detection.
Andrea Ranieri et al. [12] proposed a ‘deep adversarial learning response’ to machine
learning attacks targeting traffic from IoT devices using AdaBoost, DT, KNN, RF, and
neural networks metrics. At this time, a new test bed was developed and tested, which
collected the network traffic data set of IoT devices in general use situations such as me-
dia playback and then changed the statistics of outbound traffic using deep adversarial
learning technology.

In a study by Nana Kwame Gyampf et al. [9], a binary data set was converted to a
binary code format, which was further converted into a file. Based on the hex code gener-
ated from the file, the acquired binary image was fed into a Convolutional Neural Network
(CNN). The authors argued that while conventional models generally demonstrated im-
proved performance, the CNN-based models exhibited even higher performance levels in
terms of accuracy. Riccardo Recori et al. [10] constructed a large integrated data set by merg-
ing multiple data sets. They then proceeded with experiments using multi-classification
based on types of attacks.

We note that previous studies focused on improving intrusion detection performance
through ML-based and DNN-based feature analysis and selection, whereas our research
differentiates itself by focusing on evaluating domain similarity to leverage deep trans-
fer learning.

2.2. Transfer Learning

Transfer learning [16] is a machine learning paradigm encompassing the utilization of
acquired knowledge from a source model to enhance the performance on another distinct
yet interconnected target model. It empowers models to extract broader insights from
previously assimilated features to address restricted data availability and computational
constraints. The utility of transfer learning spans diverse domains, including but not
limited to computer vision [22,23], natural language processing [24,25], and anomaly
detection [26,27], where pre-trained models can be fine-tuned for specific tasks. Transfer
learning has demonstrated significant success in cases where labeled data for a target task
are limited [28], making it an essential technique in modern machine learning. Figure 1
illustrates the comparison between transfer learning and traditional machine learning.

Future Internet 2024, 16, 80 4 of 17

Figure 1. Traditional machine learning vs. transfer learning.

M. El-Shrkaway et al. [17] proposed a novel Deep Transition Learning (DTL) method
to learn from data collected from multiple unlabeled IoT devices. Labeled and unlabeled
samples were trained on a data set containing both source and target domains, respectively,
and after training, MMD-AE was used to predict IoT attacks in incoming traffic in the target
domain. MMD-AE is divided into AE1 and AE2, and it uses the Maximum Mean Mis-
match (MMD) metric to minimize the distance between AE1’s multiple hidden layers and
AE2’s multiple hidden layers. MMD has helped improve the effectiveness of knowledge
transmitted from source to target domains in IoT attack detection systems.

To simulate a zero-day attack scenario, a study by Islam Debicha et al. [18] evaluated
the performance of well-detecting attacks that were not present in the training phase when
tested. Based on the concept of transfer learning, a new neural network was designed
through the fine-tuning of parameters in the original deep neural network. The aim was to
enhance performance by leveraging transfer learning to create a new deep neural network
through parameter fine-tuning in existing networks.

A study by Ehsan Tanghatari et al. [19] proposed an approach to distribute DNN
training across IoT edge devices based on transfer learning. Delegating DNN training
onto edge devices from the central cloud reduces communication costs and preserves data
privacy on edge devices. The authors demonstrated that the proposed scheme only incurs a
3.5% loss of accuracy compared to the conventional DNN training conducted on the cloud.

The primary objective of our framework is to identify a suitable source domain data
set from among potential candidates, which is important in the context of IoT ecosystems
due to its diverse and heterogeneous nature. For a modeler aiming to construct an intrusion
detection classifier, computational resources may be limited, making it essential to prioritize
the selection of an appropriate source domain for implementing transfer learning. It is
noteworthy that existing approaches fall short in providing a definitive answer to this
challenge, whereas our framework excels in this regard. Our framework embodies a
complete process, starting from a proper source data set selection appropriate for the target
domain to conventional instance-based transfer learning. We note that the state-of-the-art
transfer learning techniques [29] and improved models [6,30] are applicable in the transfer
learning phase of our proposed framework (see Section 4.3). In summary, our ultimate goal
is to surpass the mere utilization of transfer learning and strive for efficient adaptation to
new IoT environments.

3. Intrusion Detection Data Sets

In this study, we chose four representative intrusion detection data sets that are
publicly available, as summarized in Table 1. These data sets not only provide flow charac-
teristics extracted from unprocessed TCP/UDP packet capture traces but also encompass
labels denoting whether a given flow corresponds to a specific attack or benign activity.
They commonly feature a substantial number of instances classified into both benign and
diverse attack categories, rendering them appropriate for the implementation of machine

Future Internet 2024, 16, 80 5 of 17

learning-based intrusion detection methodologies. Note that two of these data sets (Bot-IoT
and IoT Intrusion data sets) were curated specifically for IoT environments, while the
remaining data sets (CIC-IDS2017 and UNSW-NB15 data set) cater to generic intrusion
detection scenarios. Table 1 summarizes the specifications of data sets.

Table 1. Data set description.

Bot-IoT IoT Intrusion CIC-IDS2017 UNSW-NB15

Benign o o o o
DDoS o - - -
DoS o o o o
Mirai - o - -
Botnet - - o -
Worms - - - o
Reconnaissance o - - o
PortScan - o o -
MITM - o - -
Web Attack - - o -

Type of Attack Exploits - - - o
Fuzzers - - - o
SSH-Patator - - o -
FTP-Patator - - o -
Analysis - - - o
Backdoor - - - o
Shellcode - - - o
Generic - - - o
Theft o - - -
Infiltration - - o -
Heartbleed - - o -

Number of Attack 3,668,045 5,805,710 846,248 321,283
Instances Benign 477 40,073 2,273,097 2,218,760

Number of Attack Types 4 4 9 9
Number of Features 46 83 84 49

3.1. Bot-IoT Data Set

The Bot-IoT data set [14] is a data set created by designing a real-world network
environment in UNSW Canberra’s Cyber Range Lab and was collected in an environment
through a combination of general and botnet traffic. In the positive scenario, a typical
smart home is designed and configured in a testbed environment, and the normal traffic
of a realistic smart home network is generated using a total of five IoT devices: a smart
refrigerator, smart garage door, weather monitoring, smart lighting, and smart thermostat.
In malicious scenarios, malicious traffic is generated through probing attacks that collect
information through remote system scanning such as fingerprint collection, DoS, and DDoS
using the Hping3 tool, and keylogging attacks for data theft, DDoS, DoS, OS, and service
scanning, including keylogging and data exfiltration attacks.

3.2. IoT Intrusion Data Set

This open-source data set [31] was initially created by IEEE DataPort and is a new
data set created using new technologies and detection algorithms requiring well-designed
data sets for IoT networks. The entire IoT testbed architecture is a typical smart home
environment. It includes two smart home devices that generate data, SKT NGU and EZVIZ
Wi-Fi cameras, and smartphones and computers are connected via wireless networks to
attack other IoT devices. The SKT NGU (NU100) and EZVIZ Wi-Fi cameras (C2C Mini O
Plus 1080P) are IoT victim devices and include four types of attacks: Mirai, DoS, MITM,
and Scanning. Then, we use the CICflowmeter log to extract features from the pcap file
and generate a CSV, where the features consist of 80 network features and three labels.

Future Internet 2024, 16, 80 6 of 17

3.3. CIC-IDS2017 Data Set

The CIC-IDS2017 data set [13] comprises unprocessed packet capture traces of network
transactions encompassing both legitimate and malicious activities, which is well-suited
for the assessment of network intrusion detection methodologies [32,33]. The data set
comprises PCAP and CSV formats, facilitating the analysis of network flows, notably
featuring 80 attributes extracted through CICFlowmeter [34], a comprehensive toolchain for
processing raw packet capture traces. By profiling 25 distinct categories of user behaviors
generated in a virtual environment, it encompasses network traffic derived from HTTP,
HTTPS, FTP, SSH, and email protocols, amassed over a span of five days. The data set
contains eight distinct attack classifications, namely, Brute Force FTP, Brute Force SSH,
Denial of Service (DoS), Heartbleed, Web Attack, Infiltration, Botnet, and Distributed Denial
of Service (DDoS).

3.4. UNSW-NB15 Data Set

The UNSW-NB15 data set [15] is a hybrid data set developed by the CyberScope
Laboratory at UNSW Canberra in 2015, collecting genuine contemporary normal activities
alongside synthetically generated modern attack behaviors. The attack behaviors were
created using the IXIA PerfectStorm (https://www.ixiacom.com/products/perfectstorm,
accessed on 1 January 2024), and the feature extraction process involves employing the Bro
IDS [35]. This data set comprises nearly 2 million packet flows with 49 flow features, and
the malicious traffic corresponds to nine distinct attack categories, such as DoS Exploits,
Backdoors, Shellcode, and Worms.

4. Framework Design

This section outlines the proposed framework for knowledge transfer, aimed at identi-
fying an appropriate source domain for intrusion detection in the IoT environment. The
ultimate goal is to build a binary classifier for determining whether the given flow from
the target domain is malicious or benign based on the knowledge transfer. The framework
is structured around two key phases: (1) similarity assessment with the target domain
(Phase 1) and (2) the application of deep transfer learning for intrusion detection (Phase 2).
An overview of the entire process is depicted in Figure 2.

Figure 2. A system overview of the proposed framework.

First, candidate source data sets, along with the target domain data set, undergo a
preprocessing phase. Then, a metric is employed to assess the similarity between these
data-sets. This evaluation serves to determine which source domain exhibits the highest

https://www.ixiacom.com/products/perfectstorm

Future Internet 2024, 16, 80 7 of 17

degree of similarity with the target domain. The insights achieved from Phase 1 are then
leveraged in Phase 2, where a model is constructed for handling inference data originating
from the target domain.

4.1. Preprocessing

Given the diverse deployment scenarios and specialized devices inherent in the IoT
ecosystem, it is essential to acknowledge that the data collection environments for each
candidate source data set can significantly vary. These differences manifest in various ways,
including variations in the number of features, data set composition, and the quantities of
attack and benign instances. Consequently, preprocessing is necessarily required to unify
the feature configurations across multiple data sets and address uninitialized values before
embarking on the knowledge transfer process. This ensures that the source and target
domains are effectively aligned, evaluating the similarity between data sets and facilitating
a seamless transfer of knowledge between them.

Based on a feature analysis of the four data sets that we utilized, we first identified a
common set of 12 features shared among all the source domain candidates and the target
domain data set. Table 2 summarizes the result.

Table 2. Common feature description.

No. Feature Names Feature Description

1 Source IP Source IP address
2 Source Port Source port number
3 Destination IP Destination IP address
4 Destination Port Destination port number
5 Protocol Internet Protocol used
6 Flow Duration Duration of the flow in microsecond
7 Fwd Packet Length Mean Mean size of packet in forward direction
8 Bwd Packet Length Mean Mean size of packet in backward direction
9 Total Fwd Packets Total packets in the forward direction
10 Total Bwd Packets Total packets in the backward direction
11 Timestamp Timestamp of the packet
12 Label Category of attack or normal

To acquire common features across the four data sets, we focused on unifying features
whose names were different but virtually identical in representing flow aspects (e.g., sbytes
in Bot-IoT and Fwd_Pkt_Len_Mean in IoT Intrusion data sets). We note that the four
data sets used in our study are representative and widely used data sets with extensive
flow characteristics, which means that our approach can be extended to apply to other
IoT intrusion detection data sets. The remaining features include ‘Source IP’, ‘Source
Port’, ‘Destination IP’, ‘Destination Port’, ‘Protocol’, ‘Flow Duration’, ‘Fwd Packet Length
Mean’, ‘Bwd Packet Length Average’, ‘Total Delivered Packets’, ‘Total Bandwidth Packets’,
‘Timestamp’, and ‘Label’, which signify the maliciousness of the data. We also note that
the previous studies showed that anomaly detection performance is affected by feature
importance (e.g., the weight of the information gain) rather than the sheer number of
features [36]. In a comparative analysis, previous studies grouped features into sets of
4, 15, and 22, demonstrating a consistently high accuracy ranging from 96% to 99%. We
confirmed that our evaluation result aligns with such a result to distinguish benign and
malicious traffic, as our proposed framework delivers a 97–99% accuracy (see Section 5.3).
To ensure a balanced representation among the source data sets, we employed a sampling
strategy for the number of attack instances in each attack type. Specifically, we adjusted the
total count of benign and attack instances in each data set to align with 625,783, which is
the smallest instance number among the data sets (IoT Intrusion data set).

Future Internet 2024, 16, 80 8 of 17

4.2. Phase 1: Similarity Assessment

In our study, we based our approach on similarity to select the optimal source domain to
enhance the attack detection performance in the target domain. We designed the similarity
assessment based on the following intuition: the closer the data are to the target domain,
the better the detection performance will be during transfer learning. In phase 1, we
evaluate the similarity between each source domain and the target domain. The deep
learning model used for this has layers as illustrated in Figure 3, consisting of three 1D
CNN layers and five Dense layers.

Figure 3. Deep learning layer configuration.

All 1D CNN layers and Dense layers use the LeakyReLU activation function, and a
Flatten layer is added between the 1D CNN and Dense to match dimensions. The dropout
layer is one of the regularization techniques used to prevent overfitting in deep learning
models. The reason the dropout layer parameter was set to 0.8 was to deactivate neurons
with a 20% probability during training, preventing the network from being overly depen-
dent on specific neurons. Thus, 0.8 was the optimal parameter value obtained through
experimentation. The rationale for layer selection and arrangement lies in the hierarchical
nature of deep neural networks in transfer learning. In the context of transfer learning,
lower layers are known to capture more fundamental knowledge from the input data
of network traffic, while upper layers specialize in learning higher-level abstractions by
combining or synthesizing these basic features, respectively. In our approach, we maintain
the lower layer (1DCNN) in a fixed state and manipulate the parameters of the upper layer
(Dense and Dropconnect). Additionally, we employ batch normalization to standardize the
data distribution. Batch normalization adjusts data distribution within each batch, enhanc-
ing the stability of the learning process. Finally, to prevent overfitting, early stopping is
implemented based on the point where the validation loss starts increasing. This layered
configuration aims to leverage the specialized capabilities of each layer, facilitating the
effective transfer of knowledge across varying domains.

In phase 1, we use the Mean Squared Error (MSE) loss function and the Mean Absolute
Error (MAE) loss sum to conduct similarity assessments between the source and target
domains. MSE and MAE are representative metrics for regression problems, and both are
based on the difference between the actual and predicted values, which has the advantage
of being intuitive and involving less computational complexity. In addition, the MSE loss
function is typically used in deep learning models that train the closest value to the actual
label to be predicted. Because it averages the square of the errors, large errors are more
emphasized, which is useful for evaluating the overall performance of the model. Mean
Squared Error (MSE) is defined as follows:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (1)

Future Internet 2024, 16, 80 9 of 17

Through the MSE loss function, we calculate the mean squared error, where yi repre-
sents the predicted values, ŷi represents the actual values, and N denotes the number of
training samples.

To evaluate the performance of the regression model and determine how well it has
learned, we utilize the MAE evaluation metric. MAE measures the absolute differences
between the actual ground truth values and the predicted values, averaging these absolute
differences. A lower MAE indicates a higher similarity of the model’s predictions to the
actual values. MAE is defined as follows:

MAE =
1
N

N

∑
i=1

|yi − ŷi| (2)

In this context, yi represents the actual values, while ŷi denotes the predicted values.
The error is calculated by subtracting the predicted value from the actual value. This
difference is then taken in absolute terms. The resulting value is divided by the number of
training samples, N, to compute the average.

Algorithm 1 describes the detailed workflow of phase 1.

Algorithm 1: Similarity evaluation between source and target domains
Input: Source Domain Sn for n = 1, 2, 3, Target Domain T
Output: Trained Model Mn for n = 1, 2, 3

1 Initialization:
2 Uniformize the size of the data sets.
3 Sample attack types and standardize the number of labels to 625, 783.
4 Transfer learning:
5 Evaluate the similarity between Sn data sets before proceeding with transfer

learning.
6 Phase 1 process:
7 while n ≤ 3 do
8 Input Train data Sn 100%, Test data T 70%.
9 Train data Sn learning through DNN layer with LeakyReLU.

10 Compile the model with an MSE loss function for similarity evaluation and
Adam optimizer.

11 while epoch ≤ 100 do
12 Check that overfitting does not occur at epochs 20/40/60/80/100.
13 if validation loss < 1 then
14 Early stopping for overfitting prevention.

15 Evaluate the performance of the model using MAE function on Test T data set.
16 Save the trained model.

17 return Trained Model Mn for n = 1, 2, 3.

The goal is to evaluate the similarity between source domains (Sn) and a target domain
(T) before conducting knowledge transfer. After the preprocessing and sampling proce-
dure, our framework conducts deep learning with the aforementioned network layers for
similarity assessment. Note that we use LeakyReLU as an activation function to evaluate
which of the source domain is most similar to the target. The MSE and MAE loss functions
are used as performance evaluation indicators of the regression model to compare the
performance of the trained model (Mn). The training is repeated until the epoch reaches
100, and the appearance of each epoch is observed at 20, 40, 60, 80, 100. If there is overfitting
at this time, the training undergoes early stopping to prevent overfitting.

Future Internet 2024, 16, 80 10 of 17

4.3. Phase 2: Transfer Learning

In phase 2, our framework acquires a training model for intrusion detection against
the target domain by utilizing the knowledge transferred from phase 1. For evaluation,
the Binary Cross Entropy (BCE) loss function is employed to assess the accuracy of malicious
traffic detection for source domains with a high similarity. We selected BCE because it
measures the difference between the predictive probability of the model and the actual class
and is a suitable loss function for binary classification. During the experiment, the binary
classifier is trained by setting malicious traffic to 1 and positive traffic to 0. The BCE loss
function is defined as follows:

BCE = − 1
N

N

∑
i=1

[ti log(yi) + (1 − ti) log(1 − yi)] (3)

Here, ti represents the actual label (either 0 or 1), and yi is the predicted binary probability
(0 < yi < 1) for the data. As the prediction becomes more accurate, the loss decreases. Our
aim is to minimize the total loss through training.

To prevent overfitting, we introduce five Dense layers and four Dropout layers (see
Figure 3). The Dropout layer deactivates random neurons during training to enhance
generalization capabilities. To reduce the model’s complexity and enhance generalization,
a Dropout rate of 0.3 is applied. In the phase 2 experiments, a ratio of 0.3 showed the most
optimal results. Additionally, to simplify the model, we reduce the number of units in the
deep learning model and utilize DropConnect in the Dense layers. For binary classification,
the Leaky ReLU activation function is used in the four Dense layers excluding the last
Dense layer, which requires a Sigmoid activation function. This choice effectively controls
the model complexity and mitigates overfitting.

As shown in Algorithm 2, the goal of phase 2 is to acquire a binary classifier (K) to
judge whether the given target domain instance is benign or malicious. Like the typical
architecture composition in a binary classification problem, we use LeakyReLU as an
activation function for four dense layers and Sigmoid for the last one. Comparing the
Accuracy value, the result obtained from this experiment allows us to determine the highest
accuracy when using any of the three Sns as the source domain. As a result, phase 2
demonstrates the correlation of similarity and performance between data sets based on the
accuracy of the target-domain-like source domain identified in phase 1.

Algorithm 2: Transfer learning with source and target domains
Input: Source Domain Sn for n = 1, 2, 3, Target Domain T
Output: Trained Model K

1 Initialization: Load the source domain evaluated for similarity in Experiment 1.
2 Transfer learning:
3 Train using similar source domain data, evaluate performance on target domain.
4 Phase 2 process:
5 while n < 3 do
6 Input Train data (S′

n = Sn + T 70%), Test data T 30%.
7 Train data Sn through DNN layer with LeakyReLU and Sigmoid.
8 Compile the model with a BCE loss function for binary classification and

Adam optimizer.
9 while epoch ≤ 100 do

10 Check that overfitting does not occur at epochs 20/40/60/80/100.
11 if validation loss < 1 then
12 Early stopping for overfitting prevention.

13 Evaluate the performance of K by Accuracy on Test data set.
14 Update K if the model corresponding to Sn has the best performance.

15 return Trained Model K.

Future Internet 2024, 16, 80 11 of 17

5. Evaluation
5.1. Experimental Environment

To evaluate the performance of our proposed framework, we used four public data
sets mentioned above. The Bot-IoT data set and IoT Intrusion data set were selected
as target domains, which were collected from real IoT environments. The experiment
included the number of both cases in which each of these two data sets (Bot-IoT and IoT
Intrusion) was set as the target domain, and, in each case, the source domain was the other
three except that data set. These source domains contain various types of network attacks
and provide appropriate data to evaluate their similarities with the target domain. Note
that each source domain consists of 70% of the three data sets and 30% of the data set
selected as the target domain. As an experimental environment, we used a Windows 11 Pro
64-bit operating system, equipped with an Intel(R) Core(TM) i7-1065G7 CPU @ 1.30 GHz
1.50 GHz processor, 16 GB of RAM, and an Intel Iris Plus Graphics graphics card. We
utilized Python 3.11.4 64-bit and leveraged the Pandas, Scikit-learn, and Numpy libraries.
Table 3 summarizes our evaluation environment.

Table 3. Experimental environment.

Platforms Windows 11 pro 64 bit

Processor Intel(R) Core(TM) i7-1065G7 CPU @ 1.30 GHz 1.50 GHz

RAM 16 GB

Graphics Card Intel Iris Plus Graphics

Library Pandas, Scikit-learn, Numpy

Programming Language Python 3.11.4 64 bit

5.2. Similarity Assessment

First, we measured the MAE and MSE of each source domain candidate for knowledge
transfer to figure out the source domain most adventurous to the target domain. The result
acquired from phase 1 was further used in the subsequent phase, phase 2, to conduct
a more accurate and effective transfer learning. The experimental results are shown in
Tables 4 and 5. We confirmed that the Bot-IoT data set was the IoT Intrusion data set with
the lowest MAE and MSE metric values, which means that it was the most similar to
the target domain. This suggests that the IoT Intrusion data set has similar features and
patterns to the Bot-IoT data set. Likewise, even when the IoT Intrusion data set was a
target, it was confirmed that the MAE and MSE of the Bot-IoT data set were the lowest.
As a next step, we verified that intrusion detection based on deep transfer learning in
each case utilizing IoT Intrusion data set and Bot-IoT data set delivered the best inference
performance for the source data set conducted in phase 2.

Table 4. The results of the similarity evaluation experiment in the case where the target domain was Bot-IoT.

MAE MSE

CIC-IDS2017 0.9933 0.9873
IoT Intrusion 0.0781 0.0066
UNSW-NB15 1.0015 1.0036

Table 5. The results of the similarity evaluation experiment in the case where the target domain was
IoT Intrusion.

MAE MSE

CIC-IDS2017 0.8938 0.8859
Bot-IoT 0.0641 0.0638
UNSW-NB15 0.8874 0.8660

Future Internet 2024, 16, 80 12 of 17

5.3. Intrusion Detection Performance

To verify the assessment result, we constructed multiple models for each source
domain combined with the target domain data set, a typical way of instance-based transfer
learning. For this, three training data sets were constructed by combining 100% of the
source data set and 70% of the target data set for each of the three source data sets. Note
that the remaining 30% of the target data set was used as a test data set. The accuracy
evaluation index employed in the performance assessment was derived from a confusion
matrix and adhered to the following standard measurements:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-Score = 2 · Precision · Recall
Precision + Recall

Here, TP (True Positive) represents the count of inference results in which the model
correctly predicted a malicious flow as an attack class. In essence, the accuracy metric
serves as an indicator of how precise the model’s predictions are, with a higher value
approaching 1 signifying superior performance.

Tables 6 and 7 show the experimental results of phase 2.

Table 6. The results of the performance evaluation experiment in the case where the target domain
was Bot-IoT.

Accuracy Loss F1-Score Recall Precision

CIC-IDS2017 0.9928 0.0278 0.9792 0.9605 0.9994
IoT Intrusion 0.9994 0.0049 0.9997 1.0000 0.9994
UNSW-NB15 0.9993 0.0083 0.9997 1.0000 0.9993

Table 7. The results of the performance evaluation experiment in the case where the target domain
was IoT Intrusion.

Accuracy Loss F1-Score Recall Precision

CIC-IDS2017 0.9753 0.0452 0.9865 0.9776 0.9960
Bot-IoT 0.9994 0.0053 0.9997 1.0000 0.9994
UNSW-NB15 0.9765 0.0600 0.9937 0.9995 0.9882

As expected, the highest Accuracy value and the lowest loss value were identified in
the case of using the IoT Intrusion data set as the source data set. To cross-check whether
the selected source domain based on the assessment and the target domain were indeed
similar, we performed a qualitative analysis by scrutinizing the data sets, for example, by
examining the number of attack types and the instance ratio of common attack types.

First, when the number of common attack types between the target and source domains
was examined, UNSW-NB15 overlapped the most with two types: DoS and Reconnaissance.
Meanwhile, IoT Intrusion and CIC-IDS2017 had only DoS in common. Considering that
all three source domains shared the DoS attack type with the target domain, similarity
was assessed based on the number of DoS instances. The counts for each source domain
were as follows: IoT Intrusion with 59,391 instances, UNSW-NB15 with 16,353 instances,
and CIC-IDS2017 with 252,661 instances, out of a total of 625,783 instances across the
domains. The percentage of DoS instances from the total for each source domain was
calculated as follows: IoT Intrusion at 9.48%, UNSW-NB15 at 2.61%, and CIC-IDS2017 at

Future Internet 2024, 16, 80 13 of 17

40.35%. Interestingly, this reveals that CIC-IDS2017 significantly had the highest number of
instances for the common attack type.

Then, we reviewed the data collection environment for each public data set. The data
sets used as source domains were collected from diverse environments ranging from actual
IoT setups to virtual networks. The IoT Intrusion data set originated from a smart home
environment, specifically from SKT NUGU (NU 100) and the EZVIZ Wi-Fi Camera (C2C
Mini O Plus 1080P). The UNSW-NB15 data set is a hybrid blend of genuine modern network
traffic and synthesized modern attack behaviors. The CIC-IDS2017 data set was collected
in a virtual environment designed to emulate real PCAP data. Lastly, the Bot-IoT data
set comprises data from five IoT devices, including smart fridges, garage doors, weather
monitors, lights, and thermostats.

While UNSW-NB15 dominated in terms of the number of attack types and CIC-
IDS2017 led in the instance ratio of shared attack types with the target domain, ultimately,
the IoT Intrusion data set, generated from the same smart home environment, demonstrated
the highest performance. This underscores the significant influence of the data collection
environment on the target domain’s performance. In situations requiring the selection
of a source domain for transfer learning, it is recommended, as evidenced by our paper,
to prioritize the collection environment over the shared attack types for better effectiveness.

5.4. Overfitting Mitigation

To address overfitting in the model training, we employed various techniques. First,
we utilized the dropout layer and empirically determined the dropout rate to mitigate
overfitting. For mild overfitting, a dropout rate between 0.2 and 0.5 is recommended,
and for severe cases, a rate of 0.8 is beneficial. Therefore, we applied a rate of 0.8 to
ensure a robust prevention of overfitting. Additionally, as the complexity of the model
increases, it becomes more prone to overfitting. Hence, we adjusted the number of layers
and parameters in the model. Finally, we incorporated the BatchNormalization() layer into
the deep learning model to further mitigate overfitting. The BatchNormalization() Layer
normalizes the output value of the activation function to distribute it appropriately. If the
weights are not appropriate, the model may become sensitive to even small changes in the
input data, which may lead to overfitting. In this case, BatchNormalization() improves
the learning speed and suppresses overfitting by maintaining good weight values and
appropriately distributing activation values without depending on the initial weight value.
Finally, it is worth noting that existing overfitting mitigation methods, including the
aforementioned mitigation strategies, can be also leveraged to our proposed framework.

To validate the overfitting mitigation strategies applied in our framework, we mea-
sured the trend of training and validation accuracies in phase 2 for the IoT Intrusion
data set while varying the epochs until 100. Figure 4 shows the result after adopting the
aforementioned mitigation methods.

Figure 4. Training and validation accuracies after adopting overfitting mitigation.

Future Internet 2024, 16, 80 14 of 17

Typically, a model is likely to be overfitted when the slope of training and validation
accuracy gradually decrease, reaching a floor. In our observation, we noted a smooth
increase in both training and validation accuracy, with a consistent plateau observed
from epoch 20 onwards, maintaining a stable shape. This is interpreted as the effective
contribution of the overfitting technique mentioned above.

5.5. Discussion and Limitations

Our research emphasizes the importance of choosing the right source domain for
transfer learning, as this choice impacts learning performance. This perspective, which
highlights the significance of selecting an appropriate source domain, has yet to be explored
in existing research. The effectiveness of our framework is demonstrated through our
evaluation results on the IoT Intrusion and Bot-IoT data set case studies. Remarkably, these
data sets, sharing similar collection environments and attack labels compared to other data
sets, exhibited the best accuracy as a source domain to each other when processed using our
framework. This result highlights the framework’s efficacy when collection environments
and attack labels align closely.

Compared to previous studies, our approach sets itself apart by not only focusing
on the types and frequencies of attacks but also taking into account the environmental
context of data collection based on the inherent similarity with the target domain. While
existing approaches are primarily focused on the technical enhancement of trained intrusion
detection models by utilizing diverse machine learning techniques, we recognize the
importance of providing practical implications and insights for knowledge distillation.
These insights are particularly valuable for practitioners and researchers in IoT security,
who face challenges posed by diverse and heterogeneous IoT network environments. We
believe the importance of our research lies not only in developing an effective intrusion
detection model but also in emphasizing the crucial role of selecting an appropriate source
domain based on its similarity to the target domain.

However, our knowledge distillation strategy based on data set similarity would be
inefficient in scenarios where the intersection across the source domain candidates and
the target domain are limited and scarce. As our framework relies on a subset of shared
features from varied candidate data set pools in the preprocessing phase, it might fail to
accurately identify all the attacks specified within the data sets. We note that information
loss due to the common feature extraction can be ameliorated if the raw packet data (e.g.,
PCAP files) are accessible. By utilizing the same flow analyzer (e.g., CICFlowMeter [34])
against candidate data set pools to acquire the flow information from the raw packet data,
it is possible to fairly utilize all the flow features for transfer learning.

If raw packet data are not provided, the number of common features could be drasti-
cally reduced when using datasets with vastly different characteristics, which could lead to
performance degradation. However, these concerns can be alleviated primarily through
screening by security operators before performing intrusion detection. For example, they
can conduct qualitative analysis to ensure the collection environment is similar or the
considered attack label is being targeted. Subsequently, they might encounter a situation in
which it is hard to intuitively determine the most suitable source dataset among the filtered
candidate data set pools. In such cases, we believe leveraging the proposed framework is
considered best practice for comparing datasets and resolving uncertainties.

In addition, the aforementioned limitation aligns with the inherent constraints of
knowledge distillation based on data set similarity, particularly in scenarios involving the
detection of unforeseen attack patterns (e.g., zero-day attacks). We believe such limitation
can be addressed by leveraging the state-of-the-art ML techniques. For example, recent
approaches that enhances the calibration of neural network confidence by leveraging outlier
exposure [37] can be applicable to phase 2 in our framework to detect false alarms raised
by zero-day attacks.

Future Internet 2024, 16, 80 15 of 17

6. Conclusions

In this paper, we propose a comprehensive end-to-end deep transfer learning frame-
work for IoT intrusion detection. Our approach starts with thoroughly selecting suitable
data sets from uncertain candidate pools tailored to the source domain and extends to lever-
aging knowledge transfer into the inference phase for target domain data. We conducted
experiments using four of the most prevalent and widely used data sets of network traffic
collected in IoT environments. We confirmed that the proposed deep transfer learning
framework appropriately selects suitable source domain data sets from the candidates and
delivers the best accuracy for the test data. Our framework not only enhances the effi-
ciency of the transfer learning process but also serves as a guiding mechanism for selecting
the source domain that best enhances the performance of the target domain across the
entire transfer learning process, making it universally applicable when applying different
data sets in the future. We believe it relieves the burden of security managers having to
assess each source domain suitable for intrusion detection tailored to their custom IoT
environment. The proposed framework can be further extended to support multi-class
classification, enabling the identification of specific attack types by utilizing deep transfer
learning. Furthermore, future efforts could focus on optimizing the time efficiency, such
as Time-to-Accuracy, in phase 2. Exploring variations in neural network architectures is
another avenue for investigation to understand their impact on accuracy. We leave these as
future work.

Author Contributions: Conceptualization, H.K. and S.P.; Methodology, H.H. and J.P.; Supervision,
S.K.; Writing-review & editing, H.K., S.P., H.H. and J.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Sungshin Women’s University Research Grant of H20220028.

Data Availability Statement: The data presented in this study are publicly available. Bot-IoT
Dataset: https://research.unsw.edu.au/projects/bot-iot-dataset, accessed on 1 January 2024. IoT
Intrusion Dataset: https://ocslab.hksecurity.net/Datasets/iot-network-intrusion-dataset, accessed
on 1 January 2024. CIC-IDS2017 Dataset: https://www.unb.ca/cic/datasets/ids-2017.html, accessed
on 1 January 2024. UNSW-NB15 Dataset: https://research.unsw.edu.au/projects/unsw-nb15-dataset,
accessed on 1 January 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things
DoS Denial-of-Service
DDoS Distributed Denial of Service
NIDS Network Intrusion Detection System
DPI Deep Packet Inspection
ML Machine Learning
IDS Intrusion Detection System
SSL Secure Sockets Layer
HTTPS HyperText Transfer Protocol over Secure Socket Layer
SSH Secure Shell
MFSR-IDS Multi-layer Feature Selection and Reduction IDS
DT Decision Tree
KNN K-Nearest Neighbor
RF Random Forest
CNN Convolutional Neural Network
DNN Deep Neural Network
MMD Maximum Mean Discrepancy
MDM-AE Mobile Device Management-AE

https://research.unsw.edu.au/projects/bot-iot-dataset
https://ocslab.hksecurity.net/Datasets/iot-network-intrusion-dataset
https://www.unb.ca/cic/datasets/ids-2017.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset

Future Internet 2024, 16, 80 16 of 17

MITM Man-in-the-Middle
MSE Mean Squared Error
MAE Mean Absolute Error
BCE Binary Cross Entropy
TP True Positive
TN True Negative
FP False Positive
FN False Negative

References
1. Zhao, Z.Z.; Guo, F.; Wu, G.; Susilo, W.; Wang, B. Secure infectious diseases detection system with iot-based e-health platforms.

IEEE Internet Things J. 2022, 9, 22595–22607. [CrossRef]
2. Shariatzadeh, N.; Lundholm, T.; Lindberg, L.; Sivard, G. Integration of digital factory with smart factory based on Internet of

Things. Procedia Cirp 2016, 50, 512–517. [CrossRef]
3. Alladi, T.; Chamola, V.; Zeadally, S. Industrial control systems: Cyberattack trends and countermeasures. Comput. Commun. 2020,

155, 1–8. [CrossRef]
4. Muthuramalingam, S.; Bharathi, A.; Rakesh Kumar, S.; Gayathri, N.; Sathiyaraj, R.; Balamurugan, B. IoT based intelligent

transportation system (IoT-ITS) for global perspective: A case study. In Internet of Things and Big Data Analytics for Smart Generation;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 279–300.

5. MarketsandMarkets. IoT Solutions and Services Market by Component (Solutions and Services), Organization Size, Deployment Mode,
Focus Area (Smart Manufacturing, Smart Energy and Utilities, and Smart Retail) and Region-Global Forecast to 2027; Technical Report;
MarketsandMarkets: Pune, India, 2022.

6. Rodríguez, E.; Valls, P.; Otero, B.; Costa, J.J.; Verdú, J.; Pajuelo, M.A.; Canal, R. Transfer-learning-based intrusion detection
framework in IoT networks. Sensors 2022, 22, 5621. [CrossRef]

7. Kruegel, C.; Toth, T. Using decision trees to improve signature-based intrusion detection. In Proceedings of the International
Workshop on Recent Advances in Intrusion Detection; Springer: Berlin/Heidelberg, Germany, 2003; pp. 173–191.

8. Elshrkawey, M.; Alalfi, M.; Al-Mahdi, H. An enhanced intrusion detection system based on multi-layer feature reduction for
probe and dos attacks. J. Internet Serv. Inf. Secur. (JISIS) 2021, 11, 40–57.

9. Gyamfi, N.K.; Goranin, N.; Čeponis, D.; Čenys, A. Malware detection using convolutional neural network, a deep learning
framework: Comparative analysis. J. Internet Serv. Inf. Secur. 2022, 12, 102–115. [CrossRef]

10. Pecori, R.; Tayebi, A.; Vannucci, A.; Veltri, L. IoT Attack detection with deep learning analysis. In Proceedings of the 2020
International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.

11. Liloja; Ranjana, P. An Intrusion Detection System Using a Machine Learning Approach in IOT-based Smart Cities. J. Internet Serv.
Inf. Secur. (JISIS) 2023, 13, 11–21.

12. Ranieri, A.; Caputo, D.; Verderame, L.; Merlo, A.; Caviglione, L. Deep adversarial learning on google home devices. arXiv 2021,
arXiv:2102.13023.

13. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization. In Proceedings of the International Conference on Information Systems Security and Privacy, Funchal, Portugal,
22–24 January 2018.

14. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of
things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

15. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT,
Australia, 10–12 November 2015; pp. 1–6.

16. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
17. Vu, L.; Nguyen, Q.U.; Nguyen, D.N.; Hoang, D.T.; Dutkiewicz, E. Deep transfer learning for IoT attack detection. IEEE Access

2020, 8, 107335–107344. [CrossRef]
18. Debicha, I.; Bauwens, R.; Debatty, T.; Dricot, J.M.; Kenaza, T.; Mees, W. TAD: Transfer learning-based multi-adversarial detection

of evasion attacks against network intrusion detection systems. Future Gener. Comput. Syst. 2023, 138, 185–197. [CrossRef]
19. Tanghatari, E.; Kamal, M.; Afzali-Kusha, A.; Pedram, M. Distributing DNN training over IoT edge devices based on transfer

learning. Neurocomputing 2022, 467, 56–65. [CrossRef]
20. Sherry, J.; Lan, C.; Popa, R.A.; Ratnasamy, S. Blindbox: Deep packet inspection over encrypted traffic. In Proceedings of the 2015

ACM Conference on Special Interest Group on Data Communication, London, UK, 17–21 August 2015; pp. 213–226.
21. Han, J.; Kim, S.; Ha, J.; Han, D. Sgx-box: Enabling visibility on encrypted traffic using a secure middlebox module. In Proceedings

of the First Asia-Pacific Workshop on Networking, Hong Kong, China, 3–4 August 2017; pp. 99–105.
22. Guo, Y.; Shi, H.; Kumar, A.; Grauman, K.; Rosing, T.; Feris, R. Spottune: Transfer learning through adaptive fine-tuning. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 4805–4814.

http://doi.org/10.1109/JIOT.2022.3181582
http://dx.doi.org/10.1016/j.procir.2016.05.050
http://dx.doi.org/10.1016/j.comcom.2020.03.007
http://dx.doi.org/10.3390/s22155621
http://dx.doi.org/10.58346/JISIS.2022.I4.007
http://dx.doi.org/10.1016/j.future.2019.05.041
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/ACCESS.2020.3000476
http://dx.doi.org/10.1016/j.future.2022.08.011
http://dx.doi.org/10.1016/j.neucom.2021.09.045

Future Internet 2024, 16, 80 17 of 17

23. Gopalakrishnan, K.; Khaitan, S.K.; Choudhary, A.; Agrawal, A. Deep convolutional neural networks with transfer learning for
computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 2017, 157, 322–330. [CrossRef]

24. Ruder, S.; Peters, M.E.; Swayamdipta, S.; Wolf, T. Transfer learning in natural language processing. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Tutorials, Minneapolis, Minnesota,
3–5 June 2019; pp. 15–18.

25. Peng, Y.; Yan, S.; Lu, Z. Transfer learning in biomedical natural language processing: An evaluation of BERT and ELMo on ten
benchmarking datasets. arXiv 2019, arXiv:1906.05474.

26. Baireddy, S.; Desai, S.R.; Mathieson, J.L.; Foster, R.H.; Chan, M.W.; Comer, M.L.; Delp, E.J. Spacecraft time-series anomaly
detection using transfer learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Online, 19–25 June 2021; pp. 1951–1960.

27. Wen, T.; Keyes, R. Time series anomaly detection using convolutional neural networks and transfer learning. arXiv 2019,
arXiv:1905.13628.

28. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [CrossRef]
29. Huang, S.; Guo, Y.; Liu, D.; Zha, S.; Fang, W. A two-stage transfer learning-based deep learning approach for production progress

prediction in IoT-enabled manufacturing. IEEE Internet Things J. 2019, 6, 10627–10638. [CrossRef]
30. Tien, C.W.; Huang, T.Y.; Chen, P.C.; Wang, J.H. Using autoencoders for anomaly detection and transfer learning in iot. Computers

2021, 10, 88. [CrossRef]
31. Kang, H.; Ahn, D.H.; Lee, G.M.; Yoo, J.D.; Park, K.H.; Kim, H.K. IoT Network Intrusion Dataset. Available online: http://ocslab.

hksecurity.net/Datasets/iot-network-intrusion-dataset (accessed on 5 December 2019).
32. Stiawan, D.; Idris, M.Y.B.; Bamhdi, A.M.; Budiarto, R. CICIDS-2017 dataset feature analysis with information gain for anomaly

detection. IEEE Access 2020, 8, 132911–132921.
33. Yulianto, A.; Sukarno, P.; Suwastika, N.A. Improving adaboost-based intrusion detection system (IDS) performance on CIC IDS

2017 dataset. J. Phys. Conf. Ser. 2019, 1192, 012018. [CrossRef]
34. Lashkari, A.H.; Zang, Y.; Owhuo, G.; Mamun, M.; Gil, G. CICFlowMeter. GitHub. Available online: https://github.com/

ahlashkari/CICFlowMeter/blob/master/ReadMe.txt (accessed on 10 August 2021).
35. Paxson, V. Bro: A system for detecting network intruders in real-time. Comput. Netw. 1999, 31, 2435–2463. [CrossRef]
36. Kurniabudi.; Stiawan, D.; Darmawijoyo.; Bin Idris, M.Y.; Bamhdi, A.M.; Budiarto, R. CICIDS-2017 Dataset Feature Analysis With

Information Gain for Anomaly Detection. IEEE Access 2020, 8, 132911–132921. [CrossRef]
37. Hendrycks, D.; Mazeika, M.; Dietterich, T. Deep anomaly detection with outlier exposure. arXiv 2018, arXiv:1812.04606.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.conbuildmat.2017.09.110
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1109/JIOT.2019.2940131
http://dx.doi.org/10.3390/computers10070088
http://ocslab.hksecurity.net/Datasets/iot-network-intrusion-dataset
http://ocslab.hksecurity.net/Datasets/iot-network-intrusion-dataset
http://dx.doi.org/10.1088/1742-6596/1192/1/012018
https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt
https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt
http://dx.doi.org/10.1016/S1389-1286(99)00112-7
http://dx.doi.org/10.1109/ACCESS.2020.3009843

	Introduction
	Related Work
	ML-Based Intrusion Detection
	Transfer Learning

	Intrusion Detection Data Sets
	Bot-IoT Data Set
	IoT Intrusion Data Set
	CIC-IDS2017 Data Set
	UNSW-NB15 Data Set

	Framework Design
	Preprocessing
	Phase 1: Similarity Assessment
	Phase 2: Transfer Learning

	Evaluation
	Experimental Environment
	Similarity Assessment
	Intrusion Detection Performance
	Overfitting Mitigation
	Discussion and Limitations

	Conclusions
	References

