a .
E@ future internet

Article

Multi-Level Split Federated Learning for Large-Scale AloT
System Based on Smart Cities

Hanyue Xu 1217, Kah Phooi Seng 1'34*, Jeremy Smith ? and Li Minn Ang 4

check for
updates

Citation: Xu, H.; Seng, K.P.; Smith, J.;
Ang, L.M. Multi-Level Split Federated
Learning for Large-Scale AloT System
Based on Smart Cities. Future Internet
2024, 16, 82. https://doi.org/
10.3390/£i16030082

Academic Editors: Qiang Duan and
Zhihui Lu

Received: 30 January 2024
Revised: 21 February 2024
Accepted: 26 February 2024
Published: 28 February 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Al and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou 215000, China;
hanyue.xul9@student.xjtlu.edu.cn

Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3G]J, UK;
j-s.smith@liverpool.ac.uk

School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia

School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD 4502, Australia;
lang@usc.edu.au

* Correspondence: jasmine.seng@xjtlu.edu.cn

Abstract: In the context of smart cities, the integration of artificial intelligence (AI) and the Internet
of Things (IoT) has led to the proliferation of AloT systems, which handle vast amounts of data to
enhance urban infrastructure and services. However, the collaborative training of deep learning
models within these systems encounters significant challenges, chiefly due to data privacy concerns
and dealing with communication latency from large-scale IoT devices. To address these issues,
multi-level split federated learning (multi-level SFL) has been proposed, merging the benefits of
split learning (SL) and federated learning (FL). This framework introduces a novel multi-level
aggregation architecture that reduces communication delays, enhances scalability, and addresses
system and statistical heterogeneity inherent in large AloT systems with non-IID data distributions.
The architecture leverages the Message Queuing Telemetry Transport (MQTT) protocol to cluster
IoT devices geographically and employs edge and fog computing layers for initial model parameter
aggregation. Simulation experiments validate that the multi-level SFL outperforms traditional SFL by
improving model accuracy and convergence speed in large-scale, non-IID environments. This paper
delineates the proposed architecture, its workflow, and its advantages in enhancing the robustness
and scalability of AloT systems in smart cities while preserving data privacy.

Keywords: federated learning; split learning; split federated learning; artificial intelligent internet of
things; edge computing

1. Introduction

With the acceleration of urbanization, smart cities are proposed to utilize various arti-
ficial intelligence (AI) technologies or urban infrastructure to integrate artificial intelligence
Internet of Things (AloT) systems, improve resource utilization efficiency, optimize city
management and services, and achieve the idea of the Internet of Everything. By analyzing
and processing the massive historical and real-time data generated by IoT devices such
as sensors, Al technology can make more accurate predictions about future devices and
user habits, such as smart grid [1], smart transportation [2], and smart healthcare [3]. On
the other hand, hyperscale data connected through IoT can also lay the foundation for
deep learning in Al. However, with the continuous development of big data technology,
the meaning of the data generated in smart cities for everyone is no longer insignificant
information but a digital asset. For example, the user driving habits data of smart vehicles
need user authorization to be used for model training and learning of Al technology [4].
Therefore, the need to train deep learning models without aggregating and accessing sensi-
tive raw data on the client side is a major challenge that AloT systems need to solve for
multi-client collaborative learning.

Future Internet 2024, 16, 82. https://doi.org/10.3390/£i16030082

https:/ /www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16030082
https://doi.org/10.3390/fi16030082
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0002-8652-7913
https://doi.org/10.3390/fi16030082
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16030082?type=check_update&version=1

Future Internet 2024, 16, 82

20f19

In recent years, the concept of distributed collaboration machine learning (DCML) has
been proposed to solve the above challenges, including federated learning [5-7] and split
learning [8-10]. Different from traditional centralized machine learning, DCML addresses
data privacy challenges by collaborating with multiple IoT devices (clients) to train machine
learning or deep learning models in collaboration with a central server, without sharing
local data generated by individual IoT devices. In federated learning (FL), the global model
is constructed by aggregating the model parameters trained by the local model on each
client through the cloud server. In split learning (SL), the deep learning model is split into
two parts: the first few layers are trained by the IoT device (client), and the bottom layer is
calculated by the central server (cloud), which is mainly used to solve the problem of the
limited computing resources of IoT devices. However, the performance of split learning
decreases as the number of clients increases, and federated learning is not suitable for IoT
devices with limited resources, so they all have limitations in large-scale AloT systems.
Therefore, split federated learning [11-13] is proposed to combine the advantages of SL and
FL to make an AloT system parallel in data and model training, which not only considers
the problem of limited client resources but also reduces the influence of the number of
clients on the performance of the model. Furthermore, it does not lose the protection of
data privacy and the robustness of the model.

Although split federated learning has become a new paradigm for future collaborative
learning in AloT systems, the performance and efficiency of model training are greatly
reduced due to the large number of clients contained in large AloT systems, the different
transmission distances of different clients, and the insufficient stability of single cloud
center server nodes. During the training process, there may be statistical heterogeneity
and system heterogeneity among AloT devices that have different computing and storage
resources, and the generated data are not independent and identically distributed (non-1ID).
These factors all affect the performance of models trained in a split federated learning
framework with only an end-cloud architecture. In addition, it has been found that model
aggregation frequency can significantly affect federated learning performance [14]. This
inspired us to propose a multi-level split federated learning (multi-level SFL) framework in
which the large-scale client model parameters can be initially aggregated at the edge layer,
fog layer, or higher levels, compensating for the scalability of traditional SFL in large AloT
systems. Since the parameters of the client can be preliminarily aggregated at multiple
levels before being sent to the cloud server, the communication delay between the cloud
server and the client is reduced, the processing speed of the central server is improved,
and the global model can be trained by receiving the model parameters of the client in a
wider range. The current hierarchical federated learning architecture is composed of client—
edge—cloud system, which solves the communication efficiency problem of traditional
cloud-based federated learning [15]. However, in the scenario of large AloT systems based
on smart cities, it is difficult for hierarchical FL to cover a larger number of IoT devices
and be more widely distributed, so this architecture still limits the number of IoT devices
that can be accessed. Compared to hierarchical FL, multi-level architectures can receive
a wider range of IoT devices and adjust the number of layers of the architecture as the
training task or the number of IoT devices changes, thereby enhancing the generalization of
federated learning in AloT systems. The multi-level aggregation architecture also reduces
the single point of failure of the cloud server and resolves the problem of the model training
being stuck because the client cannot upload the model information in time due to the
long transmission distance. The addition of split learning balances the problem of system
heterogeneity among clients and enhances the scalability of the system to incorporate
more IoT devices for collaborative learning. Allocating only a portion of the network
for training on the end devices can reduce the processing load compared to running a
full network in multi-level FL. This enables resource-limited IoT devices to participate in
collaborative training, enhancing the diversity of trainable tasks and reducing the impact of
data silos in resource-limited devices. Compared with traditional split federated learning,
our proposed framework can better solve the system and statistical heterogeneity and

Future Internet 2024, 16, 82

30f19

improve the scalability of large-scale AloT systems. The main contributions of this paper
are as follows:

1. This paper proposes a multi-level split federated learning architecture based on IoT
device location model information aggregation. The architecture reduces the commu-
nication delay between the client and the cloud server. Compared to hierarchical FL,
multi-level SFL improves the scalability of the AloT system through initial aggregation
in multi-level edge nodes before the cloud server’s aggregation.

2. The split learning algorithm is added to multi-level federated learning, which reduces
the impact of system heterogeneity on client collaborative learning and the possibility
of abandonment due to limited client computing resources.

3. We utilize the Message Queuing Telemetry Transport (MQTT) protocol to aggregate
geographically located IoT devices by sending topics and assigning the nearest master
server for split learning training. The client groups in each region communicate with
the primary server through their respective local networks.

4. Simulation experiments on multi-level split federated learning using Docker verify
that our proposed framework can effectively improve the model accuracy of collabo-
rative training under large-scale clients. In addition, compared with traditional SFL,
multi-level SFL in non-IID scenarios can converge faster and reduce the influence of
non-IID data on model accuracy.

The rest of this article is organized as follows. Section 2 reports some work related to
the article. Section 3 discusses the proposed multi-level split federated learning architecture
and associated workflows. In Section 4, the results of the simulation experiments are
presented and analyzed. Finally, Section 5 summarizes the article.

2. Related Works

Our proposed work is concerned with three primary DCML topics: multi-level FL,
SL, and SFL. Federated learning is an emerging distributed machine learning paradigm
that allows clients to jointly model without sharing data, breaking down data silos. With
the deepening of research, systematic heterogeneity and statistical heterogeneity have
become obstacles to the development of federated learning [16-19]. Karimireddy et al. [20]
proposed that the Scaffold algorithm corrects local model updates by adding variance
reduction techniques to local training to approximately correct the drift of local training on
the client side. In addition to optimizing model parameter aggregation algorithms, there
is a lot of work to solve the above problems through personalization techniques [21]. Xu
and Fan [22] proposed FedDK, which utilized knowledge distillation for model parameter
transmission, and designed the personalized model for each group by using the missing
common knowledge to fill circularly between clients. Traditional federated learning frame-
works also lack scalability in large AloT systems. Guo et al. designed [23] a multi-level
federated learning mechanism to improve the efficiency of federated learning in device-
heavy edge network scenarios by utilizing reinforcement learning techniques to select
IoT devices for collaborative training. Campolo et al. [24] proposed a federated learning
framework based on the MQTT protocol and lightweight machine-to-machine semantics
(LwM2M) to improve communication efficiency and scalability by optimizing message
transmission. Furthermore, Liu et al. [25] proposed a multi-level federated learning frame-
work, MFL, which combines the advantages of edge-based federated learning to achieve a
balance between communication cost and computational performance for intelligent traffic
flow prediction. Multi-level federated learning can also be combined with personalization
techniques to solve the problem of statistical heterogeneity. Wu et al. [26] proposed a frame-
work that combines self-attention personalization techniques with multi-level federated
graph learning to further capture features of large received signal strength (RSS) datasets
for indoor fingerprint localization.

Split learning (SL) is a distributed learning paradigm for resource-limited devices
that has the same data-sharing constraint as FL. The principle is to split the deep learning
network: each device retains only one part of the network, while the server computes

Future Internet 2024, 16, 82

40f19

58

another part of the network, and the different devices only carry out forward and backprop-
agation to the local network architecture [27]. SL solves the problem of limited computing
resources of edge devices in FL but also increases the communication overhead of the
system. Chen et al. [10] proposed a loss-based asynchronous training framework for split
learning, which allows the client model parameters to be updated according to the loss,
thus reducing the communication frequency of split learning. Moreover, Ayad et al. [28]
introduced autoencoders and adaptive threshold mechanisms to track gradients in split
learning to reduce the amount of data sent to the client in forward computation and the
number of updates in post-feedback communication. Therefore, hybrid split federated
learning (SFL) is proposed, which combines the advantages of FL and SL, reduces the
communication overhead of split learning, and is suitable for IoT devices with limited
resources. In the framework, each client sends its own cutting layer to the master server,
which trains the split network and sends the fed server to aggregate the gradient of the
split model from each client [29]. Tian et al. [30] split the BERT model according to the
calculated load of the embedded layer and transformer layer of the BERT model under
the FedBert framework so that it could be deployed on devices with limited resources.
Moreover, FedSyL [31], HSFL [32], and ARES [33] frameworks optimized the splitting
strategy of deep learning networks, which select the splitting points that can minimize the
training cost per round through adaptive analysis based on client computing resources.
Although the above studies have made advances in multi-level federated learning
frameworks and split federated learning, they do not take into account collaborative
learning in large-scale AloT system scenarios. Our work greatly improves the scalability
of large-scale AloT systems in collaborative learning by combining the advantages of
multi-level federated learning frameworks and the principles of split federated learning.

3. Proposed Framework

In this section, we will introduce multi-level split federated learning in detail, where
we group clients according to their geographic distribution and assign corresponding
master nodes for model training for split learning, as shown in Figure 1.

IoT devices —————» global model paramter

— — — — 3 local model parameter
—
, =
local data

G e . @ split deep learning model

Y N v . =

! / i

i ! / : ; i

—_ip = aee 5] \ N | .‘ = .

B & R @l Pe =
1 &7 |

()

ToT devices ~

Nlevel

ir i)
\ First level |

(3 “ & LAY Master server -«
\ o =\ /
.4
A n ﬁ /
g Second level /
\. Third level 7
\N-1level™ « . #
3 - ; -
, B MW 4
~ < ; i i
- v @ v s ———p forward pass of the cutting layer's activation
(i.e.. smashed data)

4 L
I U
M e gradient of the smashed data

ToT devices

Figure 1. Multi-level split federated learning framework in large-scale AloT system.

Future Internet 2024, 16, 82

50f19

Multi-level split federated learning is designed with a combination of cloud- and
edge-based FL and master server-based SL. The cloud server is located in the first level,
and the outer level extends to the end device layer of the Nth level, which can contain
the N — 2 level edge servers and fog nodes for the initial aggregation of the local model
of the IoT devices. The Nth level is the device layer (end layer), which contains a large
number of smart devices and sensors in the smart city, including street lights, sensors,
cameras, etc., responsible for sensing the surrounding environment and generating data
in real time. The number of levels N of the architecture is determined by the number of
IoT devices participating in collaborative training and the area they are located in. As
the number of IoT devices increases, the rate at which the cloud server receives model
parameters also decreases, increasing the time cost of the computing of the cloud server
to some extent. In addition, the larger the range of loT devices involved in training, the
more uneven the transmission distance between different IoT devices, and cloud servers
also lead to a reduction in training efficiency. Depending on the number of IoT devices and
their geographic location required for different training tasks, the proposed architecture
automatically adds adjacent and idle edge nodes or fog or edge nodes with more computing
power for hierarchical expansion. Since the infrastructure of most smart cities is fixed, we
assume that in this design, the IoT devices will be stable when training collaboratively,
and the geographical location will be constant during training time. The IoT nodes in the
end layer (Nth level) are composed of heterogeneous resource-constrained devices, the
data generated by each IoT node are saved locally and cannot be shared, and each uses its
own local data trainer for the local model. Depending on the geographical location of the
IoT devices, they are divided into different groups, and each group is assigned the nearest
master server, which is the server with high-performance computing resources. All IoT
devices in parallel perform forward propagation on their local model and transmit their
smashed data to the master server. The master server calculates the forward propagation
and backward propagation of the smashed data for each IoT device in its server-side model
and sends the gradient to the respective IoT devices to operate backpropagation. The closer
the edge nodes of each layer of the multi-level SFL are to the cloud server, the stronger the
computing and communication capabilities. For example, edge nodes such as routers and
gateways close to IoT devices have stronger computing performance and storage space
than IoT devices. Higher-level edge nodes or fog nodes that connect to this level, such as
base stations or regional servers, have more computing capabilities than edge nodes closer
to IoT devices. Therefore, the highest level (the first level) consists of one cloud server.
After the edge nodes of each layer initially aggregate the parameters of the local model of
the IoT device through the Fed Avg algorithm, the aggregated model parameters are further
uploaded to the cloud server for the aggregation of global model parameters. Compared
with the traditional SFL architecture, multi-level SFL does not need to wait for all clients to
update and upload model parameters to a single cloud server for parameter aggregation,
reducing the communication cost of AloT system collaborative learning and expanding the
IoT devices available for training. The detailed workflow of multi-level SFL is as follows.

3.1. MQTT Protocol-Based Message Exchange

Message Queuing Telemetry Transport (MQTT) is a lightweight communication pro-
tocol based on the publish/subscribe model, which is built on the TCP/IP protocol and
commonly used in Internet of Things systems. The advantage of MQTT is that it provides
reliable messaging services for connecting remote devices with limited bandwidth, so it is
suitable for low-bandwidth environments consisting of resource-limited end devices. In
the multi-level SFL framework, we use the MQTT protocol for message exchange between
client nodes and server nodes. The server of MQTT is brokered by VerneMQ. Edge nodes
and device nodes find device nodes that split federated learning on the MQTT topic and
control the aggregation operation of model parameters. The specific complete topic is
shown in Table 1.

Future Internet 2024, 16, 82

6 of 19

Table 1. Topics used in the MQTT protocol.

Message Exchange. Details
. IoT devices are grouped according to the public socket IP they provide, and the
client/group . . .
corresponding master server is assigned.
Device-Edge train /start The groupe;l IoT devices receive the signal from the edge server to start the
model training.
. When the server needs to receive the local model weight of the IoT device, the IoT
train/update - . .
device receives the signal from the edge server.
train/start The edge server receives the signal from the upper-level server and starts to trigger
the model training.
Edge-Edge train/update f}:t ?he b(?g}llr;nlnﬁlolgf each comtmcllmlcatlon turn, the selected clients are notified that
Edge-Cloud eir weights will be aggregated.
Receive messages when a new IoT device joins a group. The message includes
client/join contextual information about the newly joining IoT device, including its status

(whether it can participate in training) and its public socket IP.

The MQTT agent publishes the subject client/group, groups IoT devices under the
same LAN by receiving the IP of each IoT device, and assigns the master server node
under the same LAN. The server nodes on the connected edge of each group connect to the
upper-layer edge nodes or cloud servers through the backbone (internet) network. At the
beginning of each round of communication, the edge server will randomly aggregate the
model parameters of the IoT devices by publishing a list of IDs containing the selected IoT
devices to the train/update topic. When an IoT device receives a message published on
this topic, it checks if its ID is in the list, and if so, it sends its local model parameters to the
edge node; otherwise, it receives the average weight of the model parameters from the edge
node. The message exchange between edge nodes at each layer and between edge nodes
and cloud servers is similar. However, when the new IoT device node joins the group, it
receives the message of the new IoT device through the topic client/join, and groups and
evaluates the new IoT devices according to their own information.

To analyze the communication overhead of the proposed framework through MQTT,
we assume M represents the number of parameters for the model, D represents the total
number of IoT devices, s represents the size of the total samples, g is the size of the smashed
layer, E represents the total number of edge nodes in the middle levels, and « represents the
proportion of model parameters on the IoT device side. For instance, the model parameters
in IoT devices can be expressed as a M, and in the master server, they can be expressed as
(1 — a) M. Multi-level SFL mainly carries out two parts of information transferred through
MQTT protocol. The first part is the transfer of information between the IoT device and
the master server. The information that the IoT device transfers to the master server is
the smash data from the cutting layer of the local model, and the information that the
master server transfers to the IoT device is the gradient of the smash data. Therefore, the
size of the information transmitted by the split learning section depends on the size of
the private data generated by the local IoT device. The total communication overhead
in the split learning part can be denoted as 2sq. The second part of the communication
overhead comes from the size of the information transmitted by multi-level federated
learning. The information transferred size of FL depends on the number of parameters
in the IoT device’s local model [34], but since the local model is split, the communication
overhead of multi-level FL can be expressed as 2a M (D + E). Therefore, the communication
overhead of a multi-level SFL can be expressed as 2sq + 2aM(D + E). Table 2 shows a
comparison of the size of information transferred by the proposed framework over MQTT
versus that transferred by traditional federated learning. As can be seen from Table 2,
multi-level SFL can reduce the size of information transmitted by the device and improve
the transmission efficiency of the framework when training large deep learning models
with the same size of training data.

Future Internet 2024, 16, 82

7 of 19

Table 2. Communication overhead of different distributed learning methods.

Method Comms. per IoT Devices Total Comms.
FL 2M 2DM
SL (2s/D)g 2sq
Multi-level SFL (2s/D)g + 2aM 2sq 4+ 2aM(D + E)

3.2. Split Learning Side

After grouping IoT devices according to their geographic location, each group first
performs a split learning algorithm with the assigned master server. The algorithm can be
divided into four main computational parts. The IoT device is responsible for performing
two parts of the deep learning network computation, namely the forward propagation
and backward propagation of the IoT device network. The master server is responsible for
calculating the remaining layers and loss calculations. We define a deep learning network
as a function f, which contains the network layers that can be represented as {ly, /1, ...,Ix}.
For the input local data (local data), the output of the neural network is

Ix(Ixk—-1 ... (Io(local data))) — f(local data). (1)

Let Loss(output, label) represent the last layer to calculate the loss function of the real label
and the network output. Al;" represents the backpropagation process at each network
layer, so the backpropagation of the entire deep learning network can be expressed as

AQT(Ak;lT“.<AhT>)A+AfT.)

Therefore, the deep network structure can be divided into two parts according to the
disassembly layer, assuming that the layer [/, is the cutting layer of the neural network.
The network layer retained by the IoT device and the master server node is represented
as follows

foe {loh, .. 1), nEN, 3)
fm<_{ln+1/ln+2/-~-/ll\]}/ ne N. (4)

The client sends the activation of the cutting layer generated by the forward propagation
of the local network model to the master server for forward propagation of the rest of
the network layers. The master server is responsible for calculating the loss of labels and
outputs and propagating backward to update the master server’s network layer weights.
The client smashed data from the forward propagation of the local network model to the
main server for forward propagation of the rest of the network Assuming a set of D IoT
devices in t time period, the model update of the master server part of the network can be
expressed as follows [29]:

SD D
WMy = WM =y R YD AL (W), (5)

where 7 is the learning rate to train the deep learning model, and s is the size of the total
samples. ocfw represents the activation in master server, and ALp (WtM ; ochI) denotes the
gradient of backpropagation in the master server’s network layer.

Algorithm 1 shows the exact algorithm flow of the split learning part. The backpropa-
gation gradient received by the client from the master server is sent to the edge server for
aggregation, so Algorithm 1 is only one part of the multi-level SFL, and the entire algorithm
will be presented later.

Future Internet 2024, 16, 82

8 of 19

Algorithm 1 Split learning part in multi-level split federated learning

Notations: s is the size of total samples; t is time period; oc‘t’l is the smashed data of IoT device at £;
AL, is the gradient of the loss for IoT device d; Y is the true label from IoT device d.

Initialize: for each IoT device d € D in parallel do

fa < {lo,11,...,1x}, initialize weight f; using W¢

end for

In master server: fu < {ly+1,ln+2,...,In}, initialize weight f;; using WtM

for each IoT device in the same group d € D in parallel do

while local epoch e # E do

IoT device received model weight the from cloud server

Forward propagation compute activation (smashed data) on cutting layer af < f;(data)
Send activation a‘f and local label Y, to master server

end while

Master server executes:

Forward propagation with rx‘f on fm, compute output < fp, (rxf)

D N A S e

Calculate Loss L; < lossfunction(output, Yy)
Backpropagation on f, calculate the gradient ALy (WM; aM)

—_
_ O

Send gradient of cutting layer dtxf = ALy (WtM ; ocf/l) to IoT device for backpropagation
fa <« backPropagation (Wtd, daN)

12: end for

13: Model f;, from master server update Wﬁl = WM — nL Zi:l ALy (WM; aM)

3.3. Multi-Level Federated Learning Workflow

The cloud server publishes topics through the MQTT protocol to match the edge server
to the nearest IoT device group. Then, the edge server publishes topics to receive the tasks
performed by the IoT device, information about the local model, and information about
the respective resources of the IoT device, including computing resources and storage
resources. Based on the IoT device information, the edge server will determine whether
the IoT device meets the requirements of collaborative training (whether it is idle and has
enough computing resources) and send the training task to the cloud server. Depending on
the training task, the cloud server randomly initializes the global model parameters and
sends them to the IoT device. Each group of IoT devices receives the cutting layer gradient
from the master server and backpropagates the local model to update the parameters of
the neural network. The next major step is parameter aggregation in the edge server and
cloud server, where we use the FedAvg aggregation algorithm.

After the IoT devices in each group update the weights of the local model through the
model gradient sent by the master server, they send the model parameters (weights) to the
associated edge server. Each edge node is responsible for collecting updated parameters
from local IoT devices in its region and using the Fed Avg algorithm for weighted averaging
to update the weights of the local partial model (initial aggregation). Suppose there are E
edge servers; then, the Fed Avg algorithm [35] can be expressed as

e _ VD Smpe
W=} 5 Wi e€E. (6)
There are two situations when model parameters are sent to an edge server. If the edge
device is in the middle layer of the hierarchy, the aggregation of model parameters can be
expressed as
Zd,’GEN,l detd
WeNfl 1 = W,
D

e €E, (7)

where S;e5p, Sp denotes the size of the total samples in the IoT device from one group
under the ey_1, which is the edge server located in layer N — 1. The edge node in the
middle layer will forward the aggregated average weight to the upper connected edge

Future Internet 2024, 16, 82 90of 19

node to aggregate again. Similarly, the edge server in level N — 2 executes the aggregation
algorithm and can be represented as

d
WEN-2 o Zdz"Ef?Nfz SeNfl WeN—l,t
t+1 = GeN—2
D

, ecE. 8)

If the edge node is at the top of the hierarchy, that is, the cloud server, the weights from the
edge nodes of the previous layer are aggregated and weighted and then sent back to the
lower level. The cloud server aggregates all the model parameters for each group of IoT
devices. The aggregation operation in the server can be expressed as

) eyt

eN-2
SD

Wi
stse

WCtJrl - , eE€E. (9)

The final average weight is sent from the cloud server back to the edge server and client in
the same path as the model parameters were previously uploaded, as shown in Figure 2.
After receiving the global parameters, each set of IoT devices updates its local model and
forwards the cutting layer activation to the master server for forward propagation and
loss calculation. The entire multi-level federation learning begins a new iteration until the
model converges. Algorithm 2 illustrates the precise algorithm flow of the multi-level SFL
framework and shows the algorithm of the multi-level FL part in detail.

Wi-14 - =
! !
A A A
[[
/ "_ Wi-14 / \ Wi-14
Wi1-3/ wads \
o 7.8 — :
., i o P 2 2 Y
— Wi-14 .- s ——
. — \ < -
Wi) . Wi-14 Wo-14
/Wi14 4 \ \ A4
‘ w2 | ‘ il
| i{Vl-I-’l W3 Wi-14 w8 |
\ 4 ¢ .‘
—‘I(E wo-11)\ WI-14
Wi12-14
— WI1-14
Devicel Devicel Device3 Deviced Device5 Device6 Device7 Device8 W9 \Wl 14 OTVI 14 \VI‘IVI' L -
v ¥ Wl -14 W13 $1- ' ; W1

W1...d is Uploaded model parameters. d is deviceid

W1-14 is The model parameters of clouds through aggregation

Deviced Devicel0 Devicell Devicel2 Devicel3 Deviceld

Figure 2. Multi-level federated learning workflow.

Future Internet 2024, 16, 82

10 of 19

Algorithm 2 Multi-level SFL algorithm and multi-level FL workflow

Notations: s is the size of total samples; t is time period; E is the number of edge servers in each
level.
Initialize: level = N; global model in cloud server W¢;

1: ift=0do

2: send W€ to all IoT devices for model weight initialization
3: else

4. master server and IoT device executes split learning part,

f4 + backPropagation (Wf’, dzxi”)
if level = N — 1 do
for each IoT device S;eSp in parallel do

5
6
7 Send model weight to edge sever Wfi_1 < backPropagation (Wf, drx?/f)
8
9

end for
con - SaWH
Aggregate model parameter WeN-1,, 1 = Zd’es“é;/ilf“
D
10: end if
11: level -

12: if level # 1do
13: foredge servere € E do
14: Send model weight to upper-level edge sever WN-1; <— WN-2;

15: end for

16: Aggregate model parameter utilized Fed Avg algorithm
17: level --;

18: endif

19: if level =1do

20: foredgeservere € E do

21: Send model weight to cloud sever

22: end for

23: Aggregate model parameter from lower-level edge server (all IoT devices model parameter)
Esvges S"g Wgz/t

—

24: Send W€, to all lower-level edge server and all IoT device as previous upload path

25: end if

26: end if

c . _
Wi =

4. Experiment

In this section, we describe the performance of multi-level split federated learning on
different datasets (Fashion MNIST, HAM10000) and different machine learning models
(LeNet, ReNet18). The feasibility of our proposed framework is verified by comparing
the traditional split federated learning, such as SFLV1, multi-level federated learning, and
centralized learning in an independent identically distributed (IID) and balanced dataset,
an unbalanced dataset, and a non-independent identically distributed (non-IID) dataset.
We also tested the performance of multi-level SFL with a different number of clients and
demonstrated that multi-level architecture can reduce the impact of an increasing number
of clients on model training accuracy. Since the aim of the experiments is to simulate the
real smart cities AloT system in Docker, the model accuracy and the time cost of training
the model will be the evaluation criteria to test the framework we proposed.

4.1. Experiment Setting

The experiment is built on Docker 24.0.7 and API 1.43, using multiple isolated Docker
containers to simulate the end devices in the smart city AloT system, such as cameras,
indicators, temperature sensors, etc. Docker compose v2.23.3 is used to manage multiple
clusters of Docker containers. To simulate a close-to-real-world scenario, clients have been
assumed to be divided into distinct groups based on their region. Due to each region
having its own WLAN or PAN, the clients in each group are connected through Docker’s

Future Internet 2024, 16, 82

11 of 19

bridge network built under different IP addresses (local network). The upper-level nodes of
each group, namely edge nodes and fog nodes, are connected to the cloud server through a
global network. The MQTT protocol is used for message transfer between nodes at various
levels, through the publication and subscription of messages to manage the joining of group
nodes, the start and end of model training, and the aggregation of model parameters. We
also use Secure Sockets Layer (SSL) sockets to add a secret key to the transmission of model
weights in the system, so the sent weights will be hashed together with the key, ensuring the
security and privacy of data transmission in the real world. The experiment used SSL single
authentication, that is, the client should authenticate the identity of the cloud server, and
the server does not need to authenticate the client. Once the authentication is complete and
the server and client SSL session is established, the two parties begin an MQTT connection
over the secure SSL channel and communicate over the encrypted channel by publishing
and subscribing context, as shown in Figure 3.

SSL-encrypted
communication channel

X
ic. © ain 52
o S
\OPP Lotk =
Edge node
e

sinls@™

¢
opic

d 9 5 topic: train/start 652 qupscP®

e Publish: yes ¢
(o)
D/C.f
R
(7,
s, Ve,
% b +
S €
z’bjt
*/6@
L
e
“it
e

Cloud server MQTT Broker
k.
3,
//;'/34? Edge node

Figure 3. Experiment simulation smart cities MQTT protocol with encrypted SSL.

All programs are written by Python3.6 and TensorFlow1.8 and built on a Windows
computer with an NVIDIA GeForce RTX4090 GPU (Santa Clara, CA, USA) and Intel Core
19-12900K CPU (Santa Clara, CA, USA). The NVIDA GeForce RTX4090 is a public version
of the card manufactured by NVIDIA, and the device is sourced from the United States.
Intel Core i9-12900K CPU is Boxed Intel® Core™ 9-12900K Processor (30M Cache, up to
5.20 GHz) FC-LGA16A, for China. We selected HAM10000 and Fashion MNIST datasets,
ResNet18 and LeNet, as machine learning network architectures to train these two datasets,
respectively. Both architectures belong to the classical convolutional neural network-type
architectures. ResNet18, consisting of 15 convolutional layers and 2 pooling layers, was
used to test the proposed framework as a large machine learning task. Moreover, LeNet
contains three convolutional layers and 2 pooling layers as machine small learning tasks to
test the proposed framework. In addition, the learning rate of both networks is 0.0001.

In all experiments under the split federated setting, the network is split according
to the following layer: the third layer of ResNet18 (the BatchNormalization layer) and
the second layer of LeNet (the MaxPool layer). Generally, two factors are considered in
the selection of the cutting layer of the machine learning model: one is the proportion of
computing amount between the end device and the master computing node after the model
is split, and the other is the hidden layer feature dimension of the cutting layer. The former
is mainly determined by the processing speed, memory size, and power consumption
budget of the end device. The latter is mainly determined by the bandwidth of the network
connection between the end device and the master server. Since the experiment is set for
training on resource-limited IoT devices and the bandwidth of MQTT protocol is much
less than other protocols [36], the choice of destratification of the model does not need to
consider the size of the feature dimension too much but rather the computing resources of
the IoT devices. Therefore, we chose to train on IoT devices at a model layer with less split
while ensuring that fragmented data do not compromise the privacy of the source data.

Future Internet 2024, 16, 82

12 of 19

4.2. Experiment Dataset and Simulation

Two public image datasets were used in the experiment: Fashion MNIST [37] and
HAM10000 [38], as shown in Table 3. Fashion MNIST is an image dataset that replaces the
MNIST handwritten numerals set. It includes front images of 70,000 different products from
10 categories. Fashion MNIST’s size, format, and training/test set division are exactly the
same as the original MNIST, with a 60,000/10,000 training test data partition, 28 x 28 gray
scale picture. As the MNIST dataset is too simple and the amount of data is small, Fashion
MNIST is more consistent with the machine learning tests AloT system based on smart
cities. The HAM10000 dataset consists of 10,015 dermatoscopic images for the classification
of pigmented skin lesions. There are seven labels: Akiec, bee, bkl, df, mel, nv, and vasc.
The number of samples in each category of the HAM10000 dataset is not the same, so its
sample imbalance is prone to overfitting. We used this dataset to test the performance of
multi-level SFL under unbalanced samples. The dataset is divided by the number of clients,
each client holds a portion of the dataset, and the label of the dataset is stored in the master
server of each client group.

Table 3. Training and testing of dataset.

Dataset Training Samples Testing Samples Image Size
Fashion MNIST [37] 60,000 10,000 28 x 28
HAM10000 [38] 9013 1002 600 x 450

In order to simulate the limited computing resources of the IoT device and the sufficient
computing resources of the master server used for computing in split learning, part of the
model trained in the client is calculated by the CPU, while the other part of the model
in the server is calculated by the GPU. Since the cloud server only needs to perform the
task of parameter averaging, the cloud server is also simulated by a container in Docker.
Cloud server containers publish task topics to edge nodes over the backbone network, and
multiple containers simulate different groups of IoT devices receiving task selection datasets
from edge nodes. The containers of each group are connected via a local network within
the group, but each container trains the local model independently and communicates
only when a topic is published for new devices to join. MQTT protocol is simulated by
docker-vernemgq, and container clusters are deployed by docker-composer. All containers
are independent of each other to simulate the condition that data cannot be shared between
IoT devices.

4.3. Performance of Multi-Level SFL, FL, and Centralized Learning

Centralized learning and multi-level federated learning serve as benchmarks for
testing our proposed multi-level split federated learning. Multi-level federated learning
and multi-level split learning are, respectively, tested in the AloT system of four levels. The
end layer is set with 50 nodes, which are divided into two groups according to geographical
location, and the edge layer and fog layer are set with 2 nodes, which are, respectively,
responsible for aggregating the model weights of the two groups of end nodes. The cloud
has one node responsible for performing the FedAvg algorithm to aggregate the model
weights of the edge nodes. Table 1 summarizes the accuracy of distributed collaborative
learning over 50 global epochs with a batch size of 32 (Fashion MNIST) or 1024 (HAM10000)
for each local epoch.

As shown in Table 4, multi-level split federated learning and multi-level federated
learning perform well in experimental settings, and there is no significant difference
between centralized learning and multi-level federated learning. Although centralized
learning on both machine large learning tasks (ResNet18) and small machine learning tasks
LeNet) has slightly better convergence results than multi-level split federated learning
and federated learning, only a few accuracy losses are negligible. Moreover, we compare
multi-level SFL and FL, both of which do not overfit on the HAM10000 and Fashion

Future Internet 2024, 16, 82

13 of 19

MNIST datasets, because multi-level SFL and FL execute the Fed Avg algorithm on multiple
upper layers, so the client can reduce the number of local model updates. In addition, as
shown in Table 4, multi-level SFL performs better than multi-level FL in the HAM10000
dataset. Because the sample size of the HAM10000 dataset is unbalanced and multi-
level SFL inherits the properties of SL, machine learning performance is better under the
unbalanced dataset.

Table 4. Train and test result in different distributed setting.

Dataset Architecture Centralized Learning Multi-Level FL Multi-Level SFL
Train Test Train Test Train Test
HAM10000 ResNet18 74.4% 79.6% 76.9% 77.3% 78.6% 79.4%
Fashion MNIST LeNet 88.7% 90.2% 86.1% 87.6% 87.9% 88.9%

In Figure 4, the X-axis represents the epoch of training, the Y-axis on the left represents
the accuracy of training, and the Y-axis on the right represents the training loss. It can be
seen from the experimental results that both multi-level SFL and FL can converge after
50 epochs on the Fashion MNIST dataset, reaching an accuracy of 88.9% and 88.6%. We note
that multi-level SFL and FL converge first, while centralized learning begins to converge
later, presumably because the dataset each client trains on is too small and the data type is
large due to the random allocation of the dataset. Furthermore, the convergence rate of
multi-level SFL is faster, and the model began to converge at about 20 epochs. This shows
that multi-level SFL can reduce the communication overhead during training.

0.90

- 0.9
b
_}-—/“W—’“’H\
0.85 - [
- 0.7
% 0.80 — R "
5 - SFL o
- 0.6 =
— normal .
A SFL_loss -
0.75 4 | os
0.70 - T
- 0.3
0 10 20 30 40 50
epoch

Figure 4. Testing convergence of LeNet on Fashion MNIST under various learning.

4.4. Effect of Different Clients on Performance

In this section, we will analyze the influence of edge client data on model training
accuracy. For multi-level SFL, we increase the number of nodes on each tier as well as
the number of clients for aggregation of model weights, as shown in Table 5. Considering
that the master server running the split model needs to run the split model for each client
node, we assume that each client group in different regions is equipped with a master
server node, so during the model training and optimization process, we do not consider
the transfer time between the master service node and the client node.

Future Internet 2024, 16, 82 14 of 19
Table 5. Number of clients and multi-level nodes for training.
The number of clients 5 10 20 50
The number of edge nodes in edge level 2 2 2 4
The number of fog nodes in fog level 1 1 2 2
The number of cloud servers 1 1 1 1
The number of master servers 2 2 2 4

This section will analyze the impact of the number of LeNet users on Fashion MNIST.
Figure 5 shows how the test accuracy and convergence rate vary with the number of epochs
when a multi-level SFL is trained on a different number of clients (5, 10, 20, 50 clients). We
can see that as the number of clients increases, the convergence speed of multi-level SFL
will slow down, but the convergence speed is not obvious, and it is always better than
the convergence speed of centralized learning. Moreover, for multi-level SFL, presumably,
as the number of clients increases, the model accuracy decreases. For example, when the
number of clients reaches 20 and 50, the accuracy of the test is significantly lower than that
of the concentrated learning. However, the accuracy of the model trained on 50 clients is
slightly higher than the accuracy of the model trained on 20 clients because the edge nodes
of the middle layer also increase as the layers of the client are interlayer, so the number of
middle-layer nodes of the multi-level SFL helps the SFL reduce the loss of accuracy.

0.90
m%
0.85 4
- normal
e 0.801 5-clients
! - —— 10-clients
e — 20<lients
Y 0.75 —— 50-clients
0.70 4
0 10 20 30 40 50

epoch

Figure 5. Effect of the number of clients on testing accuracy for LeNet on Fashion MNIST.

Figure 6 shows the time cost required for LeNet to train the Fashion MNIST dataset
with a different number of clients. As can be seen from the figure, the training time required
for centralized learning is always better than the time cost of training the model under
multi-level SFL with different clients. This is because the experiment simulates the MQTT
protocol used by the AloT system to communicate, so the communication time and the
time spent waiting for all the clients to train will layer the time cost of the multi-level
SFL. The training time of the model decreases first and then increases with the increase in
clients. This is because as the number of multi-level SFL clients increases, the amount of
data locally decreases accordingly, reaching the minimum time overhead with 20 clients.
However, when the number of clients reaches 50, the time overhead for model training
starts to rise because the time for cloud servers and nodes in the middle level to publish
topics and receive requests under the MQTT protocol starts to increase.

Future Internet 2024, 16, 82

15 of 19

140 A

—
N
o

12

(=
o
o

80 1

60 1)

Time overhead(minutes)

40

20

normal 5 clients 10 clients 20clients 50 clients

Figure 6. Time required for LeNet model to reach convergence in number of clients.

4.5. Impact of Different Level Layer on the SFL Model Training

Traditional split federated learning architecture, such as SFLV1 and SFLV2 [29], has
only two levels: the server executing FedAvg and the clients with the master server. It has
only one operation of model parameter aggregation, and when a client is corrupted, the
FedAvg server will wait and freeze. Multi-level SFL performs model aggregation operations
at multiple levels, and due to the MQTT protocol, nodes performing aggregation operations
can communicate with clients by publishing topics, so there is no need to wait for broken
nodes. Therefore, we set up two SFL scenarios: traditional SFL (SFLV1) and multi-level
SFL, both of which have 20 clients for collaborative learning, and multi-level SFL with
4 edge nodes and 2 fog nodes to perform aggregation of global model weights. In addition,
we make the dataset to which each client is assigned non-independent and identically
distributed (non-1ID). Moreover, the local dataset of the clients is divided according to the
label distribution of the sample, which means the sample label distribution on each client
is different.

Figure 7 shows the relationship between epochs and model test accuracy by non-1ID
SFLV1 and multi-level SFL architectures under the MQTT communication protocol. After
50 epochs, multi-level SFL and SFLV1-trained LeNet models can achieve approximately 88%
and 86% accuracy, respectively, under non-IID. As can be seen from the figure, in the non-IID
scenario, multi-level SFL is superior to traditional SFL, with faster convergence and higher
model accuracy. This indicates that non-IID has a negative effect on splitting federated
learning, but multi-level SFL can improve this problem. In the federated learning part,
compared with traditional split federation learning, multi-level split federation learning can
aggregate more clients at the same time for model training, so the model convergence speed
will be faster. In the split learning part, since the multi-level SFL performs aggregation
operations at each layer, the multi-level SFL clients undergo more local model updates,
which alleviates the non-1ID problem.

4.6. Comparison of Multi-Level SFL and FL Time Cost

This section compares the time overhead of multi-level SFL and multi-level FL when
training large (ResNet18) and small (LeNet) machine learning tasks. Both use a four-level
multi-level architecture, and the number of clients is 20. In order to simulate the limited
computing resources of the client and the efficient computing resources of the master server,
the local training of the client uses the CPU for computing, while the split model trained by
the master server uses the GPU for training. We test the impact of multiple levels of SFL on
resource-limited clients by the time overhead on model training.

Future Internet 2024, 16, 82

16 of 19

0.90

0.85 1

0.80 A

— SFLV1
——— Multi-level SFL

0.75 A

test-Accuracy

0.70 A

0.65 -

0.60 T T T T T T
0 10 20 30 40 50

epoch

Figure 7. Testing convergence of LeNet on non-IID dataset.

As shown in Figure 8, centralized learning has the lowest time cost for both small
and large machine learning tasks, at 25.32 min and 85.57 min, respectively. In the training
of small model LeNet, the time cost of multi-level FL is slightly lower than that of multi-
level SFL, and the difference in time cost between the two is not obvious. This is because
when training the small network LeNet, the computing cost of the two-layer network
in the local training of the client is relatively small, and the master server only needs to
train the three-layer network, so the impact of split learning on the global training of the
AloT system cannot be reflected. Furthermore, because the master server and client also
communicate via the MQTT protocol, multi-level SFL has a partial longer topic release time
than multi-level FL. Therefore, in the small network training, multi-level SFL cannot present
its advantage. However, on a large network, such as ResNet18, which has 18 layers, 15 of
which are computed by the master server, the time cost of multi-level SFL is significantly
lower than that of multi-level FL. And because the split learning process of multi-level SFL
is run in parallel in the main server, rather than a linear run similar to split learning, the
time cost of multi-level learning in large machine learning tasks is lower. The experimental
results show that multi-layer SFL is more suitable for clients in AloT with limited resources
than multi-layer FL.

300 A 289.1
B normal

B Multi-level FL

250 4 mm Multi-level SFL

N
(=]
o

Time cost(minute)
-
wm
o

100 -

50 A

LeNet ResNet18
Different machine learning tasks

Figure 8. Time cost of multi-level SFL and multi-level FL train different models.

Future Internet 2024, 16, 82 17 of 19

5. Conclusions

In this work, we proposed a novel multi-level split federated learning (SFL) framework
for the enhancement of collaborative learning in large-scale AloT systems. The multi-level
SFL framework addresses the connectivity and data processing challenges that occur in a
large-scale AloT system with a multitude of clients. Through multiple levels of aggregation
of model parameters, it significantly reduces the communication delay between the cloud
server and the clients, enhancing the processing speed and entire performance of the central
server. By integrating split learning into the framework, it balances the system heterogene-
ity among clients and boosts the system’s scalability to incorporate more IoT devices for
collaborative learning. It also mitigates the single point of failure risk of the central cloud
server and ensures continuous model training even in the event of longer transmission
distances. The use of the Message Queuing Telemetry Transport (MQTT) protocol and
Docker containers in the experimental setup substantiates the practical feasibility of the
proposed multi-level SFL framework. The resulting improvements in model accuracy
under large-scale clients and faster convergence in non-IID scenarios, as evidenced by
the simulation experiments, further validate the effectiveness of the proposed solution.
Although our proposed multi-level SFL architecture has shown some advantages in model
accuracy, it still has some shortcomings in terms of transmission overhead. For example,
we have not further explored the effect of different sized datasets on the size of the in-
formation transferred and how to balance the overall communication overhead through
MQTT generated by federated learning and split learning. Future work will further study
these aspects.

Author Contributions: Conceptualization, H.X., K.P.S. and L.M.A.; methodology, H.X. and K.P.S;
resources, K.P.S.; data curation, H.X., K.P.S. and L. M.A.; writing—original draft preparation, H.X.,
K.PS. and].S.; writing—review and editing, K.P.S.,].S. and L.M.A. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The Fashion MNIST dataset can be found in Kaggle: https://www.
kaggle.com/datasets/zalando-research /fashionmnist (accessed on 15 January 2024). The HAM10000
dataset comes from the paper: “The HAM10000 dataset, a large collection of multi-source dermato-
scopic images of common pigmented skin lesions”, DOL: https://doi.org/10.1038/sdata.2018.161.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

Su, Z.; Wang, Y.; Luan, T.H.; Zhang, N.; Li, F; Chen, T.; Cao, H. Secure and Efficient Federated Learning for Smart Grid With
Edge-Cloud Collaboration. IEEE Trans. Ind. Inform. 2022, 18, 1333-1344. [CrossRef]

Xu, C.; Qu, Y,;; Luan, T.H.; Eklund, PW.; Xiang, Y.; Gao, L. An Efficient and Reliable Asynchronous Federated Learning Scheme
for Smart Public Transportation. IEEE Trans. Veh. Technol. 2023, 72, 6584-6598. [CrossRef]

Lian, Z.; Yang, Q.; Wang, W.; Zeng, Q.; Alazab, M.; Zhao, H.; Su, C. DEEP-FEL: Decentralized, Efficient and Privacy-Enhanced
Federated Edge Learning for Healthcare Cyber Physical Systems. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3558-3569. [CrossRef]
Taik, A.; Mlika, Z.; Cherkaoui, S. Clustered Vehicular Federated Learning: Process and Optimization. IEEE Trans. Intell. Transp.
Syst. 2022, 23, 25371-25383. [CrossRef]

Bebortta, S.; Tripathy, S.S.; Basheer, S.; Chowdhary, C.L. FedEHR: A Federated Learning Approach towards the Prediction of
Heart Diseases in IoT-Based Electronic Health Records. Diagnostics 2023, 13, 3166. [CrossRef]

Hsu, R-H.; Wang, Y.-C.; Fan, C.-L; Sun, B.; Ban, T.; Takahashi, T.; Wu, T.-W.; Kao, S.-W. A Privacy-Preserving Federated Learning
System for Android Malware Detection Based on Edge Computing. In Proceedings of the 2020 15th Asia Joint Conference on
Information Security (AsiaJCIS), Taipei, Taiwan, 2021 August 2020; pp. 128-136.

Yamamoto, F.; Ozawa, S.; Wang, L. eFL-Boost: Efficient Federated Learning for Gradient Boosting Decision Trees. IEEE Access
2022, 10, 43954-43963. [CrossRef]

Jiang, L.; Wang, Y.; Zheng, W.; Jin, C.; Li, Z.; Teo, S.G. LSTMSPLIT: Effective SPLIT Learning Based LSTM on Sequential Time-Series
Data. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 28 February-1 March 2022.
Hsieh, C.-Y.; Chuang, Y.-C.; Wu, A.-Y. C3-SL: Circular Convolution-Based Batch-Wise Compression for Communication-Efficient
Split Learning. In Proceedings of the 2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP),
Xi’an, China, 22-25 August 2022.

https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://doi.org/10.1038/sdata.2018.161
https://doi.org/10.1109/TII.2021.3095506
https://doi.org/10.1109/TVT.2022.3232603
https://doi.org/10.1109/TNSE.2022.3175945
https://doi.org/10.1109/TITS.2022.3149860
https://doi.org/10.3390/diagnostics13203166
https://doi.org/10.1109/ACCESS.2022.3169502

Future Internet 2024, 16, 82 18 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Chen, X,; Li, J.; Chakrabarti, C. Communication and Computation Reduction for Split Learning Using Asynchronous Training. In
Proceedings of the 2021 IEEE Workshop on Signal Processing Systems (SiPS), Coimbra, Portugal, 19-21 October 2021; pp. 76-81.
Abedi, A.; Khan, S.S. FedSL: Federated Split Learning on Distributed Sequential Data in Recurrent Neural Networks. Multimed.
Tools Appl. 2023. [CrossRef]

Wu, Y;; Kang, Y.; Luo, J.; He, Y.; Yang, Q. FedCG: Leverage Conditional GAN for Protecting Privacy and Maintaining Competitive
Performance in Federated Learning. arXiv 2022, arXiv:2111.08211.

Zhang, Z.; Pinto, A.; Turina, V.; Esposito, F.; Matta, I. Privacy and Efficiency of Communications in Federated Split Learning.
IEEE Trans. Big Data 2023, 9, 1380-1391. [CrossRef]

Deng, Y,; Lyu, E; Ren,].; Zhang, Y.; Zhou, Y.; Zhang, Y.; Yang, Y. SHARE: Shaping Data Distribution at Edge for Communication-
Efficient Hierarchical Federated Learning. In Proceedings of the 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS), Washington, DC, USA, 7-10 July 2021; pp. 24-34.

Liu, L.; Zhang,].; Song, S.H.; Letaief, K.B. Client-Edge-Cloud Hierarchical Federated Learning. In Proceedings of the ICC
2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7-11 June 2020; pp. 1-6.

Mansour, Y.; Mohri, M.; Ro, J.; Suresh, A.T. Three Approaches for Personalization with Applications to Federated Learning. arXiv
2020, arXiv:2002.10619.

Hao, M,; Li, H.; Luo, X.; Xu, G.; Yang, H.; Liu, S. Efficient and Privacy-Enhanced Federated Learning for Industrial Artificial
Intelligence. IEEE Trans. Ind. Inform. 2020, 16, 6532-6542. [CrossRef]

Wang, H.; Kaplan, Z.; Niu, D.; Li, B. Optimizing Federated Learning on Non-IID Data with Reinforcement Learning. In
Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6-9 July 2020;
pp. 1698-1707.

Guo, J.; Ho, LW.-H.; Hou, Y; Li, Z. FedPos: A Federated Transfer Learning Framework for CSI-Based Wi-Fi Indoor Posi-tioning.
IEEE Syst.]. 2023, 17, 4579-4590. [CrossRef]

Karimireddy, S.P,; Kale, S.; Mohri, M.; Reddi, S.J.; Stich, S.U.; Suresh, A.T. SCAFFOLD: Stochastic Controlled Averaging for
Federated Learning. In Proceedings of the 37th International Conference on Machine Learning, PMLR, Online, 13-18 July 2020;
Volume 119, pp. 5132-5143.

Tan, A.Z.; Yu, H.; Cui, L.; Yang, Q. Towards Personalized Federated Learning. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34,
9587-9603. [CrossRef]

Xu, Y.; Fan, H. FedDK: Improving Cyclic Knowledge Distillation for Personalized Healthcare Federated Learning. IEEE Access
2023, 11, 72409-72417. [CrossRef]

Guo, S.; Xiang, B.; Chen, L.; Yang, H.; Yu, D. Multi-Level Federated Learning Mechanism with Reinforcement Learning
Optimizing in Smart City. In Proceedings of the Artificial Intelligence and Security; Sun, X., Zhang, X., Xia, Z., Bertino, E., Eds.;
Springer International Publishing: Cham, Switzerland, 2022; pp. 441-454.

Campolo, C.; Genovese, G.; Singh, G.; Molinaro, A. Scalable and Interoperable Edge-Based Federated Learning in IoT Contexts.
Comput. Netw. 2023, 223, 109576. [CrossRef]

Liu, L.; Tian, Y.; Chakraborty, C.; Feng, J.; Pei, Q.; Zhen, L.; Yu, K. Multilevel Federated Learning-Based Intelligent Traffic Flow
Forecasting for Transportation Network Management. IEEE Trans. Netw. Serv. Manag. 2023, 20, 1446-1458. [CrossRef]

Wu, Z.; Wu, X.; Long, Y. Multi-Level Federated Graph Learning and Self-Attention Based Personalized Wi-Fi Indoor Fingerprint
Localization. IEEE Commun. Lett. 2022, 26, 1794-1798. [CrossRef]

Thapa, C.; Chamikara, M.A.P; Camtepe, S.A. Advancements of Federated Learning Towards Privacy Preservation: From
Federated Learning to Split Learning. In Federated Learning Systems: Towards Next-Generation, Rehman, M.H.U., Gaber,
M.M., Eds.; Studies in Computational Intelligence; Springer International Publishing: Cham, Switzerland, 2021; pp. 79-109.
ISBN 978-3-030-70604-3.

Ayad, A.; Renner, M.; Schmeink, A. Improving the Communication and Computation Efficiency of Split Learning for IoT
Applications. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7-11 December
2021; pp. 01-06.

Thapa, C.; Chamikara, M.A.P.; Camtepe, S.; Sun, L. SplitFed: When Federated Learning Meets Split Learning. Proc. AAAI Conf.
Artif. Intell. 2022, 36, 8485-8493. [CrossRef]

Tian, Y.; Wan, Y.; Lyu, L.; Yao, D.; Jin, H.; Sun, L. FedBERT: When Federated Learning Meets Pre-Training. ACM Trans. Intell. Syst.
Technol. 2022, 13, 66:1-66:26. [CrossRef]

Jiang, H.; Liu, M,; Sun, S.; Wang, Y.; Guo, X. FedSyL: Computation-Efficient Federated Synergy Learning on Heterogeneous IoT
Devices. In Proceedings of the 2022 IEEE/ ACM 30th International Symposium on Quality of Service (IWQoS), Oslo, Norway,
10-12 June 2022; pp. 1-10.

Deng, R; Du, X.; Lu, Z.; Duan, Q.; Huang, 5.-C.; Wu, J. HSFL: Efficient and Privacy-Preserving Offloading for Split and Federated
Learning in IoT Services. In Proceedings of the 2023 IEEE International Conference on Web Services (ICWS), Chicago, IL, USA,
2-8 July 2023; pp. 658-668.

Samikwa, E.; Maio, A.D.; Braun, T. ARES: Adaptive Resource-Aware Split Learning for Internet of Things. Comput. Netw. 2022,
218, 109380. [CrossRef]

https://doi.org/10.1007/s11042-023-15184-5
https://doi.org/10.1109/TBDATA.2023.3280405
https://doi.org/10.1109/TII.2019.2945367
https://doi.org/10.1109/JSYST.2022.3230425
https://doi.org/10.1109/TNNLS.2022.3160699
https://doi.org/10.1109/ACCESS.2023.3294812
https://doi.org/10.1016/j.comnet.2023.109576
https://doi.org/10.1109/TNSM.2023.3280515
https://doi.org/10.1109/LCOMM.2022.3159504
https://doi.org/10.1609/aaai.v36i8.20825
https://doi.org/10.1145/3510033
https://doi.org/10.1016/j.comnet.2022.109380

Future Internet 2024, 16, 82 19 of 19

34.

35.

36.

37.

38.

Gao, Y.; Kim, M.; Abuadbba, S.; Kim, Y.; Thapa, C.; Kim, K.; Camtep, S.A.; Kim, H.; Nepal, S. End-to-End Evaluation of Federated
Learning and Split Learning for Internet of Things. In Proceedings of the 2020 International Symposium on Reliable Distributed
Systems (SRDS), Shanghai, China, 21-24 September 2020; pp. 91-100.

McMabhan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks from
Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR, Fort
Lauderdale, FL, USA, 20-22 April 2017; pp. 1273-1282.

Shahri, E.; Pedreiras, P.; Almeida, L. Extending MQTT with Real-Time Communication Services Based on SDN. Sensors 2022,
22,3162. [CrossRef] [PubMed]

Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86,
2278-2324. [CrossRef]

Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 Dataset, a Large Collection of Multi-Source Dermatoscopic Images of
Common Pigmented Skin Lesions. Sci. Data 2018, 5, 180161. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s22093162
https://www.ncbi.nlm.nih.gov/pubmed/35590852
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/sdata.2018.161
https://www.ncbi.nlm.nih.gov/pubmed/30106392

	Introduction
	Related Works
	Proposed Framework
	MQTT Protocol-Based Message Exchange
	Split Learning Side
	Multi-Level Federated Learning Workflow

	Experiment
	Experiment Setting
	Experiment Dataset and Simulation
	Performance of Multi-Level SFL, FL, and Centralized Learning
	Effect of Different Clients on Performance
	Impact of Different Level Layer on the SFL Model Training
	Comparison of Multi-Level SFL and FL Time Cost

	Conclusions
	References

