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Abstract: Surveillance video analytics encounters unprecedented challenges in 5G and IoT envi-
ronments, including complex intra-class variations, short-term and long-term temporal dynamics,
and variable video quality. This study introduces Edge-Enhanced TempoFuseNet, a cutting-edge
framework that strategically reduces spatial resolution to allow the processing of low-resolution
images. A dual upscaling methodology based on bicubic interpolation and an encoder–bank–decoder
configuration is used for anomaly classification. The two-stream architecture combines the power of a
pre-trained Convolutional Neural Network (CNN) for spatial feature extraction from RGB imagery in
the spatial stream, while the temporal stream focuses on learning short-term temporal characteristics,
reducing the computational burden of optical flow. To analyze long-term temporal patterns, the
extracted features from both streams are combined and routed through a Gated Recurrent Unit (GRU)
layer. The proposed framework (TempoFuseNet) outperforms the encoder–bank–decoder model in
terms of performance metrics, achieving a multiclass macro average accuracy of 92.28%, an F1-score
of 69.29%, and a false positive rate of 4.41%. This study presents a significant advancement in the
field of video anomaly recognition and provides a comprehensive solution to the complex challenges
posed by real-world surveillance scenarios in the context of 5G and IoT.

Keywords: edge intelligence; anomaly identification; super resolution; video classification; two-
stream architecture; StyleGAN; IoT environment

1. Introduction

In the era of 5G and IoT, video surveillance is a critical component of modern secu-
rity and monitoring strategies. This surveillance relies on advanced camera technology
to observe and analyze diverse environments and contributes to applications such as
security, crime prevention, safety, emergency response, traffic monitoring, and behav-
ior analysis [1–3]. Video surveillance contributes significantly to theft prevention, traffic
management, and overall safety in the residential, commercial, and industrial sectors.

The incorporation of technology and machine learning [4,5] into video surveillance,
particularly in 5G and IoT environments, initiates unprecedented possibilities. Automated
video surveillance systems controlled by computer vision algorithms [6–8] detect anomalies,
changes in motion, and intrusions in real-time, reducing reliance on human monitoring [9].
However, challenges persist, such as operator errors, false alarms, and limitations in
contextual information within video footage [10–12].

In the context of 5G and IoT, this study addresses technical limitations associated with
low-quality videos: specifically, poor lighting and low spatial resolution. These difficulties
have an impact on the perceptual quality of video streams [13–15] and introduce factors

Future Internet 2024, 16, 83. https://doi.org/10.3390/fi16030083 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16030083
https://doi.org/10.3390/fi16030083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-2761-8399
https://orcid.org/0000-0002-4883-7446
https://doi.org/10.3390/fi16030083
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16030083?type=check_update&version=1


Future Internet 2024, 16, 83 2 of 17

such as poor lighting, camera noise, low spatial resolution, and low frame rates [9,16–19].
Despite these challenges, various techniques for detecting anomalies in low-quality surveil-
lance videos have been proposed, [20,21]. Two primary approaches are commonly used to
address the challenge of detecting anomalies in low-quality videos. The first entails improv-
ing video quality with techniques like denoising, dehazing, and super-resolution [22,23].
An alternative strategy is to use deep learning methods directly for anomaly detection in
low-quality videos [24,25].

This study outperforms existing approaches by introducing a new super-resolution
technique called “TempoFuseNet”. For enhanced anomaly detection, this innovative
framework employs a two-stream architecture that combines spatial and temporal features.
The spatial stream extracts features using a pre-trained Convolutional Neural Network
(CNN), whereas the temporal stream captures short-term temporal characteristics efficiently
using a novel Stacked Grayscale 3-channel Image (SG3I) approach. The extracted features
from both streams are fused via a Gated Recurrent Unit (GRU) layer to leverage long-term
temporal dependencies effectively. The contributions of this study include the identification
of challenges related to intra-class and inter-class variabilities, the introduction of a super-
resolution technique leveraging an encoder–bank–decoder configuration, the incorporation
of a StyleGAN for feature enhancement, and the proposal of a two-stream architecture for
anomaly classification.

Recognizing the nuanced landscape of automated surveillance systems is essential in
the continuum of addressing challenges in video surveillance. These systems play a critical
role in overcoming the limitations of manual monitoring. Despite their potential, however,
these systems face challenges that necessitate strategic interventions for further refinement.
One significant challenge is the generation of false alarms, which can overwhelm security
personnel and undermine the effectiveness of surveillance operations. False alarms not
only divert attention but also place unnecessary demands on resources. The importance
of minimizing false alarms as a fundamental aspect of optimizing automated surveillance
systems is acknowledged in this study.

Another problem stems from video’s inherent limitation in providing comprehensive
context. Surveillance videos frequently capture snippets of events, making it difficult to
decipher the intentions of those being watched or comprehend the full scope of a given
incident. Improving the contextual understanding of surveillance footage appears to be a
critical component in addressing this challenge. Technical constraints obstruct the seamless
operation of automated surveillance systems. Poor lighting, low-resolution cameras, and
limited storage capacity can all have an impact on the effectiveness of these systems.
To improve the robustness and reliability of automated surveillance, a comprehensive
approach to addressing these technical limitations is required.

This study focuses on the technical limitations caused by low-quality videos: specifi-
cally, poor lighting and low spatial resolution. These difficulties have been identified as
critical factors influencing the perceptual quality of video streams and thereby influencing
the accuracy of anomaly detection systems according to [16]. The contributions of this
study can be summed up as follows:

• This study meticulously identifies and articulates two critical issues inherent in surveil-
lance videos: high intra-class variability and low inter-class variability. These chal-
lenges, which are inextricably linked to the temporal properties of video streams, both
short- and long-term, are exacerbated by the prevalence of low-quality videos.

• This study makes an outstanding contribution by introducing an innovative super-
resolution approach designed to mitigate the impact of low-quality videos caused by
downscaling. This approach outperforms traditional bicubic interpolation by using
an encoder–bank–decoder configuration to upscale videos. The primary goal is to
improve the spatial resolution of videos in order to increase the accuracy of anomaly
detection. The addition of a pre-trained StyleGAN as a latent feature bank is a critical
step forward that enriches the super-resolution process and, as a result, improves
anomaly classification accuracy.
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• The study implies a two-stream architecture for anomaly classification. The spatial
stream uses a pre-trained CNN model for feature extraction, whereas the temporal
stream employs an innovative approach known as Stacked Grayscale Image (SG3I).
SG3I effectively lowers the computational costs associated with optical flow compu-
tation while accurately capturing short-term temporal characteristics. The extracted
features from both streams are concatenated and fed into a Gated Recurrent Unit
(GRU) layer, which allows the model to learn and exploit long-term dependencies.

• Experiments show that the super-resolution model improves classification accuracy by
3.7% when compared to traditional bicubic interpolation methods. When combined
with the encoder–bank–decoder super-resolution model, the classification model
achieves an impressive accuracy of 92.28%, an F1-score of 69.29%, and a low false
positive rate of 4.41%.

To sum up, this research not only identifies and understands the difficulties that are
associated with surveillance footage, but it also introduces novel approaches to deal with
those difficulties. The end result of these efforts is observable improvements in performance
and accuracy for the classification of anomalies in surveillance videos.

2. Related Work

Video anomaly detection is critical in the domain of surveillance systems, as it ad-
dresses the need to identify anomalous segments within video streams. Over time, two
major streams of methodologies have emerged for this critical task: handcrafted approaches
and deep-learning-based methods. The former employs manual feature engineering tech-
niques such as STIP, SIFT-3D, and optical flow histograms, whereas the latter makes use of
the power of deep neural networks such as VGG and ResNet to process spatiotemporal
data efficiently. The introduction of two-stream Convolutional Neural Networks (CNNs)
for improved activity recognition and novel approaches to modeling long-term temporal
dependencies are notable advancements. The literature includes a wide range of deep
learning models, from ConvLSTM to attention-based architectures, all of which contribute
to the improvement of anomaly detection in videos. Furthermore, weakly supervised tech-
niques, generative models, and recent efforts to address anomalies in low-resolution videos
have significantly expanded the scope of this evolving field. In the midst of these advances,
our research focuses on a novel problem: detecting anomalies in multi-class scenarios in
low-quality surveillance videos. We present a unified methodology that combines novel
super-resolution techniques with a two-stream architecture, providing a comprehensive
solution to the complexities of real-world surveillance scenarios.

Manual feature engineering methods such as STIP, SIFT-3D, and optical flow his-
tograms involve human intervention [26,27]. While insightful, improved dense trajectory
approaches like the one by Wang et al. [28] surpass earlier handcrafted techniques. The ad-
vent of deep learning has revolutionized video anomaly identification, with networks like
VGG and ResNet efficiently processing spatiotemporal data in videos [29,30]. Noteworthy
in this domain is the introduction of two-stream Convolutional Neural Networks (CNNs),
which combine spatial and temporal inputs for improved activity recognition [31,32].

Advancements in modeling long-term temporal dependencies have been achieved
through techniques like temporal segment networks and 3D convolutional filters. Wang
et al. [33] introduced a temporal segment network that exhibited robust performance
on benchmark datasets. The C3D method by Tran et al. [34] addressed challenges in
modeling temporal information and inspired subsequent work by Maqsood et al. [35] for
anomaly classification. Among deep-learning-based models, significant strides have been
made, particularly in domains involving nonlinear, high-dimensional data. Luo et al. [36]
proposed a Convolutional Long Short-Term Memory (ConvLSTM) model for encoding
video frames and identifying anomalies. Ullah et al. [37] introduced a Convolution-Block-
Attention-based LSTM model that enhances spatial information accuracy. Riaz et al. [38]
combined human posture estimation with a densely connected fully Convolutional Neural
Network (CNN) for anomaly identification. Hasan et al. [1] utilized a recurrent neural net-
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work (RNN) and a convolutional autoencoder for anomaly detection, while Liu et al. [39]
integrated temporal and spatial detectors for anomaly identification.

Weakly supervised techniques, including C3D and MIL, have been employed for
anomaly detection. Sultani et al. [2] combined weak video labels with Multiple Instance
Learning (MIL). Landi et al. [40] used a coordinate-based regression model for tube
extraction. Generative models like GANs have been explored, with Sabokroul et al. [41]
training GANs for visual anomaly detection. BatchNorm into Weakly Supervised Video
Anomaly Detection (BN-WVAD) [42] has been used to capitalize on the statistical insight
that temporal features of abnormal events often behave as outliers; BN-WVAD leverages
the Divergence of Feature from Mean vector (DFM) function from BatchNorm. This
DFM criterion serves as a robust abnormality indicator and identifies potential abnormal
snippets in videos. It enhances anomaly recognition, proves to be more resistant to label
noise, and provides an additional anomaly score to refine predictions from classifiers that
are sensitive to noisy labels. In [43], a Temporal Context Aggregation (TCA) module for
efficient context modeling and a Prompt-Enhanced Learning (PEL) module for enhanced
semantic discriminability are demonstrated. The TCA module captures complete contextual
information, while the PEL module incorporates semantic priors using knowledge-based
prompts to improve discriminative capacity and maintain separability between anomaly
sub-classes. Additionally, a Score Smoothing (SS) module is introduced in the testing
phase to reduce false alarms. In [44], a U-Net-like structure is implemented to effectively
capture both local and global temporal dependencies in a unified manner. The encoder
hierarchically learns global dependencies on top of local ones, and the decoder propagates
this global information back to the segment level for classification.

Recent research has focused on addressing anomalies in extremely low-resolution
videos [25,45–47]. Techniques such as Inverse Super-Resolution (ISR), initially introduced
by Ryoo et al. [45], aim to identify optimal image modifications for extracting addi-
tional information from low-resolution images. Additionally, multi-Siamese loss functions
have been proposed to maximize data utilization from a collection of low-resolution im-
ages. Chen et al. [46] developed a semi-coupled two-stream network that leverages
high-resolution images to assist with training a low-resolution network. Xu et al. [47]
demonstrated that using high-resolution images improves low-resolution recognition by
incorporating a two-stream neural network architecture that takes high-resolution images
as inputs. Their approach, sharing convolutional filters between low- and high-resolution
networks, significantly enhanced performance. In addition, Demir et al. [48] proposed the
TinyVIRAT dataset for natural low-resolution videos and presented a gradual generative
technique for enhancing the quality of low-resolution events. Super-resolution techniques
have also found success in various applications such as low-resolution face verification,
small object detection, person re-identification, and activity recognition [49–52]. For in-
stance, Ataer et al. [50] introduced an identity-preserving super-resolution approach for
face verification at very low resolutions, and Bai et al. [51] developed a multitask generative
adversarial network for small object detection.

In summary, the field of video anomaly detection has witnessed diverse advancements,
from Bayesian deep learning to convolutional models, recurrent neural networks, and
spatial–temporal graph attention networks. Our study addresses the challenge of detecting
anomalies in multi-class scenarios within low-quality surveillance videos and showcases
improved classification performance compared to interpolation-based strategies. The
integration of novel super-resolution techniques and a two-stream architecture forms
the backbone of our methodology and contributes to the evolution of video anomaly
recognition in complex real-world scenarios. While the literature review reflects significant
progress in video anomaly detection, there is a significant research gap that our study seeks
to fill. Existing approaches have primarily focused on either high-quality video scenarios or
have addressed anomalies in a binary manner, both of which are insufficient for real-world
applications. The combination of novel super-resolution techniques and a two-stream
architecture, as proposed in our methodology, represents a novel approach to closing this
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gap. Our research contributes to the evolving landscape of video anomaly recognition by
providing a tailored solution to the complexities of multi-class scenarios and low-quality
surveillance videos within 5G and IoT environments.

3. Materials and Methods

The effectiveness of anomaly detection in surveillance videos is inextricably linked
to the quality of the input data. In this methodology, we address the challenges posed
by low-quality surveillance videos; we focus on issues such as poor lighting and spatial
resolution. Our method combines advanced video resizing techniques with deep-learning-
based super-resolution methods to improve the overall quality of video streams. The
initial stages of our methodology include a meticulous video resizing process in which
we experiment with various interpolation methods to upscale low-resolution videos. We
then present a novel video super-resolution strategy that takes advantage of GLEAN, a
framework that uses Generative Adversarial Networks (GANs) for latent feature extraction.
Unlike traditional GAN-based models, our implementation uses a streamlined process
that requires only one forward pass to generate high-resolution images. The use of a
StyleGAN, which has been fine-tuned on a dataset containing both low- and high-resolution
representations of surveillance video frames, is critical to our super-resolution strategy.
This pre-trained StyleGAN acts as a latent feature bank by providing rich priors for creating
realistic, high-quality, high-resolution videos. The proposed framework “TempoFuseNet”
is presented in Figure 1, and the specifics of all stages are discussed, including the dataset,
pseudocode for the super-resolution algorithm, and an explanation of our two-stream
architecture for anomaly classification. The goal is not only to improve the spatial resolution
of surveillance videos but also to provide a solid framework for accurately detecting
anomalies in challenging real-world scenarios within 5G and IoT environments.

Figure 1. Proposed framework (TempoFuseNet) for anomaly classification for low-resolution videos.

3.1. Dataset

In order to perform classification learning to classify surveillance videos into one of
several classes of anomalies, a labeled dataset of videos is required. Various datasets are
used by the research community to demonstrate anomaly detection in surveillance videos,
and each of these datasets has its own characteristics [2,39,53,54]. This study is based on
the UCF-Crime dataset [2], which is modified to make it more useful for the demonstration
of anomaly classification for low-quality surveillance videos.

There are 128 hours of surveillance footage in the original UCF-Crime dataset. The
dataset includes 1900 complete and unfiltered surveillance videos from the real world,
along with thirteen actual anomalies such as assault, arrest, abuse, arson, burglary, fighting,
shooting, explosion, road accident, vandalism, robbery, and shoplifting. These anomalies
were included in the dataset due to their possible impact on the safety of the general public.
We meticulously curated the dataset to address class imbalance by retaining a standardized
set of 50 videos per class to ensure the relevance and practicality of our study. Because of
this deliberate selection process, classes with insufficient representation were excluded,
resulting in a focused dataset with eight distinct categories: assault, arrest, abuse, arson,
burglary, fighting, explosion, and normal. This strategic enhancement to the UCF-Crime



Future Internet 2024, 16, 83 6 of 17

dataset ensures a balanced and representative collection, which improves the precision and
applicability of our experimental results. All videos in each class have the same spatial
resolution of 320 × 240 pixels, which contributes to the consistency and reliability of our
analytical framework.

Data Preparation

In order to perform learning on low-quality videos, the original videos are downsam-
pled by eight times to obtain a low-resolution version of the original videos. The video
resolution after downsampling is 40 × 30 pixels . Downsampling is performed by using
bilinear interpolation (refer to Equation (1)), in which the target image pixels are obtained
by performing linear interpolation in both the horizontal and vertical directions.

Let LR(x′, y′) be the low-resolution pixel values at coordinates (x′, y′), and let HR(x, y)
be the high-resolution pixel values at coordinates (x, y). The downsampling operation can
be expressed as:

LR(x′, y′) = f (HR(x, y)) (1)

where
x′ = [ x/8], y′ = [ y/8] (2)

This stage results in two sets of data: one containing high-resolution (HR) videos
that are the ground truth data, and the other has low-resolution (LR) videos, which are a
downsampled version of the data and will be used for classification modeling.

3.2. Video Upscaling

Video resizing is the most commonly used operation to change the resolution of a
video to match the requirements of the input layer of a convolutional neural network.
There are various algorithms that can be used to perform the operation of video upscaling,
and the most common are nearest neighbor interpolation, bilinear interpolation, bicubic
interpolation, and Lanczos interpolation [55]. Among these methods, nearest neighbor is
the fastest, and Lanczos is the slowest and most complex. Their upscaling performance
is similarly related, but we used bicubic interpolation in our implementation due to its
acceptable performance in terms of speed and upscaling quality. In order to perform bicubic
interpolation for video scaling, we the used Libswscale library from the FFmpeg 4.2.1 pack-
age. The Libswscale library, which is developed in C and is part of the FFmpeg multimedia
framework, includes highly optimized functions for scaling, colorspace conversion, and
pixel format transformations.

3.3. Video Super Resolution

To obtain high-resolution videos, this study use a deep-learning-based video super-
resolution approach as an effective strategy for overcoming technical limitations associated
with low-quality videos: particularly, poor lighting and low spatial resolution. The pro-
posed implementation employs GLEAN [56]: a framework that uses a Generative Adver-
sarial Network (GAN) as a latent bank to extract rich and diverse priors from a pre-trained
GAN model. Unlike traditional GAN-based methods, which involve adversarial loss and
costly optimization through GAN inversion, our approach uses a single forward pass to
generate high-resolution images.

To overcome poor lighting and low spatial resolution, a StyleGAN [57] is used in
our implementation. The StyleGAN, fine-tuned on a dataset of surveillance videos with
both low- and high-resolution representations of each frame, serves as a pre-trained latent
feature bank. This latent feature bank functions similarly to a dictionary, but its distinct
advantage is its nearly infinite feature bank, which provides superior priors for generating
realistic high-resolution videos. Furthermore, our encoder–bank–decoder formulation,
illustrated in Figures 2 and 3, is crucial for obtaining super-resolution images. Notably,
the encoder accepts an input resolution of 40 × 30 pixels and outputs 320 × 240 pixels,
demonstrating its ability to handle low-spatial-resolution scenarios. The latent feature bank,
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which is powered by the pre-trained StyleGAN, ensures that the generated high-resolution
videos retain realism and fidelity even in challenging lighting conditions.

Figure 2. Encoder–bank–decoder representation [58].

Figure 3. Video super-resolution framework (encoder–bank–decoder) based on pre-trained StyleGAN.

In order to obtain high-resolution videos apart from interpolation-based upscaling
techniques, deep-learning-based video super resolution is an attractive approach. Gener-
ative Adversarial Networks (GANs) built using neural networks have shown excellent
performance in video generation, enhancement, and super resolution, among other tasks.
GLEAN [56] is an approach that uses a GAN-based model as a latent bank to obtain rich and
diverse priors from pre-trained GAN. Unlike existing GAN-based approaches that generate
realistic outputs through adversarial loss and the use of expensive optimization through
GAN inversion, this approach uses a single forward pass to generate a high-resolution
image. In this implementation, we used a StyleGAN [57] and fine-tuned it on a dataset
of surveillance videos containing low-resolution and high-resolution representations of
each frame.

Super-resolution images are obtained from low-resolution images by using an encoder–
bank–decoder formulation. The latent features bank acts like a dictionary as in traditional
approaches but differs in the sense that dictionaries contain a finite feature bank, whereas a
GAN contains a practically infinite feature bank, making it a superior prior. The architecture
of encoder–bank–decoder used in this implementation is provided in Figure 3. Note
that the encoder accepts an input resolution of 40 × 30 pixels and provides an output of
320 × 240 pixels. The bank is a pre-trained StyleGAN that acts as a latent feature bank to
provide realistic high-resolution videos.
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3.4. Upscaling Performance

As discussed, there are various interpolation-based approaches that can be used for
frame-by-frame video upscaling. The performances of four interpolation-based upscaling
approaches along with the ground truth and the super-resolution image obtained by our
implementation of GLEAN are provided in Figure 4. The results are provided for a single
frame from a surveillance video belonging to the “fighting” class. Nearest neighbor and
bilinear interpolation are the simplest and fastest methods to upscale an image but create the
lowest-quality results. The difference between them is that bilinear interpolation provides
a smoother image by using blurring, whereas nearest neighbor provides a boxing effect,
and the choice of which one to use mainly depends on the intended application. Lanczos
and bicubic are the next level of quality for upscaling and involve greater computational
complexity. Lanczos has better detail preservation and a sharper appearance, while bicubic
interpolation provides a smoother appearance. Because the targeted scenario for super
resolution involves videos with a large number of frames, we use bicubic interpolation
(Equation (3)) to upscale the video, which allows for a thorough comparison to the super-
resolution videos.

I′(x′, y′) =
2

∑
i=−1

2

∑
j=−1

I(x + i, y + j) · K(x′ − x + i) · K(y′ − y + j) (3)

A super-resolution image produced using the modified GLEAN model is of much
higher quality compared to its counterparts in terms of preservation of details and recon-
struction of the structure. The modified GLEAN model includes improved architectural
features and training strategies that allow for more effective detail preservation during
the upscaling process. This entails a more sophisticated latent space representation or a
fine-tuned generator network, which allow the model to capture and reproduce intricate
details in the low-resolution input. The modified GLEAN model’s superior quality of super-
resolution images results from its advanced architecture and training strategies, which
enable effective preservation of details and accurate reconstruction of complex structures
when compared to other methods. To extract fi features (Equations (4) and (5)) from a
low-resolution image, we employed Ei sequence operations followed by Convolutional
layers and fully connected layers to generate a matrix C of representative features.

fi = Ei( fi−1), for i ∈ {1, . . . , N} (4)

C = EN+1( fN) (5)

Moreover, it is evident from Figure 4 that a super-resolution image has higher overall
contrast as compared to the ground truth image, which is due to the use of the latent feature
bank containing a pre-trained StyleGAN.

Figure 4. Video frame upscaling results for fighting scene.
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Algorithms 1 and 2 are simplified pseudocode of the proposed “TempoFuseNet”, with
a focus on video super resolution using the modified GLEAN framework and anomaly
classification using the two-stream architecture. This pseudocode is intended to provide an
algorithmic and high-level representation of anomaly classification for real-world scenarios
in 5G and IoT environments.

Algorithm 1: Video Super Resolution with GLEAN
Data: low_resolution_video
Result: super_resolved_video

1 GLEAN_model = initialize_GLEAN_with_StyleGAN();
2 foreach frame in low_resolution_video do
3 super_resolved_frame = GLEAN_model.forward_pass(frame);
4 Save super_resolved_frame;

5 return super_resolved_video;

Algorithm 2: Anomaly Classification with Two-Stream Architecture
Data: video_frames
Result: final_classification

1 for i to len(video_frames) 3 do
2 spatial_features = extract_spatial_features(video_frames[i]);
3 spatial_predictions = ResNet50_predict(spatial_features);
4 Save spatial_predictions;

5 for frame to video_frames do
6 SG3I_frame = convert_RGB_to_SG3I(frame);
7 temporal_features = ResNet50_predict(SG3I_frame);
8 Save temporal_features;

9 concatenated_features = concatenate(spatial_predictions, temporal_features);
10 temporal_model_output = apply_GRU(concatenated_features);
11 final_classification = Dense(temporal_model_output);
12 return final_classification;

3.5. Anomaly Classification

To perform anomaly classification, we used a two-stream architecture. Contrary to
existing approaches that rely on the optical flow for one stream and the RGB image for
the other stream, we used a simple but effective strategy that eliminates the need for
expensive optical flow computation. The proposed two-stream architecture is depicted
in Figure 5, whereas the details of both the spatial and temporal streams as well as late
temporal modeling are provided later in this section.

Figure 5. Proposed two-stream architecture for spatiotemporal learning for anomaly classification.
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3.5.1. Spatial Stream

The spatial stream consists of a pre-trained CNN model base with its classification
and dense layers are removed. The network performs prediction on an individual frame
basis, and every third video frame is provided to the CNN model to match the predicted
computational performance of the temporal stream. The spatial stream uses a ResNet50
model that effectively acts as a feature extractor from the RGB images obtained from the
video stream.

3.5.2. Temporal Stream

In order to perform temporal learning without incurring a high computational load,
we made use of Stacked Grayscale 3-channel Image (SG3I) (Equation (6)) [59].

SG3I(x, y) = R(x, y), G(x, y), B(x, y) (6)

Here, SG3I(x, y) represents the function notation for the SG3I value at pixel coordi-
nates (x, y), and R(x, y), G(x, y), B(x, y) represents the intensity value at the same pixel
coordinates. SG3I relies on the simple idea of combining multiple frames of video into
single frame. The objective is achieved by converting the RGB frames into grayscale images.
These grayscale images are combined to form a single 3-channel RGB image, and then,
combining the three grayscale images forms the SG3I image, which acts like a single RGB
video frame. The frames are selected in sequential order, and each subsequent grayscale
frame is fitted to the red, green, and blue channels to yield a single RGB image. This new
image is fed to the same pre-trained CNN model as the spatial stream, which serve two
purposes: the SG3I image preserves the short temporal characteristics, and the grayscale
conversion lets the model focus more on motion-related features.

3.5.3. Late Temporal Modeling

The features extracted from both the spatial and temporal streams are flattened and
concatenated to perform feature fusion. In order to learn the long-term temporal character-
istics of a video, late temporal modeling is performed from a concatenated feature set. Long
Short-Term Memory (LSTM), bidirectional-LSTM, and Gated Recurrent Units (GRUs) are
the three modeling approaches that are experimented with, and it is observed that GRUs
provide the best temporal modeling characteristics, with a slight margin over LSTMs and
bi-LSTMs. A possible explanation for the better performance of GRUs over LSTMs is the
smaller size of the training dataset necessary to train a GRU. The GRU is followed by a
dense layer and classification of the video into one of eight classes.

4. Experiments
4.1. Experimental Setup

Our experimental setup is intended to address the challenges posed by poor lighting
and low spatial resolution in order to comprehensively assess the performance of anomaly
detection in low-quality surveillance videos. The trimmed UCF-Crime dataset, which
includes eight anomaly identification classes, is used in two different types of experiments.

The Trimmed UCF-Crime dataset has original video dimensions of 320 × 240. To
simulate real-world scenarios with poor lighting and low spatial resolution, we intentionally
reduced the spatial resolution by a factor of eight, resulting in low-resolution videos with
dimensions of 40× 30. It is important to note that this intentional downsampling is only for
experimental purposes and is not a component of the proposed anomaly detection system.
Moreover, we recognize that the term “low quality” can be broad: our research focuses
on a specific aspect, low spatial resolution, to evaluate the robustness of our proposed
methodology under these conditions.

In the first experiment, the downscaled dataset is upscaled to its original spatial
resolution using bicubic interpolation. This experiment allows us to assess the performance
of our proposed anomaly classifier under standard upscaling conditions and serves as the



Future Internet 2024, 16, 83 11 of 17

baseline for comparison. In the second experiment, we use an advanced GLEAN-based
model for super resolution. This model upscales low-resolution videos, resulting in super-
resolved video frames. These frames are then used for classification modeling with our
proposed anomaly classifier. This experiment addresses the issue of low spatial resolution
by employing advanced super-resolution techniques. The experiments are carried out
in TensorFlow with the Keras 2.4.0 backend on a Windows 10 machine. Table 1 shows
the detailed system setup used for the experiments. During the model’s training phase,
a random search is used to select specific hyperparameters. To ensure the best model
performance, we use the Adam optimizer with a piecewise learning rate. If no progress is
seen after minimizing the learning rate for three consecutive validation checks, the training
is stopped. Table 2 summarizes the hyperparameter tuning process and offers insights into
optimizing different parameters for the best results.

Table 1. System specifications.

# Type Specifications

1 System Dell Precision T5600

2 CPU 2× Intel® Xeon® Processor E5-2687W

3 RAM 32GB DDR3

4 GPU GeForce RTX 2070

5 GPU Memory 8GB GDDR6

6 CUDA Cores 2304

7 Storage 512GB SSD

This experimental setup was designed to simulate and effectively address the tech-
nical limitations associated with poor lighting and low spatial resolution in real-world
surveillance scenarios. This was to ensure a thorough evaluation of TempoFuseNet, our
proposed anomaly identification framework.

Table 2. Training parameters used to train the model.

# Training Parameter Value

1 Optimizer Adam

2 Initial Learning Rate 0.003

3 Learning Rate Schedule Piecewise

4 Learning Rate Drop Factor 0.5

5 Gradient Decay Factor 0.9

6 L2 Regularization 0.0001

7 Max Epochs 100

8 Mini Batch Size 32

9 Loss Function Categorical cross-entropy

10 Validation Check Every epoch

4.2. Evaluation Method and Metrics

Model evaluation is a way to assess the skill of a prediction model, which is a classifier
in our case. The model is trained and evaluated using holdout validation in which the data
are partitioned into an 80:20 ratio with 80% of the data being used for model training and
validation and 20% holdout data being used for model testing. The performance of both
experiments is reported for the same train–test split of the data to make a fair comparison.
Evaluation of the model’s performance is made based on various performance metrics
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obtained from the confusion matrix. The comparative performance for both models is also
provided to assess the overall anomaly identification performance.

5. Results

Anomaly identification in surveillance videos is a difficult task, especially when using
low-quality videos with poor spatial resolution and visual characteristics. Traditional
methods, such as spatial interpolation, frequently result in limited improvement and can
introduce undesirable artifacts. Alternatively, video super resolution, which improves
spatial resolution, can be computationally expensive. This study addresses the challenges
of low-quality videos using a video super-resolution approach based on StyleGAN priors.
The StyleGAN improves not only the spatial resolution but also image sharpness and
contrast. Unlike traditional video super-resolution methods, our approach selectively
super-resolves frames that are relevant to anomaly identification, thereby improving com-
putational efficiency. A two-stream architecture is used for classification modeling, which
reduces the need for expensive optical flow computation. The RGB stream promotes spatial
learning, whereas the SG3I stream emphasizes short-term temporal learning. Both streams
use the same pre-trained CNN architecture, which has been fine-tuned for the dataset
of interest. The learned features are concatenated and fed into a Gated Recurrent Unit
(GRU) for long-term temporal modeling. The proposed approach effectively addresses
the challenges posed by low-quality surveillance videos and delivers superior anomaly
classification performance while minimizing the computational burden.

5.1. Classification Performance
5.1.1. Bicubic Interpolation of Videos

The classification performance of the upscaled images using bicubic interpolation is
provided in the confusion matrix in Figure 6. It is to be noted that out of 50 videos in each
class, 40 videos are used for model training, and 10 videos are used for model testing. The
confusion matrix provides the actual number of videos classified into each category. Table 3
provides the performance metrics for each class as well as the macro-averaged value for
all classes. Classification accuracy is usually regarded as the most important performance
metric for anomaly classification, followed by the FPR. Moreover, the values of precision,
recall (sensitivity), F1-score, specificity, FPR, and FNR are also reported for each class and
are averaged for all classes.

5.1.2. Super-Resolution Videos

Like for the bicubicly interpolated videos, the classification performance for super-
resolution videos is provided in the confusion matrix in Figure 7. The confusion matrix reports
the classification performance based on 10 videos per anomaly class. Table 4 provides the
performance metrics for each class as well as the macro-averaged value for all classes.

Figure 6. Confusion matrix for bicubic interpolation of videos.
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Table 3. Classification performance for bicubic interpolation of videos.

Class Accuracy Precision Recall F1-Score Specificity FPR FNR

Abuse 86.42% 45.45% 50.00% 47.62% 91.55% 8.45% 50.00%
Arrest 93.83% 100.00% 50.00% 66.67% 100.00% 0.00% 50.00%
Arson 87.65% 55.56% 45.45% 50.00% 94.29% 5.71% 54.55%
Assault 86.42% 45.45% 50.00% 47.62% 91.55% 8.45% 50.00%
Burglary 91.36% 71.43% 50.00% 58.82% 97.18% 2.82% 50.00%
Explosion 90.12% 60.00% 60.00% 60.00% 94.37% 5.63% 40.00%
Fight 86.42% 46.15% 60.00% 52.17% 90.14% 9.86% 40.00%
Normal 86.42% 46.67% 70.00% 56.00% 88.73% 11.27% 30.00%
Macro-Average 88.58% 58.84% 54.43% 54.86% 93.48% 6.52% 45.57%

Figure 7. Confusion matrix for super-resolution videos.

Table 4. Classification performance for super-resolution videos.

Class Accuracy Precision Recall F1-Score Specificity FPR FNR

Abuse 92.59% 70.00% 70.00% 70.00% 95.77% 4.23% 30.00%
Arrest 95.06% 100.00% 60.00% 75.00% 100.00% 0.00% 40.00%
Arson 90.12% 66.67% 54.55% 60.00% 95.71% 4.29% 45.45%
Assault 91.36% 63.64% 70.00% 66.67% 94.37% 5.63% 30.00%
Burglary 93.83% 77.78% 70.00% 73.68% 97.18% 2.82% 30.00%
Explosion 91.36% 63.64% 70.00% 66.67% 94.37% 5.63% 30.00%
Fight 92.59% 66.67% 80.00% 72.73% 94.37% 5.63% 20.00%
Normal 91.36% 61.54% 80.00% 69.57% 92.96% 7.04% 20.00%
Macro-Average 92.28% 71.24% 69.32% 69.29% 95.59% 4.41% 30.68%

5.2. Comparison with Existing Approaches

To validate the effectiveness of our proposed methodology, we conducted an extensive
experimental variations. In addition to these experiments, we performed a comparative
analysis between the TempoFuseNet framework and existing state-of-the-art approaches
that center around multiclass anomaly classification, using the UCF-Crime dataset as our
testing ground. In a similar context, Maqsood et al. [35] introduced a convolutional neural-
network-based approach that initiates with video preprocessing to create 3D cubes through
spatial augmentation. To streamline the analysis process, they employed a subset of the
dataset: eliminating extraneous data and manually identifying atypical segments to ensure
class balance. Subsequently, these 3D video cubes were fed into a convolutional neural
network (CNN) to extract spatiotemporal features. Their analysis of the UCF-Crime dataset
yielded a classification accuracy of 45% across fourteen distinct classes. In another study,
Tiwari et al. [60] employed a fuzzy-rule-based approach for video summarization with the
aim of addressing issues related to excessive data and high computational costs. Tiwari
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et al. [60] achieved a classification accuracy of 53% in their classification experiment by
leveraging a hybrid slow–fast neural network.

On the other hand, our study utilized a trimmed UCF-Crime dataset comprising
eight classes and fifty videos. For the anomaly classification task, we applied a two-step
approach: First, we upscaled the low-resolution (LR) videos using bicubic interpolation and
an encoder–bank–decoder configuration for super resolution. The encoder and decoder
played pivotal roles in downscaling and upscaling, while the bank was a pre-trained
StyleGAN acting as a latent feature repository to enhance super-resolution performance
based on feature priors. Our experiments encompassed both types of upscaled images, and
the results were systematically compared in order to highlight the effectiveness of our super-
resolution approach. Anomaly recognition was executed through a two-stream architecture
wherein a pre-trained CNN model extracted features from RGB images in the spatial
stream, and Stacked Grayscale 3-channel Images (SG3I) were used in the temporal stream,
substantially reducing the computational load of optical flow computation while capturing
short-term temporal characteristics. The features from both streams were concatenated
and passed through a Gated Recurrent Unit (GRU) layer to capture long-term temporal
characteristics. The output of the GRU layer was then processed through dense and
softmax layers before reaching the final classification layer. Our proposed methodology,
coupled with the encoder–bank–decoder super-resolution model, yielded remarkable
results, achieving a classification accuracy of 92.28%, an F1-score of 69.29%, and a false
positive rate of just 4.41%.

5.3. Comparison of Bicubic Interpolation and Super-Resolution Approaches

In order to perform a comparison of both approaches, a bar-chart is plotted, as shown
in Figure 8, for seven classification evaluation metrics; the chart clearly shows the superior-
ity of super resolution over bicubic interpolation to perform anomaly identification. It is to
be noted that the reported scores for accuracy, precision, recall, F1-score, and specificity are
higher for super-resolution videos in comparison to bicubic interpolation videos, which
is desirous, as higher values for these metrics indicate good classification performance.
On the other hand, FPR and FNR should be lower for a good classification system, and
therefore, their values are lower for video super-resolution scenarios. A clear performance
gap indicates that super-resolution-based anomaly detection models are very effective
when the video stream is of low spatial resolution.

Figure 8. Comparison of bicubic interpolation and super-resolution approaches.

6. Conclusions

This study addressed the challenge of multi-class anomaly identification using low-
quality surveillance videos within 5G and IoT environments. By conducting experiments
on the trimmed UCF-crime dataset, the videos were downscaled to 1/8 resolution and then



Future Internet 2024, 16, 83 15 of 17

upscaled using bicubic interpolation and super-resolution techniques. The TempoFuseNet
framework employed a two-stream architecture that was followed by GRU for long-term
temporal modeling. The experimental results showcased remarkable performance, with
a classification accuracy of 92.28%, F1-score of 69.29%, and false positive rate of 4.41%.
Moreover, the integration of super resolution in the anomaly classifier yielded substantial
enhancements over the videos upscaled using bicubic interpolation. Specifically, the super-
resolution-based approach achieved a 3.7% improvement in accuracy, a significant 14.34%
boost in the F1-score, and a commendable 2.11% reduction in the false positive rate. Hence,
TempoFuseNet outperforms existing state-of-the-art methods in multiclass classification
performance and effectively addresses the technical limitations caused by low-quality
videos, making it a robust solution for real-world surveillance scenarios, particularly in 5G
and IoT environments.

Future Work

This study makes significant progress in improving video quality and anomaly de-
tection in surveillance scenarios. However, future research could focus on integrating
real-time processing capabilities and on investigating methods for automatically fine-
tuning the model in response to changes to the lighting, spatial characteristics, or other
dynamic factors. Moreover, integrating multi-modal data sources, such as contextual infor-
mation, could improve anomaly detection accuracy and broaden the system’s applicability
in a variety of surveillance scenarios.
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