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Abstract: The hype of the Internet of Things as an enabler for intelligent applications and related
promise for ushering accessibility, efficiency, and quality of service is met with hindering security
and data privacy concerns. It follows that such IoT systems, which are empowered by artificial
intelligence, need to be investigated with cognisance of security threats and mitigation schemes that
are tailored to their specific constraints and requirements. In this work, we present a comprehensive
review of security threats in IoT and emerging countermeasures with a particular focus on malware
and man-in-the-middle attacks. Next, we elaborate on two use cases: the Internet of Energy Things
and the Internet of Medical Things. Innovative artificial intelligence methods for automating energy
theft detection and stress levels are first detailed, followed by an examination of contextual security
threats and privacy breach concerns. An artificial immune system is employed to mitigate the risk
of malware attacks, differential privacy is proposed for data protection, and federated learning is
harnessed to reduce data exposure.

Keywords: IoT; ML/AI; security threat; IoMT; energy; artificial immune system; federated learning;
differential privacy; hyperconnected intelligent world

1. Introduction

The hyperconnected intelligent world (HIW), which has been described as the technology
trend of 2023, was founded on the Internet of Things (IoT), which is the network of connected
devices that gather the data we need to build intelligent systems (https://www.forbes.com/
sites/bernardmarr/2022/09/26/the-5-biggest-technology-trends-in-2023-everyone-must-get-
ready-for-now/, accessed on 28 December 2023). The HIW is shaped by IoT data and em-
powered by artificial intelligence (AI); it is essential for creating data-driven actionable
insights. In this work, we closely examine two of such systems: energy theft detection
enabled by the Internet of Energy Things (IoET) and remote stress detection enabled by the
Internet of Medical Things (IoMT) [1,2]. IoET-based systems are key in the transition toward
clean energy; however, the penetration rate of smart meters (basic IoET devices) is very
slow (e.g., only 57% in 2023 in the UK (https://assets.publishing.service.gov.uk/media/
646f7ff47dd6e70012a9b3f6/Q1_2023_Smart_Meters_Statistics_Report.pdf, accessed on 28
December 2023)). For this reason, IoET systems have been selected as pivotal use cases
within HIW, highlighting their significance in achieving a sustainable future. IoMT-based
systems, which have a direct impact on health and human lives, are selected as another
critical HIW use case, representing systems with no tolerance for security threats, data
leakages, or tampering with life-critical IoMT devices.
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The potential of marrying IoT and AI in these two applications has been well estab-
lished but the uptake of related technology is still slow. While connected IoT devices
are the key components of such systems, they also create security risks and introduce
vulnerabilities that are targeted by attackers to gain access to these systems. Regarding
IoET and IoMT, compromising the data transmitted (e.g., man-in-the-middle—MITM) or
stored (e.g., malware attack) in the systems represents a serious threat. For instance, the
malicious acquisition of energy consumption data would reveal patterns indicating when
residents are not at home, potentially inviting targeted robbery attempts [3]. Similarly,
unlawful access to biometric data generated by an IoMT device could be used to identify
the individual, track their location, and correlate their stress level to targeted marketing,
stalking, or worse.

It follows that improving the IoT systems’ capabilities to thwart these security attacks is
a challenge and a priority in any HIW-related research. In this work, we address IoT security
from two perspectives. The first work examines malware attack detection mechanisms and
proposes an artificial immune system (AIS) that is suitable for the limited computational
power of IoT devices in combatting these types of attacks. Malware attacks often lead
to the leakage of stored data in the IoT device, gateway, or server. Servers benefit from
high computational power and, therefore, can be programmed with complex malware
detection mechanisms that mitigate this risk. IoT devices and gateways on the other hand
are often mounted on limited energy, low cost, low memory, and low computational power
equipment and, thus, are incapable of hosting elaborate malware detection algorithms.
For example, deep learning and conventional machine learning techniques are effective at
detecting the behaviour of unseen malware attacks [4]. However, these are computationally
expensive to implement in IoT devices. AIS is proven to be compatible with IoT device
limitations and, hence, is selected in this work to mitigate the data leakage risk at the edge
(i.e., IoT devices/gateway) [5]. The second work examines an IoMT use case concerned
with energy theft detection (ETD) using smart meter data. Prior work [2] proposed a deep
learning approach for detecting ETD with promising results, albeit using a centralised
server, thus being vulnerable to MITM attacks. This work explores the utilisation of
federated learning (FL), which enables efficient learning over decentralised private data
without the need to transfer to the central server [6]; thus, the data are less exposed to
MITM attacks and related risks of data leakage. In this context, this work presents one of
the first FL-based AI methods for energy theft detection based on IoET-enabled energy
consumption data. The third work investigated differential privacy, an alternative effective
countermeasure against MITM attacks, to unlock the potential of IoMT-based tress detection
reported in [1]. Differential privacy is a mechanism in which signals carrying private data
are contaminated with additive noise to alleviate the risk of data leakage in the event of
an attack.

We first present two leading HIW solutions: IoET and IoMT in Section 2, where
we demonstrate the unmatched potential of combining forces between IoT and AI to
enable intelligent, scalable, and affordable solutions. Next, we present an overall summary
of security threats in the IoT Section 2.3, in particular, malware and MITM attacks are
discussed. Section 3 exposes the HIW privacy risks under malware attacks and presents
AIS, a state-of-the-art IoT-specific malware detection solution. Section 4 elaborates on
the HIW privacy risks that might result from MITM attacks on data transferring to the
server and presents two solutions. The first is based on an IoET use case and is concerned
with ETD using federated learning to avoid sensitive data transfer. The second examines
an IoMT use case of remote stress detection and leverages differential privacy for data
protection whilst being transferred to the server. In this work, we argue that security threats
and adequate measures are not blanket solutions that apply to any IoT system. Instead, a
contextual and application-specific solution is needed to address security and data privacy
concerns. To this end, in Section 5, we propose an evaluation framework that comprises
generic performance metrics as well as application-specific metrics to assess the efficacy of
AI for IoT data. In Section 6, we discuss the remaining challenges related to leveraging IoT



Future Internet 2024, 16, 85 3 of 17

systems in HIW, particularly related to data privacy concerns, and we present emerging
trends to mitigate these risks.

2. Role of AI and IoT in the Hyperconnected Intelligent World

Two leading HIW applications are discussed in this work. The first is presented in
Section 2.1, ETD, which falls under the IoET paradigm and uses connected smart meters
as the embodiment of IoET devices [2]. In Section 2.2, we present the second application
within the ambit of IoMT, which is focused on remote intelligent stress monitoring and
uses connected sensors as IoMT devices to measure physiological signals [1].

2.1. Energy Theft Detection

IoET is an emerging archetype that is gaining more attention given the world energy
crisis and its relation to climate change. In this context, IoET offers unprecedented leverage
over controlling energy consumption (EC) and production, aiming to maximise the energy
system efficiency and minimise energy wastage. For instance, IoET is proposed to control
energy consumption and reduce energy demand peaks in [7]. The latter is a prime cause for
energy wastage as it causes the system to temporarily overproduce outside peak periods.
Other IoET applications in the context of smart buildings and smart homes include energy
management of smart grids, battery storage systems, electric mobility, and renewable
energy sources, as detailed in [8]. An optimal energy management system of smart grids
that leverages IoET is proposed in [9]. The system employs private blockchain technology
for secure data transactions and accounts for the high uncertainties of renewable energy
sources and the charging demands of plug-in hybrid electric vehicles. This work is con-
cerned with energy theft that harms energy providers in terms of revenue loss and system
inefficiency. It significantly impacts EC costs and reduces the chances of new powerhouses
due to induced fluctuation in demand and supply. The annual revenue loss by energy theft
is estimated to be approximately USD 96 billion worldwide (https://www.prnewswire.
com/news-releases/96-billion-is-lost-every-year-to-electricity-theft-300453411.html, ac-
cessed on 28 December 2023) and is expected to increase. Conventional methods for ETD,
including physical onsite inspections to detect and analyse the cause of energy losses, are
time-consuming, costly, and labour-intensive. The rise of IoET and the spread of smart
meters, together with the advances in AI, render access to and mining of EC data possi-
ble at the right time for early ETD. Deep learning methods using convolutional neural
networks (CNNs) have been proven to successfully extract latent features in time series
EC data for accurate representation and classification [10]. In the context of ETD, theft
occurrences are less than 10% of EC data, a major challenge to data-driven CNN methods,
which tend to replicate and even reinforce the bias in a skewed dataset. In this case, max-
imising ETD whilst reducing false alarms (i.e., honest EC samples misclassified as theft)
are competing goals that necessitate an energy-aware model for accurate representation.
The authors in [2] present a state-of-the-art ETD and demonstrate the superiority of the
proposed model compared to previous works, where they reduce the revenue loss due to
ETD by 30% by improving the ETD rate and reducing false alarms. However, they propose
a centralised learning approach in which granular EC data need to be sent to the server at
the risk of overloading the communication network and exposing the data to leakage and
privacy breaches.

2.2. Remote Intelligent Stress Monitoring

The spread of IoMT is a key enabler for pervasive and affordable e-healthcare services
anywhere and at anytime [11,12]. An intelligent stress monitoring assistant is a leading
IoMT application that uses affective computing to detect stress levels based on physiological
signals. Detecting stress becomes critically important when three-quarters of people in
our society report feeling unable to cope due to stress [13]. To this end, the authors in [1]
propose a deep-learning model to detect stress using a self-attention transformer model
applied to a public dataset for wearable stress and affect detection (WESAD) [14], containing

https://www.prnewswire.com/news-releases/96-billion-is-lost-every-year-to-electricity-theft-300453411.html
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multimodal physiological data collected with medical sensors. The model proposed in [1]
successfully detects stress in unseen subjects with 96% accuracy; however, the model is
centralised and requires data to be transferred to the central server for training at the risk of
MITM attacks. Furthermore, training a model on IoMT-sensitive data, such as the WESAD
dataset, involves significant privacy risks as the model might potentially memorise or learn
certain characteristics of individual patients. As a result, it is critical to integrate strong
security and privacy measures throughout the development and deployment of machine
learning models for IoMT-based healthcare applications.

2.3. Security Threats in IoT

IoT networks consist of interconnected devices with unique identifiers that provide
real-time interactions; examples include smart meters in IoET and medical sensors in IoMT.
These devices often have limited computational capacity and small memory. IoT devices
are interconnected, which means they are connected to the cloud and/or other IoT devices
for data exchange. Despite the constrained capabilities of connected IoT devices, these
can exchange services without the control of a central processor. Such communication is
vulnerable to cyber attacks, where a malicious device could be disguised as an accepted
IoT device and inject malware files. Moreover, connected devices are heterogeneous as they
might run on different platforms and have different specifications. Finally, the increasing
number of connected IoT devices generates an enormous scale of data across a large-
scale network. The IoT system architecture consists of three main layers: the perception
layer, which is the physical layer for the connected devices, the network layer, which
is responsible for securing the connection between the device and the cloud, and the
application layer, which is the front-end layer to deliver the service. Each layer is a target
for different types of attacks. For instance, malicious node injection and battery draining
are forms of security threats to the physical layer. MITM and denial of service are threats to
the network layer. Malware attacks consist of malicious files (e.g., viruses) and are major
threats to the application layer. For more information about the IoT system architecture
and corresponding layers, readers are encouraged to refer to [5].

Malware forms a major security threat to IoT systems and is difficult to effectively
detect using malware attack detection algorithms. There are three known methods for
analysing incoming files and detecting malware: static, dynamic, and hybrid analyses,
which use signature and behavioural-based techniques. A signature-based technique reads
a unique part of the file for signature detection; thus, it is efficient for detecting known
malware files but is unable to detect unknown malware. On the other hand, the behavioural-
based technique simulates the behaviour of a malicious or benign file for detection and,
hence, is efficient in detecting unknown malware files; however, it is computationally expen-
sive to run. Based on the IoT characteristics and malware detection techniques presented,
the best way to secure the IoT is by implementing a lightweight (i.e., not computationally
expensive) and adaptive method (i.e., capable of detecting unseen malware).

3. Malware Attack and Effective Detection Method

Malware is targeted malicious software that aims to disrupt a system. If it is unde-
tected and allowed to run, it would cause harm in many ways. In the IoT context, these
include disabling the functionality of a device, stealing/deleting/encrypting IoT data, and
controlling IoT devices to attack connected systems and organisations. In this section,
we discuss the privacy risks that might result from an undetected malware attack and a
malware detection mechanism that is suitable and effective in IoT systems. In this context,
suitable means that the algorithm does not require a large amount of memory or high
computational power to run and, hence, can be hosted by an IoT device. Both AIS and the
state-of-the-art malware detection method are implemented using Amazon Web Services
(AWS) with different memory sizes. By measuring the processing requirement of each
method, we are able to demonstrate that our proposed method is indeed the most suitable
for IoT.
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3.1. Privacy Risks under Malware Attack

Most IoT devices are purposely designed to be lightweight, which means that they
have restricted processing power, storage, and energy. Lightweight IoT devices are af-
fordable and easy to plug and play, thus allowing anywhere–anytime access to data for
enabling various HIW solutions. However, being lightweight limits the choice of malware
detection schemes for protecting these against malware attacks. In this context, such an
attack may lead to unlawful access to potentially sensitive information as in the case of
IoET and IoMT.

Malware attacks present a serious risk to smart grids and the IoET paradigm, as
revealed in [15]. Malware has been shown to infect the control system of smart grids, which
could compromise data privacy and grant unauthorised control over the grid. According
to a recent study [16], smart meters are a prime vulnerable target for hackers seeking
to disrupt smart grids. Recently, a malware attack targeted the National Health Services
(NHS) in the United Kingdom, affecting hospitals and medical staff all over the country [17].
According to the authors in [18], IoT applications are vulnerable points that expose a system
to targeted malware attacks, which might enable hackers to obtain access to critical data [19].
Similarly, the authors in [20] investigated how sensitive medical IoMT data collected are
exposed to tampering by malware attacks and how the vulnerabilities of IoMT devices
could be exploited to deplete their energy or flood the system [21].

3.2. Artificial Immune Systems (AIS) for Detecting Malware Attacks in IoT

AIS is a leading malware detection method that has been proven effective and suitable
for IoT systems [5]. It is a digital security method that mimics the human immune system
mechanisms in response to antigens. Specifically, AIS replicates how the B and T cells
defend the human body at the time of an attack. B cells are activated when an attack
(antigen) enters the body, upon which, the B cells mark the antigen by attaching to it and
providing antibodies. When an infection occurs, T cells are activated to kill the infected
body cells and keep a record of the attack using memory T cells (refer to [5] for more details
on B/T cell functionality). There are four main AIS methods used in security applications
(such as malicious process detection, anomaly detection, intrusion detection, scan and
flood detection, and fraud detection). The first is the negative selection method, which is a
supervised learning method that replicates the B cell technique in marking an antigen. The
second is the positive selection method, which replicates the T cell technique in defending
the human body. The third is the clonal method, which is based on the B cell cloning
antibody technique for specific antigens. The fourth is AIS, which is an unsupervised
classification method based on B memory cells for identifying an attack. AIS methods are
adaptive, distributed, and not computationally expensive. Thus, they are a good fit to
secure the ever-changing IoT environment with lightweight IoT devices.

The AIS work presented in [5] focuses on an AIS-based method for unknown malware
detection in the IoT. The method is based on a negative and positive selection (NPS) tech-
nique that works in two stages: a detector generation stage and a detection stage. During
the detector generation stage, two different sets of detectors are generated. The first set is a
positive detector set containing detectors that match self-data based on the positive selection
concept. The other set is a negative detector set, which contains detectors that do not match
self-data based on the negative selection concept. The performance of NPS outperforms
that of the state-of-the-art by achieving a 21% increase in the malware detection rate while
reducing the number of detectors by 65% (directly related to a reduction in memory and
computational power requirements). The work in [22] builds on this theoretical study
and presents a performance analysis of the NPS method when implemented in realistic
IoT systems using Amazon Web Services (AWS). Different IoT system architectures are
studied with IoT devices and gateways with differing memory sizes (see Figure 1). This
work investigates the feasibility of running the AIS algorithm on individual IoT devices
for malware detection. While the approach demonstrates effectiveness on constrained
devices, the authors suggest deploying the algorithm on the IoT gateway for improved
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protection of all connected devices under the same hub. This centralised approach reduces
the computational burden on individual devices and potentially offers broader protection.

As shown in Table 1, which uses NSL-KDD [23], NPS outperforms the state-of-the-art
MNSA method [24] and effectively detects malware attacks. It should be noted that the
MNSA results in Table 1 are produced by implementing the method from [24] in the AWS
systems described in Figure 1. To evaluate the proposed approach, four performance
metrics are used, i.e., accuracy, representing the rate of correctly classified samples (malware
and benign), precision and recall, which measure the rate of correctly detecting malware with
respect to all malware or all samples, respectively, and the F1 score, which combines the
last two metrics. In the case of an unbalanced dataset, such as the NS-KDD, the detection
rate is better represented by the F1 score, which best reflects the rate of correctly classified
malware and benign files. The results in Table 1 indicate that the four performance metrics
improve when the IoT device memory size increases. A larger memory size enables a
larger number of detectors to be stored and, therefore, leads to a better chance of detecting
malware (refer to [5] for a detailed performance analysis). Moreover, a larger memory
size enables a larger training dataset and, thus, yields a better detection rate (see [22]).
Table 1 lists the CPU utilisation metrics of both AIS and MNSA methods across four
systems, serving as indicators of the computational requirements of each. It is observed
that an increased memory size decreases CPU utilisation systematically, which might be
due to faster model training convergence when more detectors and a larger dataset are
available. More importantly, the results show that the proposed NPS method is indeed
lightweight and less computationally expensive than the prior approach, as shown in [5]
within a simulation environment and in [22] through an AWS implementation. In [25], the
computational cost of malware detection algorithms is estimated based on the required time
to train/detect malware using the same NSL-KDD dataset. It is shown that the decision
tree approach is the fastest but the proposed semi-supervised double-deep Q-network
(SSDDQN) method yields the best results. Given that the running time of an algorithm
is tightly related to the processing power of the host, it is not possible to compare the
complexities of the AIS methods in Table 1 to the results in [25] without implementing each
of these models in the AWS framework.

Figure 1. The implemented IoT system architecture using AWS [22].
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Table 1. AIS implementation in realistic IoT systems.

AIS Method IoT Device
Memory Size Accuracy Precision Recall F1 Score CPU Utilisation

NPS 30 GB 85.13% 91.89% 90.28% 91.08% 55.70%
32 GB 88.00% 91.52% 94.77% 93.11% 53.20%
64 GB 92.20% 94.22% 97.35% 95.76% 52.80%

128 GB 96.80% 97.94% 98.75% 98.34% 52.30%

MNSA [24] 30 GB 68.33% 78.91% 73.17% 75.95% 85.20%
32 GB 71.00% 80.00% 78.87% 79.43% 83.95%
64 GB 74.00% 83.10% 80.82% 81.94% 80.35%

128 GB 76.40% 85.71% 81.52% 83.57% 78.62%

4. Man-in-the-Middle (MITM) Attacks

MITM is a common type of cybersecurity attack that allows malicious users to eaves-
drop on the communication between two targets that are both legitimately communicating
hosts. In an IoT context where an IoT device is communicating with the server, a malicious
user could intercept the communication. Thus, the malicious user can pretend to be the IoT
device when communicating with the server or pretend to be the server when communicat-
ing with the IoT device. In this case, neither the IoT device nor the server are aware of this
interception. Hijacking the communication allows the malicious user to inspect packets
(sniffing), which might expose private information in an IoT system. Once the malicious
user learns to mimic the communication between these two legitimate entities, they may
inject malicious packets blended with valid data communication streams (packet injection).
Similarly, the malicious user may sniff the session token and hijack the session (session
hijacking). Given the sensitivity of the data transmitted over the IoT (e.g., IoET and IoMT)
and the critical role of the IoT device (e.g., controlling a pacemaker or an autonomous vehi-
cle), sniffing, packet injection, and session hijacking can cause significant harm, including
malicious remote control and privacy risks.

In [26], MITM attacks that intercept the communication between the central server
and IoET edge devices for malicious remote control are studied. These are proven to
successfully inject false data and perform data corruption such as sending false commands
to IoET edge devices. Similarly, the authors in [27] demonstrate the risk of MITM attacks in
an emulated cyber-physical power system in both false data and false command injections.

Similarly, an MITM attack could be caused by hackers that target weak protocols and
insert themselves between IoT devices and the server to steal data (sniffing), thus resulting
in data leakage. In centralised AI, i.e., a system that requires data to be transferred from the
IoT devices to the server, the risk of data leakage due to MITM attacks becomes a threat.
This is further aggravated when the data in question carry personal or private information,
such as IoET or IoMT applications.

In this section, we discuss two solutions for mitigating these risks. The first employs
federating learning, which enables data-driven learning without the need to transmit data
from clients to the server [6,28], thus protecting the data from MITM. The FL method is
implemented using the Flower framework (https://flower.dev/docs/framework/tutorial-
series-use-a-federated-learning-strategy-pytorch.html, accessed on 28 December 2023) us-
ing PyTorch [28], and is validated using the open-access dataset, the State Grid Corporation
of China (SGCC) (https://github.com/henryRDlab/ElectricityTheftDetection, accessed on
28 December 2023). The second employs differential privacy to protect data before they are
sent over the communication channel, therefore, mitigating the risk of exposing personal
data under MITM sniffing. This experiment was implemented in TensorFlow Privacy and
validated using the open-access WESAD dataset. It should be noted that the complexity
analysis of both solutions is not discussed here, given that the devices hosting the model
training are not constrained. Distribution centres are used in the first and servers in the
second, with ample computational power and memory. The computational costs of these
solutions will be investigated in future work.

https://flower.dev/docs/framework/tutorial-series-use-a-federated-learning-strategy-pytorch.html
https://flower.dev/docs/framework/tutorial-series-use-a-federated-learning-strategy-pytorch.html
 https://github.com/henryRDlab/ElectricityTheftDetection
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4.1. Federating Learning to Mitigate MITM Attacks: An IoET Case

In response to the significant threat of MITM and the related risk of exposing transmit-
ted data to malicious users, we propose a privacy-preserving federated learning (FL)-based
solution with ETD as a use case. FL is an emerging distributed AI paradigm where several
clients work together to build a global model federated by a federated server (FS) while
keeping their datasets local (see Figure 2). In ETD’s case, the EC data of each residential
home are processed locally at the distribution substation, which acts as a client in an FL
system. As such, each distribution substation trains an individual AI model using the local
data, whilst a global model is federated at the FS. This is conducted by exchanging the
model parameters instead of the data. Hence, it mitigates the MITM attacks on EC data and
alleviates the burden on the network by avoiding the overload of transmitting extensive
data from the edge to the cloud (where the FS is located).

Figure 2. Overview of the system model with smart electricity distribution.

An FL-based ETD method (FedDetect) is presented in [29] with encouraging accuracy
results; however, when examined under the energy-aware framework in [2], it was revealed
that the effective ETD rate is unacceptable and that the reported results may be misleading
due to the highly imbalanced data (see Table 2). In contrast, the proposed FL ETD method
(FL-CNN) is energy-aware; it effectively reduced the revenue loss attributed to energy theft
by 41% for ten clients (see Table 2).

Table 2. The results of the proposed FL-CNN method in comparison with the state-of-the-art FL
result [29] and centralised methods showing both conventional and ETD-specific metrics (%) for
different numbers of clients, C. († The FedDetect [29] results are reproduced using the pre-processed
data in Table 3 and the authors’ public GitHub code).

Clients Accuracy Precision Recall F1 Score TPR FPR Cost (K£)

Central CNN-B [2] 89.60 72.19 89.93 30.20 65.58 17.73 2890
CNN-B † 91.82 94.19 91.83 63.10 81.75 7.23 1415

2 87.75 91.90 87.75 49.29 69.64 10.55 2277
FL- 5 80.53 90.34 80.53 37.11 67.22 18.23 2818

CNN 10 72.47 88.09 72.47 24.39 64.43 27.44 3460

Fed 2 91.98 91.00 91.98 40.18 34.77 3.21 3871
Detect 5 92.58 91.03 92.58 36.07 27.03 1.91 4242

10 92.55 90.53 92.55 25.39 16.37 1.0 4799
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Table 3. FL-CNN parameters used in the comparative analysis [2].

Parameters Values

Number of epochs E 10
Communication rounds R 10

Number of clients C 2, 5, 10
Learning ratio λ 0.001

Although FL mitigates the data leakage between IoT devices and FS, information may
still be inferred by sniffing the model parameters using back-engineering, as discussed
in [30]. To this end, differential privacy [28,31] is integrated with FL in [29] to further protect
the model parameters and reduce the possibility of back-engineering the actual data.

In this work, we propose FL-CNN, which adopts the federated averaging (FedAvg)
methodology of the Flower framework (https://flower.dev/docs/framework/tutorial-
series-use-a-federated-learning-strategy-pytorch.html, accessed on 28 December 2023)
using PyTorch [28]. The process is adapted wherein distribution substations are clients that
undergo model training on their local data and transmit the model parameters to the FS,
where these parameters are aggregated and averaged to facilitate the update of the global
model. Subsequently, the revised global model parameters are sent back to the distribution
substation for subsequent training iterations (see Figure 2). The inherent design of FedAvg
aligns well to mitigate cybersecurity risks, like MITM attacks.

The dataset used in this work is the State Grid Corporation of China (SGCC) (https://
github.com/henryRDlab/ElectricityTheftDetection, accessed on 28 December 2023) which
comprises real-time EC records of 42,372 residential consumers with 10 times more honest
data points than theft (see Table 4 for details).

Table 4. Overview of the SGCC dataset [2].

Attributes Raw Data Clean Data

Total Customers 42,372 41,897
Honest Customers 38,757 38,321

Dishonest Consumers 3615 3576
Outliers 475 (39 theft)

The dataset is first pre-processed using linear interpolation as an imputation method
to replace the missing values. Next, the three-sigma rule method is used to identify
and remove outliers (see clean data in Table 4). To address the data imbalance issue in
the training dataset, we implement a hybrid approach, combining undersampling and
oversampling techniques using the synthetic minority oversampling technique (SMOTE);
see [2] for more details.

Similar to [2], an energy-aware approach for model training and ETD evaluation is
adopted in this work, which estimates the actual monetary loss due to (1) undetected
theft and (2) honest users falsely classified as dishonest. In addition, this work proposes
an FL-CNN system to mitigate the risk of data leakage in the centralised system in [2].
We assume that C distribution substations are deployed, where each carries E epochs of
learning during which the adaptive moment estimation (Adam) is used in the training
phase with a learning ratio of 0.001 λ. At the end of the training epochs, the model weights
are communicated to the FS in what is referred to as a communication round. At each
communication round, given ri for i = {1 . . . R} (where R is the maximum number of
rounds), the local model weights θi

m of distribution substation m are forwarded to the FS,
which then calculates the averaged weights (based on FedAvg) θi

m and pushes these back
to the clients. This process repeats until the convergence of the global model, which is

https://flower.dev/docs/framework/tutorial-series-use-a-federated-learning-strategy-pytorch.html
https://flower.dev/docs/framework/tutorial-series-use-a-federated-learning-strategy-pytorch.html
 https://github.com/henryRDlab/ElectricityTheftDetection
 https://github.com/henryRDlab/ElectricityTheftDetection
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similarly trained using Adam. The parameter settings adopted in this work are listed in
Table 3. The mathematical representation of FedAvg is represented in Equation (1):

θt
i =

{
1
n ∑n

i=1 θt−1
i − η∇Ji(θ

t−1
i ) if t ̸= 0

θt−1
i − η∇Ji(θ

t−1
i ) if t = 0

(1)

The parameters in the equation are as follows:

• θt
i : The parameter vector for the i-th client or model at iteration t.

• n: The total number of clients or models in the learning process.
• η: The learning rate, a positive scalar that determines the step size in the direction of

the negative gradient.
• ∇Ji(θ

t−1
i ): The gradient of the loss function Ji with respect to the parameter vector

θt−1
i for the i-th client or model at iteration t − 1.

Centralised CNN-B results that were published in [2] are listed in Table 2 as a baseline
in addition to CNN-B+, an improved version of CNN-B in which the loss function is tailored
to reduce the revenue cost due to energy theft and the CNN hyperparameters are optimised.
Next, the results of FL-CNN are summarised in Table 2 with different numbers of clients,
C = {2, 5, 10}. It should be noted that FL-CNN is not limited to the C values listed in
Table 2; these are selected to enable the comparison with the state-of-the-art work [29] that
uses the same dataset SGCC.

As expected, compared with centralised methods, the FL-based methods (both [29]
and FL-CNN) result in a degradation of the ETD performance as seen in the true positive
rate (TPR) and cost in Table 2. TPR is a metric that quantifies the rate of successfully
detected theft samples compared to all theft samples. Moreover, Table 2 highlights an
important trend regarding the effect of the number of clients (distribution substations) on
the performance of FL methods, whereby an increase in clients generally decreases the
TPR for both FL-CNN and FedDetect. The trends observed in both methods with regard to
the false positive rate (FPR), which represents the rate of misclassified honest data points
compared to all honest samples, differ. This is expected since the FedDetect loss function
is not designed to account for the data imbalance and, with more clients (smaller local
training dataset), the model tends to classify most data points as honest. FL-CNN, on the
other hand, is trained to prioritise the detection of theft and, with a smaller training dataset,
is more prone to misclassify honest data points as theft. The energy-aware framework
proposed in [2] provides a realistic metric for comparing different methods as it portrays
the actual revenue loss of an energy provider due to both undetected theft and false theft
alarms; both require an in-person visit to the premises but the former results in a prolonged
period of unbilled energy consumption before being identified.

Furthermore, Table 2 shows the reproduced results based on our implementation
of [29] using the GitHub repository (https://github.com/xierongpytorch/FedDetect/blob/
main/FedDetect.py, accessed on 28 December 2023) provided by the authors, together
with the preprocessed dataset depicted in Table 3. Similar to our findings in [2], we again
reveal the alarming energy-aware performance of published models despite the attractive
yet misleading reported results. In this context, the accuracy results (reported in [29] and
reproduced in Table 2) seem to outperform the FL-CNN and centralised learning methods.
However, upon a closer look at the energy-aware performance represented by TPR and
FPR, and the related costs, we can see that [29] has the worst performance as it leads to the
highest revenue loss due to energy theft. Indeed, FedDetect [29] resulted in a very poor
theft detection rate (16.37%–34.77%) and the highest costs, i.e., K3871 GBP–K4799 GBP
for 2–10 clients, resulting in the highest accuracy values, i.e., ∼92% (see Table 2). This is
not surprising since, given the 92.55% share of honest users in the dataset (see Table 4), if
all users are classified as honest, then the classification accuracy would be 92.55%. Our
proposed FL-CNN method achieves the best results whilst contributing to data privacy for
the three common implementations—2, 5, and 10 clients with cost savings of 41%, 33%,
and 72% for each scenario, respectively.

 https://github.com/xierongpytorch/FedDetect/blob/main/FedDetect.py
 https://github.com/xierongpytorch/FedDetect/blob/main/FedDetect.py
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4.2. Differential Privacy to Mitigate MITM Attacks: An IoMT Case

IoMT-based remote stress detection is seen as a promising solution for increasing
the reach of mental healthcare to vulnerable people with no access to medical staff. Such
solutions primarily employ IoMT sensors that measure physiological signals, such as those
listed in Table 5. A deep learning method is proposed in [1], where an attention-based
transformer network is shown to successfully detect stress in unseen people. Such an
implementation requires all data to be transmitted to a central server for model training,
thus exposing private information to the MITM attack [32,33]. The same authors employ
differential privacy in [34] to protect the IoMT and present a study on the trade-off between
privacy and performance.

Table 5. Overview of data streams and their relation to stress.

Data Stream Description Relation to Stress

Electrocardiogram (ECG) Measures heart activity Indicates stress via heart rate variability
Electrodermal activity (EDA) Measures skin conductance Reflects emotional states

Temperature (Temp) Measures skin temperature Altered by stress-induced variations
Respiration (Resp) Measures breathing patterns Altered by stress levels

Accelerometer (ACC) Captures movement data Indicates physical restlessness due to stress
Electromyogram (EMG) Measures muscle activity Indicates muscular tension from stress

Differential privacy is an established data protection mechanism, where each data
signal is contaminated with additive noise before being sent to the central server for pro-
cessing, as shown in Figure 3. In [34], a noise value ν is sampled from a zero-mean Gaussian
distribution with standard deviation σ = [0 . . . 1]. In differential privacy terminology, this
standard deviation is referred to as the noise multiplier, where σ = 0 indicates that the
original signal is not altered and σ = 1 offers the highest protection with the highest
noise level. Based on the setting of the noise multiplier, a privacy budget ε is calculated,
estimating the potential risk of privacy leakage as follows in Equation (2) [35]:

ε =
√

2I log(1/δ)σ + I(eσ2/2 − 1), (2)

where I is the number of training iterations, δ is a hyperparameter usually set to a small
value, and (σ) is the noise multiplier.

Figure 3. Differential privacy for securing IoMT data privacy.

In Figure 4, we present the results obtained with the proposed method using WESAD,
a publicly available dataset. As can be seen, adding differential privacy (σ ̸= 0) to the
transformer model for any of the data streams negatively impacts the performance of the
model. The drop in accuracy when σ increases from 0 to 0.1 for each data stream is, on
average, 20.6%, with a minimum of 18.4% in the case of the accelerometer data stream and
a maximum of 22.8% for the electrocardiogram data stream. In contrast, the multimodal
model (referred to as ALL in Figure 4) is significantly more robust when differential privacy
is implemented, experiencing a drop in accuracy of 2.9% for σ = 0.1. As expected, the
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degradation in the stress detection rate increases with higher noise multipliers, but the
highest drop of 6.1% is recorded with maximum privacy (i.e., σ = 1), thus yielding an
acceptable accuracy of 89.9% for the multimodal model (ALL).

Figure 4. Accuracy results of the differential privacy implementation using the WESAD dataset
(taken from [34]).

Finding the trade-off between privacy and accuracy is delicate and tightly related to
the level of harm that might be caused if there were a breach of privacy. It follows that there
is no blanket solution or optimum setting that always works best; instead, the trade-off
needs to be adjusted for different scenarios and IoMT systems. As an example, the potential
harm that might result from leaking data related to skin temperature is lower than that of
data related to ECG. ECG patterns uniquely identify a person and, therefore, ECG data
do not pose any security risks. This is confirmed by the analysis of the privacy level and
potential harm for each IoMT data stream used in stress detection, as presented in [34].
In other IoMT applications, as systems for remote monitoring and control of diabetes,
the detected sugar level is key for controlling insulin levels and, therefore, the detection
accuracy cannot be compromised for the sake of privacy [36]. The optimum trade-off for
each of the data streams in Table 5 is shown in Figure 5.

Figure 5. The generic trade-off curve between data privacy and the effectiveness of machine learning
in the case of differential privacy is shown in the dashed line. The blue star indicates the ideal but
impossible-to-achieve point. Each of the coloured doughnuts indicates the optimum point between
privacy and accuracy for each of the data streams in Table 5 with differing privacy requirements.
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5. Privacy Evaluation Methods

Two different types of metrics are frequently used to evaluate how well privacy-
preserving methods perform: (1) privacy metrics to determine how much privacy a dataset
has lost/gained, and (2) utility metrics to determine how useful the protected data are
for data analysis. A comprehensive survey of more than 80 privacy metrics is presented
in [37], where two categories for privacy evaluation are identified: adversary models and
data sources. Methods that employ adversary models evaluate an adversary’s skills and
intentions (e.g., MITM), whereas those that examine the data sources investigate potential
privacy leakage risks (e.g., Malware attacks). Both are key elements in establishing the
privacy measure for a given scenario and numerous metrics are often used to accurately
analyse the related degree of privacy loss.

Privacy-preserving measures often lead to compromising utility metrics, which are
used to quantify the usefulness of data being protected. This is seen in both applications
(FL for ETD) in Section 4.1 and differential privacy for stress detection in Section 4.2.
Information loss measures are established to quantify the similarity between the original
data and protected data for general analysis purposes. Usually, the usefulness of protected
data is determined by how well the statistical details of the original data are preserved. By
comparing the accuracy of the evaluation carried out on the protected data with that of the
original data, the data utility is evaluated to determine its suitability for particular analytical
goals, such as machine learning and statistical analysis [38]. Differential privacy is a
rigorous mathematical definition quantifying privacy leakage in which noise is added to the
original signal to reduce the probability of privacy leakage in case the data are intercepted.
As shown in Figure 5, a higher noise level improves data privacy at the cost of reduced
utility. It can also be seen that the proposed differential privacy’s multimodal approach
(ALL) is closest to the ideal point as it delivers high-accuracy with an acceptable privacy
budget. As highlighted in [39], differential privacy has been extensively investigated in
various AI domains, including machine learning, deep learning, and multi-agent learning.
The study highlights the crucial role of differential privacy in surmounting significant
AI challenges, including enhancing privacy stability, fairness, and security. It facilitates
composition and utility in AI systems while effectively mitigating risks like membership
and attribute inference attacks. These aspects not only ensure robust privacy guarantees
but also have a profound impact on the performance and reliability of AI models. One of
the fundamental aspects of differential privacy is the trade-off between utility and privacy,
especially given the challenges in quantifying utility loss. In differential privacy, the ϵ
parameter plays a key role in defining the level of privacy. It quantifies the privacy budget,
with lower values indicating stronger privacy. Larger ϵ values are chosen to ensure utility,
but this often leads to a gap between theoretical privacy guarantees and actual privacy loss
observed in practice. Prior studies suggest that while choosing a higher ϵ value to maintain
data utility might weaken privacy guarantees, the actual leakage under inference attacks
remains low [40,41].

The authors in [38] provided a thorough overview of privacy and utility metrics for
privacy-preserving machine learning applications, ranging from broad to targeted data
analysis, including several privacy-preserving FL techniques. The authors examined the
types of attacks that can be performed against FL systems [6] to assess user data privacy. As
evaluation criteria, the attacker’s success rate and the amount of information demonstrated
in the attacks were used. A membership inference attack (MIA) is a typical privacy metric
used to assess the vulnerability of FL models to inference attacks, in which an attacker
attempts to identify whether a specific data point was included during model training. In
this context, the attack success rate (ASR) is a measure of an attacker’s correct predictions
of MIA.

In [42], the authors examine privacy leakage under MIA between FL and corset-based
learning, as well as accuracy and communication costs. They demonstrate the accuracy–
privacy–cost trade-off of each technique using real-world datasets and advanced attack
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models. In this work, we find a similar trend between model accuracy in a centralised
learning framework and data privacy in the FL framework (see Section 4.1).

6. Remaining Challenges

In this section, we discuss some of the key open challenges yet to be addressed.

6.1. Risk of Model Stealing

In this work, to protect the privacy of the users’ data, we advocate a distributed ML
paradigm and propose a federated learning approach to collaboratively train a global
model. This approach entails the exchange of trained local and global models over the
network. As a consequence, there is a potential risk for the system to be subjected to
model stealing. ML model stealing, also known as model extraction, is a type of attack
where an adversary attempts to extract or steal the trained ML model used by another
party [43,44]. In IoT scenarios, this is quite concerning because the ML models are often
deployed on less-capable devices (i.e., resource-constrained with limited computational
power and memory) without proper security measures, making them more vulnerable
to attacks. Typically, adversaries can steal the ML models that are deployed on devices
or exchanged during training to extract private information, such as user behaviour or
personal data.

To prevent model stealing in IoT settings, methods such as model obfuscation, data
perturbation, and model watermarking can be used [43,45]. Model obfuscation adds
noise or complexity to mitigate model extraction attacks. Another approach leverages data
perturbation by adding random noise to the training data, making it harder to infer from the
model’s parameters. In this work, we propose AIS, which enhances the security measures
of distributed ML deployments in IoT scenarios and can be leveraged as a complementary
mitigation mechanism against ML model-stealing attacks.

6.2. Assumptions on the Threat Model

In this work, it is assumed that 3rd parties (or external adversaries) are the main risk
sources of federated learning systems. However, it is important to recognize the various
types of thread models that FL systems are subjected to [46].

For example, it might not be the case that the attackers are foreign agents, as the
vulnerabilities in a federated learning setup might emerge from within the group of par-
ticipating clients that contribute data during the learning phase. Attacks originating from
these clients pose a significant risk, potentially exerting greater influence than those during
the inference phase. This is because adversarial clients in federated learning possess the
ability to not only exploit the model service boundaries in production but also actively
manipulate and alter the model’s boundaries during its development stage [46].

Guaranteeing resilience against model backdoors is a critical concern. Within the
realms of machine learning and computer security, various backdoor attack methods
have emerged, targeting neural network models. Thus, questions such as "Can we ensure
robustness against these back doors by strategically designing backdoor-proof models?" and
"Does the challenge of avoiding backdoors become self-referential, considering that models
inherently learn from the dataset’s distribution?" arise. It is anticipated that approaches
that gauge or maintain resilience [46] or leverage robust knowledge representations against
such attacks display great potential in this direction.

However, privacy is of lesser concern in federated learning (FL) because the data are
distributed across multiple devices, and the model training process is performed locally
on the devices. There are methods proposed to enhance privacy, such as differential
privacy [31], homophobic encryption (HE) [47], and secure aggregation (SA) [48].

For instance, similar to data obfuscation, differential privacy adds random noise to the
data to mask user data and protect their privacy [31]. This ensures that the model’s output
does not depend on any single user’s data by adding sufficient noise to the training data
to protect the users’ data, while still maintaining the overall quality of the model. In FL,
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the model is trained by aggregating the model updates from multiple devices, which can
comprise privacy and potentially expose the users’ data to the federated server (FS). Some
approaches leverage homomorphic encryption, allowing computations to be performed
on encrypted data without decrypting it. This is achieved in FL by encrypting the model
before sharing it with the FS, and the FS can perform aggregation on encrypted models [47].
Another approach leverages secure aggregation methods based on multi-party computa-
tions. In FL, the FS computes the sums of model parameter updates from individual user
devices in a secure manner, without revealing the individual user’s data [48].

7. Conclusions

In this work, we examine the potential of the Internet of Things (IoT) in enabling
the hyperconnected intelligent world (HIW), with emphasis on two use cases: the Internet
of Energy Things (IoET) and the Internet of Medical Things (IoMT). We also expose the
security risks of these systems and the related threat models and data privacy concerns.
Two types of cyber security attacks are discussed: malware and man-in-the-middle (MITM)
attacks. An artificial immune system is proposed to address the former and is proven to be
suitable for IoT systems, given their limited processing power and memory space. For each
approach, federated learning and differential privacy are suggested to mitigate the MITM
attacks, and the trade-off between the efficacy of data-driven models and data privacy
protection is discussed. We conclude that IoT systems are indispensable for advancing HIW
applications, and while the proposed measures for combating cyberattacks are promising,
a few challenges remain that require further analysis.
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