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Abstract: Graph representation is recognized as an efficient method for modeling networks, precisely
illustrating intricate, dynamic interactions within various entities of networks by representing entities
as nodes and their relationships as edges. Leveraging the advantage of the network graph data
along with deep learning technologies specialized for analyzing graph data, Graph Neural Networks
(GNNs) have revolutionized the field of computer networking by effectively handling structured
graph data and enabling precise predictions for various use cases such as performance modeling,
routing optimization, and resource allocation. The RouteNet model, utilizing a GNN, has been
effectively applied in determining Quality of Service (QoS) parameters for each source-to-destination
pair in computer networks. However, a prevalent issue in the current GNN model is their struggle
with generalization and capturing the complex relationships and patterns within network data. This
research aims to enhance the predictive power of GNN-based models by enhancing the original
RouteNet model by incorporating an attention layer into its architecture. A comparative analysis
is conducted to evaluate the performance of the Modified RouteNet model against the Original
RouteNet model. The effectiveness of the added attention layer has been examined to determine its
impact on the overall model performance. The outcomes of this research contribute to advancing
GNN-based network performance prediction, addressing the limitations of existing models, and
providing reliable frameworks for predicting network delay.

Keywords: RouteNet; graph neural network; attention mechanism

1. Introduction

Graph Neural Networks (GNNs) have brought about a revolutionary change in fields
that deal with structured data represented as graphs, particularly in computer networking,
where its adoption has been rapid due to its effectiveness in various use cases such as
performance modeling, routing optimization, and resource allocation [1]. GNNs have
garnered significant attention in the machine learning field due to their ability to produce
accurate predictions even for networks not present in the training data, making them a
subject of active research and interest. Moreover, GNNs are being explored in different
domains such as chemistry, physics, and social networks. Although Neural Networks
(NNs) have proven to be excellent function approximators for structured data, they are
not suitable for learning from data with complex relationships such as graph data [2,3]. In
networking, nodes of the graph data depict networking entities with their features, and
edges are the connections or relationships between the different entities. These connections
can represent various types of interactions or data flows, encapsulating the intricate and
non-euclidean structure inherent to network systems. Thus, a more sophisticated and
specialized neural network architecture is required to handle the graph data effectively,
leveraging the rich representational capacity of graphs to model the complex, non-linear
interdependencies between entities in a network. Thus, GNNs are being employed in
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networking domains to accurately estimate performance by learning from graph features
and structures.

Selecting the optimal route while simultaneously ensuring Quality of Service (QoS) for
network flows is a complex task, particularly as network resources can dynamically change.
Traditional networks, with limitations such as per-hop decision making and challenges in
applying flow-based QoS due to a lack of a global network view, face ongoing issues in
routing [4]. QoS-driven routing emerges as a solution, providing strategies that identify
the best paths to meet the QoS requirements of a maximum number of flows. Specifically
focusing on minimizing delays, QoS-driven routing becomes crucial for maintaining flows
within guaranteed QoS routes and achieving optimized Quality of Service. For this purpose,
accurate prediction of QoS, using models such as RouteNet is imperative. RouteNet is a
novel GNN model that has shown its effectiveness in producing accurate estimations of
per-source/destination pair mean delay and jitter in networks with comparable accuracy
to resource-intensive packet-level simulators. Its specialized GNN architecture operates
on data structured as graphs, enabling it to learn and model the intricate relationships
among network topology, routing, and input traffic. This enables RouteNet to make
performance predictions even in scenarios that were not observed during the training
phase [5]. RouteNet has the potential to address the limitations of existing GNN models,
particularly in generalizing to larger graphs, making it a promising solution for various
network modeling and optimization tasks.

Existing GNNs in networking applications struggle to adapt effectively to more com-
plex network structures limiting their practical use in diverse real-world scenarios. These
limitations restrict the development and adoption of accurate and scalable network models
in various networking applications, including performance modeling, routing optimization,
and resource allocation in wireless networks [2]. The primary limitation of RouteNet lies
in its diminished accuracy when faced with evaluation data distributions divergent from
the training set, and it does not generalize well to networks considerably larger than those
encountered during the training phase [6].

To address this issue, exploring alternative and innovative approaches for efficiently
training GNN-based models to handle networks with varying complexities is essential.
Thus, our solution involves modifying the architecture of the RouteNet model by incor-
porating an attention layer. This additional layer aims to refine the model’s predictive
capabilities and accuracy in predicting network performance metrics. To evaluate the
performance of the modified RouteNet model, a comparative analysis with the original
RouteNet model is conducted. By comparing the results, we aim to measure the impact and
effectiveness of incorporating the attention layer in enhancing the model’s overall perfor-
mance and prediction accuracy. Hence, there is a need to explore new approaches for train-
ing GNN-based models in networking applications, by utilizing recent advancements in
semi-supervised learning.

The major contributions of this research are as follows:

• Enhancement of the RouteNet model internal architecture by incorporating the atten-
tion mechanism, enhancing its delay prediction.

• Evaluation of the predictive capabilities of the original RouteNet with the attention-
enhanced version.

The rest of this paper is organized as follows: Section 2 presents a background study
with related work, Section 3 provides the methodology of this research, and Section 4
presents the results and analysis, while Section 5 concludes the paper.

2. Background and Related Work
2.1. RouteNet Model

RouteNet is a type of Recurrent Neural Network (RNN) that is designed to predict
network Key Performance Indicators (KPIs) for specific source–destination pairs, based
on a given network configuration [7]. RouteNet is trained on data collected from various
network topologies, including their traffic and routing configurations, to learn the net-
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work model. This model can then be used to predict network performance for specific
source–destination pairs. The model can then predict network performance by capturing
the intricate relationships between link properties and source–destination paths in the
network topologies.

The process of transforming the original network topology into the RouteNet input
graph is illustrated in [8]. The input graph used by RouteNet is a modified version of
the original graph that has been transformed by representing links as nodes and creating
hyperedges for each sample. RouteNet exploits the link–path relationship to obtain states
that encode useful information for predicting performance metrics, with paths depending
on link states and links depending on path states.

We consider the internal architecture of RouteNet presented in [9]. During a single
message-passing iteration in RouteNet, first, the information propagates from paths to links.
For each link, the state vectors of all paths that use that link element-wise are summed
and feed the resulting output as input to the RNN that updates the link state. The RNN
combines the previous state with new information to produce a more informed, updated
link state. Next, the information propagates from links to paths. For each path, the sequence
of link states that the path traverses is used as input to a different RNN that updates the
path state. The output of this RNN, with its initial hidden state set to the current path state
values, gives the updated path state. This step is repeated for several iterations until the
states converge [8].

The Gated Recurrent Unit (GRU) is a recurrent neural network (RNN) architecture
introduced by Cho et al. in 2014 [10]. The GRU addresses the limitations of traditional
RNNs by incorporating gating mechanisms that enable selective information updates and
access over time. It consists of two main gates: the reset gate and the update gate. The reset
gate determines the extent to which the previous hidden state is reset, while the update
gate controls the integration of new information into the hidden state. These gates allow
the GRU to selectively retain relevant information and capture long-term dependencies,
making it effective in various tasks.

The mathematical representation of the GRU, as depicted in Figure 1, can be described
by the following equations:

rt = σ(Wr · [ht−1, xt]) (1)

zt = σ(Wz · [ht−1, xt]) (2)

h̃t = tanh(Wh · (rt ⊙ ht−1) + xt) (3)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (4)

where
Wr, Wz, Wh: Learnable weight matrices used to capture patterns in the input data.
xt: Input at time step t in the sequence.
ht−1: Previous hidden state at time step t + 1.
σ(·): Sigmoid function used for activation and gate control.
rt: Reset gate output at time step t, determines previous state reset.
zt: Update gate output at time step t, controls new information incorporation.
h̃t: Candidate hidden state at time step t, computed using the reset gate and input.
ht: Current hidden state at time step t, computed by combining the previous hidden state
and the candidate hidden state based on the update gate.
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Figure 1. Gated Recurrent Unit.

In the GRU, the reset and update gates, along with the candidate memory content,
are computed based on the previous hidden state and current input. The hidden state is
then updated by combining the previous hidden state with the candidate memory content
weighted by the update gate. This update process allows the GRU to adaptively capture
sequential patterns and mitigate the vanishing gradient problem commonly encountered
in traditional RNNs.

The key components of attention include three essential elements: (a) the Query, (b)
the Key, and (c) the Value, illustrated in Figure 2. Each of these plays a distinct and sig-
nificant role in the mechanism. The Query is a vector that represents the current element
or area of focus for which the model is attempting to compute an output. This could be,
for example, a word in a sentence that the model is currently processing. The Key vectors
correspond to each element in the input sequence, with each key being compared against
the Query to ascertain its relevance. The Value vectors are associated with the keys and
are crucial in constructing the final output once the relevance of each input element to the
Query is established. Once the Query and Key vectors are defined, the model calculates the
attention scores. This is typically performed using a function like the dot product, where
each Query vector is compared with each Key vector. The resultant attention scores are a set
of raw numerical values indicating how relevant each key (and by extension, the associated
value) is to the query. However, these raw scores are not directly used. Instead, they
undergo Softmax Normalization, a crucial step that transforms the scores into a probability
distribution. The softmax function ensures that the scores add up to one, turning them into
weights that can be applied evenly across the data. This normalization process is key to the
mechanism’s ability to focus on the most relevant parts of the input sequence. The next
step involves the weighted sum, where the model applies the normalized attention weights
to the Value vectors. This process effectively combines the values, with the degree of
emphasis placed on each value being proportional to its calculated importance. Finally, the
Context vector is the output of the Weighted Sum block and encapsulates the aggregated,
attention-weighted information from the entire input sequence. The Context vector is a
comprehensive representation of the input, filtered through the lens of the current focus
or query. The mathematical framework, along with a deeper understanding of the aggrega-
tion, normalization, and attention score computation mechanisms within graph attention
networks, is detailed in [11].
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Figure 2. Detailed Attention Mechanism.

2.2. Related Work

The paper by Miquel Ferriol-Galmés et al. [1] addresses the scalability problem of
Graph Neural Networks (GNNs) for network control and management. The GNN has
shown great potential in accurately predicting network properties, but existing solutions
have a limitation in generalizing to larger networks. To overcome this limitation, the
authors propose a GNN-based solution that can effectively scale to larger networks with
higher link capacities and aggregated traffic on links. The approach has been evaluated
and shown to significantly improve the accuracy of network predictions on larger graphs.

In 2019 [2], a network model called RouteNet was proposed that uses Graph Neural
Networks (GNNs) to accurately predict end-to-end Key Performance Indicators (KPIs) such
as delay and jitter in networks. They evaluated RouteNet and showed that it can make
performance predictions with similar accuracy to packet-level simulators, even in network
scenarios unseen during training.

K. Rusek et al. [5] developed a GNN model that accurately estimates delay and jitter
in self-driving Software-Defined Networks by understanding the complex relationship
between topology, routing, and input traffic. The model generalized arbitrary topologies
and routing schemes and has been tested against unseen scenarios, achieving a worst-case
R2 of 0.86. The paper also presents the model’s potential for network operation, including
its effectiveness in delay/jitter routing optimization for specific source/destination pairs
and its ability to reason in topologies and routing schemes not seen during training.

Miquel Farreras et al. [7] presented an approach to address the generalization problem
of Graph Neural Networks (GNNs) by leveraging networking concepts and analysis to
improve the baseline RouteNet model developed by Barcelona Neural Networking Center
- Universitat Polit‘ecnica de Catalunya (BNN-UPC). The proposed method was able to
significantly enhance the accuracy of the model in larger graphs, which is an important
step toward using GNNs for modeling and optimizing modern networks. In addition,
the paper proposes a closed-loop control context where the resulting GNN model could
potentially be applied in different use cases.

Arnau Badia-Sampera [8] presented an extension to the RouteNet model, which
uses Graph Neural Networks (GNNs) to estimate network performance metrics based
on topology, routing configuration, and traffic demands. The model was evaluated on
a dataset of network scenarios with varying queue sizes, demonstrating progress to-
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ward building more realistic network models for optimizing and managing real-world
computer networks.

In 2018, Mestres et al. [12] explored the application of neural networks (NNs) for
modeling the average end-to-end delay in computer networks based on input traffic
matrices. While the study underscores the accuracy and efficiency of well-designed NNs,
a notable disadvantage is their data-driven nature, demanding large training sets and
significant computational resources during the learning phase. Despite these limitations,
NNs prove effective in accurately modeling average end-to-end delay in communication
networks, provided proper tuning of hyperparameters, with the primary drawback being
their resource-intensive initial training process.

In a study conducted in [13], it was demonstrated that RouteNet-Fermi is an accurate
and effective network model for predicting delay, jitter, and loss in complex networks. The
model was found to have comparable accuracy to computationally expensive packet-level
simulators and was able to scale accurately to large networks with a mean relative error of
6.24% on a test dataset.

Ferriol-Galmés et al. [14] introduced a new technique called RouteNet-Erlang, which
utilizes Graph Neural Networks (GNNs) to model computer networks. This approach
supports complex traffic models, multi-queue scheduling policies, and routing policies,
and can provide accurate estimates in networks not seen during training. The authors
compared RouteNet-Erlang to a state-of-the-art Queuing Theory (QT) model and showed
that it outperformed QT in all network scenarios.

Rusek et al. [15] developed a network model called RouteNet that uses Graph Neural
Networks (GNNs) to accurately predict Key Performance Indicators (KPIs) such as delay,
jitter, and loss in Software-Defined Networks. The authors demonstrated that RouteNet can
generalize over various network topologies, routing schemes, and traffic intensity, and can
accurately predict KPIs even in unseen scenarios. The paper highlights the limitations of
existing analytic models for network modeling and emphasizes the potential of GNNs for
building accurate and flexible data-driven models for network optimization. Furthermore,
the authors presented use cases where they used RouteNet for efficient routing optimization
and network planning.

Badia-Sampera et al. [16] introduced an extension to the RouteNet model, allowing
for the modeling of forwarding devices with different characteristics, specifically, variable
queue sizes. The model was evaluated through experiments to assess its accuracy in
predicting network performance metrics.

In 2022, Bruno et al. [17] addressed 5G network generalization challenges with
QTRouteNet, utilizing robust features from Queuing Theory (QT). By fine-tuning baseline
predictions with a modified RouteNet GNN model, they significantly improved generaliza-
tion, reducing the mean absolute percent error from 10.42 to 1.45. QTRouteNet’s success
indicates that enhancing network modeling accuracy can be achieved effectively through
minor modifications to a robust approximate model without sacrificing generalization.

DeepQSC, proposed by Ren et al. [18], addresses the QoS-based service composition
problem through an end-to-end supervised learning framework incorporating attention
mechanisms. It effectively navigates challenges related to diverse service compositions,
intricate topological relationships, and varying subfunction providers. Leveraging attention
mechanisms, the model excels in capturing complex relationships among web services,
leading to superior QoS-aware composite service formation.

Zheng et al. [19], introduced STGMAGNet, a pioneering approach for predicting long-
term airport delays, incorporating attention mechanisms. Utilizing a Spatial–Temporal
Gated Multi-Attention Graph Network, the model proficiently captures intricate correla-
tions among airports and time steps. This attention-centric strategy enhanced precision,
addressing challenges such as error propagation and dynamic correlations.

Tam et al. [20] conducted an extensive review of Graph Neural Network (GNN)
applications in network management, encompassing task offloading, routing optimization,
and resource allocation. The paper explored the GNN’s role in enhancing delay awareness
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for tasks like offloading and routing optimization in network management. The survey
extensively covered SDN/NFV-enabled networks, emphasizing objectives such as energy
efficiency, QoS improvement, resource utilization, cost optimization, and link loading.

Sun et al. [21] present a thorough survey on attention-enhanced Graph Neural Net-
works (GNNs), addressing a gap in systematic exploration. Introducing a novel two-level
taxonomy, it categorizes attention-based GNNs into graph recurrent attention networks,
graph attention networks, and graph transformers. This study explores the enhancement
of GNN functionality through the integration of attention mechanisms.

3. Methodology

The block diagram illustrating RouteNet, which is a Graph Neural Network (GNN)-
based model, is depicted in Figure 3. RouteNet is a network performance prediction
system that takes a given network topology, source–destination routing scheme, and traffic
matrix as input, and produces performance metrics for each end-to-end path in the routing
scheme [2].

Figure 3. Block diagram of GNN-based model.

The model processes various inputs for each sample in the dataset to perform its delay
prediction [7]. These inputs include the following:

• Topology: The input topology represents the network structure using a directed
graph, where nodes represent network devices (such as routers or switches) and
edges represent physical or logical links connecting these devices. Moreover, topology
includes properties such as nodes, links, queue sizes, and link capacity. It provides a
detailed description of the physical objects in the network and their interconnections,
enabling the model to understand the network’s layout and properties.

• Traffic Matrix: The traffic matrix is a matrix representation where the rows and
columns correspond to network devices, and the elements indicate the bandwidth
or volume of traffic between device pairs. This input provides information about the
flow-level and aggregate characteristics of network traffic, including metrics such
as average bandwidth, packet generation rates, and average packet size. Analyzing
the traffic matrix allows the model to simulate and analyze the traffic patterns and
demands within the network, facilitating resource allocation and capacity planning.

• Routing: The routing input consists of a scheme that specifies the paths connecting
source–destination pairs in the network. It defines the routes that packets take when
traveling from one node to another. By analyzing the routing scheme, the model can
evaluate the efficiency and effectiveness of data routing, allowing for optimizations
and informed decision making regarding network traffic distribution.

As the model relies on topology, routing, and traffic information as inputs, obtaining
these data from the networking system is crucial. Identifying the topology of large-scale
systems, especially those with dynamic topologies, necessitates employing a variety of
sophisticated tools and technologies. Automated discovery tools such as SNMP (Simple
Network Management Protocol) and LLDP (Link Layer Discovery Protocol) are pivotal in
facilitating real-time and continuous topology discovery by dynamically detecting network
devices and tracking topology changes. These technologies simplify the topology discov-
ery process in dynamic environments by allowing for automated polling and retrieval of
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network information [22]. Integrating these discovery tools with Network Management
Systems (NMS) further enhances the capability to efficiently manage large-scale and dy-
namic topologies by providing a centralized platform for network topology visualization,
change tracking, and alert management [23].

In our research, publicly available datasets generated from a customized packet-level
simulator based on OMNeT++ were utilized, which were collected from [24,25]. These
datasets include samples with different input topologies, routing configurations, and traffic
patterns. For this research, four specific topology datasets were used: NSFNet Topology,
GEANT2 Topology, GBN Topology, and REDIRIS Topology. During the training phase, the
NSFNet and GEANT2 topologies were used, the GBN topology was used for validation,
and the REDIRIS topology was used for testing purposes.

3.1. RouteNet Model Implementation

The simplified architecture of the RouteNet model is depicted in Figure 4. It takes input
features, processes them through link and path updates using GRU cells, and incorporates
information exchange between links and paths. A readout neural network then produces
the final output. The design highlights the integration of link and path information for
effective information processing.

Figure 4. RouteNet model architecture.

Figure 5 presents the detailed architecture of the RouteNet model, emphasizing the
exchange of information through message passing between links and paths. Following
‘t = 8’ iterations, the model then progresses through the readout network.
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Figure 5. Detailed RouteNet model architecture with iterative message passing.

In the initial phase, known as “Link and Path Update”, GRU cells are employed to
iteratively update link and path states. In Link Update, the initial link state involves a
vector where link capacity is concatenated with zeros, and a similar pattern is followed in
Path Update with bandwidth concatenation. Each GRU cell, comprising 32 units, receives
messages from respective paths or links, leading to state adjustments. The subsequent
stage, “Message Passing”, unfolds in two steps. Firstly, from links to paths, link states
are aggregated and summed for each path, and the path GRU cell updates the path state
using this aggregated link state. In the second step, from paths to links, path states are
gathered and summed for each link, and the link GRU cell updates the link state using the
accumulated path state.

The final stage introduces the “Readout Neural Network”, responsible for processing path
states post the message-passing process and predicting delays for each path. This network
comprises three layers: an initial Dense layer with 8 units using the Scaled Exponential Linear
Unit activation function, L2 regularization, and dropout, a subsequent Dense layer with 8 units
using the Rectified Linear Unit activation function, L2 regularization, and dropout, and a final
Dense layer with a single output unit and L2 regularization.

Finally, RouteNet underscores its effectiveness in predicting network delays through the
interplay of message-passing mechanisms and subsequent neural network processing.

3.2. RouteNet Model with Attention

The RouteNet model with the integration of the Graph Attention Mechanism is de-
picted in the block diagram shown in Figure 6. This enhanced architecture combines the
power of the original RouteNet model with the Graph Attention Mechanism to improve its
predictive capabilities.
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Figure 6. RouteNet model architecture with attention and message passing.

A significant improvement in this model architecture is the incorporation of an atten-
tion layer, represented by the yellow-highlighted block in Figures 6 and 7. The attention
layer introduces a dynamic and adaptive weighting system to the exchange of information
between link and path updates. In simpler terms, it allows the model to assign varying de-
grees of importance to different aspects of the information being exchanged. This dynamic
weighting mechanism represents a more sophisticated and flexible approach, enabling
the model to better process and prioritize data based on their relevance, which, in turn,
contributes to an overall improvement in the model’s capabilities.

3.3. Detailed Internal Architecture of RouteNet with Attention

Figure 8 illustrates the detailed internal architecture of the RouteNet model with an
attention mechanism integrated into it. The architecture processes network data through
multiple iterations, each aimed at refining the state information of network elements for
accurate performance metric prediction.
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Figure 7. RouteNet architecture with iterative message passing with attention layer.

Figure 8. Detailed internal architecture diagram of RouteNet with attention.
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The flow steps are presented in the sections below:
i. GRU Layers for Link and Path Updates: The model initiates with GRU layers, which

take initial link states (hL1, hL2, . . . , hLn) and path states (hP1, hP2, . . . , hPn) as inputs. These
states are processed through GRU layers, aiming to capture temporal dependencies and
refine their representations.

ii. Attention Mechanism: After the initial updates, the attention layers receive the
path states (hP1, hP2, . . . , hPn) and dynamically calculate attention weights. This process
allows the model to focus on the most informative features within the path states by
assigning higher weights to more significant inputs. The output of the attention layers are
attention-refined path states (hA1, hA2, . . . , hAn).

iii. Iterative Processing and Message Passing: During “T" iterations, the model
continually updates the link and path states. The attention mechanism plays a crucial role
here by recalibrating the path states during each iteration based on the evolving context of
the network’s state, ensuring that crucial information is emphasized for future updates.

iv. Performance Metrics Readout: Finally, the outputs from the last iteration of atten-
tion layers (hA1, hA2, . . . , hAn) are fed into the readout layers, marked as ‘R’ in Figure 8. The
readout layers are designed as a series of densely connected neural networks configured to
map the attention-enhanced states to specific performance metrics.

Algorithm 1 begins by initializing the attention weights for each path and link at
time step 0. These attention weights, denoted as a0

p for paths and a0
l for links, are set to

small positive values and will be updated during the message-passing process. Next, the
algorithm initializes the hidden states of paths and links at time step 0. Each path’s initial
hidden state, denoted as h0

p, is formed by concatenating the corresponding path feature
xp with zeros for the remaining dimensions. Similarly, each link’s initial hidden state,
denoted as h0

l , is formed by concatenating the corresponding link feature xl with zeros for
the remaining dimensions.

The algorithm then enters a loop from time step 0 to T-1 to perform message passing
between paths and links. Here, T denotes the iterations for message-passing steps, and
within each iteration (t), hidden states hp and hl are updated. These iterations converge
to a fixed point from initial states hp

0 and hl
0. The value of T should be chosen in such a

way that it balances capturing crucial information during the message-passing iteration
with computational efficiency. The hidden state of the path is updated using the GRU
function GRUt, which takes the current hidden state ht

p and the hidden state ht
l of the link

and produces a new hidden state for the path. Additionally, the updated hidden state ht
p is

stored as the message m̃p, lt+1 from path p to link l.
In addition to updating the hidden states, the algorithm computes the attention

weights for each path-to-link message and link-to-path message. This is carried out by
applying an attention mechanism to the concatenation of the hidden states ht

p and ht
l . The

attention mechanism calculates an attention weight et+1
p,l that represents the importance

of the interaction between path p and link l at time step t + 1. The attention weights et+1
p,l

are then normalized across all paths or links using the softmax function, resulting in the
final attention weights αt+1

p,l . These attention weights indicate the relative importance of
neighboring paths or links in the aggregation process.

Next, the algorithm modifies the message-passing step to include the attention weights
in the aggregation process. Each path-to-link message m̃p, lt+1 is multiplied by its corre-
sponding attention weight αp, lt+1 to obtain a weighted message m̂t+1

p,l . This means that
more important messages will contribute more to the aggregation step. Afterward, the
hidden states of links are updated by aggregating the weighted messages from paths that
include them. The weighted messages for each link l are summed together to obtain an
updated hidden state ht+1

l at time step t+1. The loop continues with the updated hidden
states of paths and links, and this process repeats until the final time step T-1 is reached.
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Algorithm 1: Internal Architecture of RouteNet Model with Attention
Input : xp, xl , R
Output : hT

p , hT
l , ŷp

1 Initialize attention weights: a0
p for each path p

2 Initialize attention weights: a0
l for each link l

3 for each p ∈ R do
4 h0

p ← [xp, 0, . . . , 0];
5 end
6 for each l ∈ N do
7 h0

l ← [xl , 0, . . . , 0];
8 end
9 for t = 0 to T − 1 do

10 for each p ∈ R do
11 for each l ∈ p do
12 ht

p ← GRUt(ht
p, ht

l);
13 m̃t+1

p,l ← ht
p;

14 Compute attention weight:
et+1

p,l ← AttentionMechanism([ht
p, ht

l ], at
p, at

l);

15 end
16 end
17 ht+1

p ← ht
p;

18 for each l ∈ N do
19 Compute attention weights: αt+1

p,l ← Softmax([et+1
p,l | ∀p : k ∈ p]);

20 ht+1
l ← Ut

{
ht

l , ∑p:k∈p

(
αt+1

p,l · m̃
t+1
p,l

)}
;

21 end
22 end
23 ŷp ← Fp(hp);

Finally, after completing the message-passing loop, the algorithm uses the readout
function Fp to predict path-level features ŷp based on the final hidden states of paths hT

p .
The readout function Fp is an ordinary fully connected neural network with appropriate
activation functions.

3.4. Modified RouteNet with Stacked RNN and Sequential Link Update

Figure 9 shows the improved RouteNet architecture, which has undergone key en-
hancements to boost its ability to predict network performance. This architecture, imple-
mented by Salzburg Research, achieved second position in the Graph Neural Networking
Challenge 2020, as discussed in [26]. The path update replaces the one GRU with a stacked
GRU cell, providing a deeper understanding of paths. Additionally, the link update pro-
cess has been enhanced with the inclusion of three dense layers and a GRU cell, enabling
RouteNet to capture network dynamics more effectively for improved delay predictions.

The message-passing process involves the gathering and summing of sequences of
hidden states of the paths that contain a link, and updating the link state using the link
update network. The path update process replaces a single GRU cell with a stack of two
GRU cells, both with 64 units, and is used to update the path state during the message-
passing process. These GRU cells receive a message from the links and update the path
state accordingly. The link update process consists of three dense layers followed by a GRU
cell. A dense layer with 128 units, using the SELU activation function, and L2 regularization
with a weight of 0.1, dropout with a weight of 0.1, a second dense layer with 128 units,
using the ReLU activation function, and L2 regularization with a weight of 0.1, dropout
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with a weight of 0.1, and a final dense layer with 64 units and L2 regularization with a
weight of 0.1.

Figure 9. Modified RouteNet internal architecture with iterative message passing.

The readout network processes the path states after the message-passing process and
predicts the delay for each path. It consists of three layers: A dense layer with 64 units,
using the SELU activation function, and L2 regularization with a weight of 0.1, a dense
layer with 64 units, using the ReLU activation function, and L2 regularization with a weight
of 0.1, and a dense layer with a single output unit and L2 regularization with a weight
of 0.1. The input to the readout network is the concatenation of two path states, and the
output of the readout network is fed into a final dense layer with a single output unit.

3.5. Modified RouteNet Model with Attention

Another significant improvement is applied to Figure 9. Following the integration
of an attention layer, as highlighted in the yellow box, the resulting model is depicted
in Figure 10. This layer introduces a dynamic weighting system, facilitating adaptive
information exchange between Link and Path updates.
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Figure 10. Modified RouteNet internal architecture with iterative message passing with attention layer.

4. Results and Discussion

In this section, we thoroughly analyze the results achieved through the step-by-
step implementation and improvement of the RouteNet model. We explored various
architectural setups, starting from the basic model and testing modified versions. After
conducting several training sessions, we determined that setting the training iteration
value to 1,000,000 resulted in convergence with the baseline models. Therefore, taking
this iteration step as a reference, other models were also trained using the same training
duration. We used metrics such as R-squared values and Mean Absolute Percentage Error
(MAPE) to measure how accurately the model predicts. The following section presents
an analysis of the performance of various models before and after integrating attention
mechanisms, along with a comparative analysis of their performance.

Results Analysis

The R² and MAPE values’ comparison of four different RouteNet model configurations
are shown in Table 1. The Mean Absolute Percentage Error (MAPE) metric provides insight
into the precision of a model’s predictions by quantifying the average percentage difference
between the predicted values and the actual values. The R² value, which can vary from
0 to 1, measures how well the independent variables explain the variance in the dependent
variable. A value close to 1 suggests the model predictions are very close to the actual data.
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Table 1. Comparison of R² and MAPE values for different models.

Model Architecture R² Value MAPE Value (%)

Baseline RouteNet Model (Existing) 0.8807 13

RouteNet Model with Attention 0.9574 2.4876

Modified RouteNet Model (Existing) 0.9695 4.9476

Modified RouteNet Model with Attention 0.9834 2.24887

Figure 11 illustrates a side-by-side comparative analysis of the R² values for four
different RouteNet model configurations. Figure 11a,c are the existing RouteNet models,
while Figure 11b,d are the models where attention is added to the existing one. The exist-
ing baseline RouteNet model, shown in Figure 11a, yields an R² value of approximately
0.8807 and a MAPE of 13%, indicating a satisfactory predictive accuracy but also high-
lighting room for refinement due to the prediction deviation. Introducing an attention
mechanism to this baseline model, as shown in Figure 11b, not only increased the R² value
to 0.9574 but also markedly improved the MAPE to 2.4876%. Another existing model,
the Modified RouteNet model presented in Figure 11c, incorporates advanced structural
enhancements, leading to an R² value of 0.9695 and a MAPE of 4.9476%. This indicates that
the model significantly outperforms the original baseline in capturing and predicting the
network delays. The integration of the attention mechanism into the Modified RouteNet
model, shown in Figure 11d, yields the highest R² value of 0.9834 and the lowest MAPE of
2.24887%, marking this configuration as the most effective and precise among the evaluated
models. The Cumulative Distribution Function of the relative error of this model is shown
in Figure 12, which represents the relative error between the actual and predicted values.
Given the extensive size of the test dataset, which includes 17,100,000 samples, the majority
of these samples exhibit errors close to zero, resulting in the CDF curve showing a steep
ascent near this value. The curve’s steep rise at lower error values indicates that the majority
of predictions are accurate, with the plateau near the value of 1.

Figure 11. Comparison of R² Plots of different models. (a) Baseline RouteNet (existing). (b) Baseline
RouteNet with attention. (c) Modified RouteNet (existing). (d) Modified RouteNet with attention.
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Figure 12. Cumulative Distribution Function of relative error.

From the results, it is evident that the incorporation of attention mechanisms in
RouteNet models leads to improvements in their ability to predict network delays, as
demonstrated by their increased performance.

5. Conclusions and Future Work

Through this study, we effectively utilized a GNN for end-to-end network performance
prediction, focusing specifically on delay. We evaluated four distinct models to identify the
most efficient one. This included the original RouteNet model and its enhanced versions,
notably models with an added attention layer. Our comparative study of the original
RouteNet and its modified forms provided insightful findings regarding the impact of our
enhancements. Among these, the Modified RouteNet model enhanced with an attention
layer showed superior performance in terms of predictive accuracy, as indicated by higher
R-squared values and lower loss metrics, indicating a stronger fit and better generalization
abilities. These results highlight the potential of incorporating attention mechanisms in
graph-based neural network models to improve their precision in predicting complex
networked systems.

The Modified RouteNet model with attention has shown enhanced predictive accuracy,
but its complex nature leads to increased convergence times. Future research should con-
centrate on refining the model’s architecture and training methods to lower computational
demands while maintaining accuracy. Investigating more efficient training algorithms
might help strike a balance between the model’s complexity and computational efficiency.
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