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Abstract: The stability and reliability of the global Internet infrastructure heavily rely on the Border
Gateway Protocol (BGP), a crucial protocol that facilitates the exchange of routing information
among various Autonomous Systems, ensuring seamless connectivity worldwide. However, BGP
inherently possesses a susceptibility to abnormal routing behaviors, potentially leading to significant
connectivity disruptions. Despite extensive efforts, accurately detecting and effectively mitigating
such abnormalities persist as tough challenges. To tackle these, this article proposes a novel statistical
approach employing the median absolute deviation under certain constraints to proactively detect
anomalies in BGP. By applying advanced analysis techniques, this research offers a robust method
for the early detection of anomalies, such as Internet worms, configuration errors, and link failures.
This innovative approach has been empirically validated, achieving an accuracy rate of 90% and
a precision of 95% in identifying these disruptions. This high level of precision and accuracy not
only confirms the effectiveness of the statistical method employed but also marks a significant step
forward for enhancing the stability and reliability of the global Internet infrastructure.

Keywords: anomaly detection; border gateway protocol; median absolute deviation; statistics

1. Introduction

In today’s interconnected world, the internet has emerged as the keystone of contem-
porary communication and information exchange, serving as the backbone for various
sectors such as commerce, education, healthcare, and social interaction. Because of society’s
increasing reliance on the internet, the need for robust and secure internet infrastructure
becomes indispensable. This scenario underscores the importance of the Border Gateway
Protocol (BGP), the principal inter-domain routing protocol [1].

The BGP is a path vector protocol that meticulously manages Network Reachability
Information (NRI) between Autonomous Systems (ASes). Its primary function is to ensure
the delivery of stable and secure routing paths, while preventing routing loops [2]. The op-
timal functioning of BGP is crucial for the seamless exchange of the information underlying
the stability and security of the entire internet infrastructure.

However, the inherent complexity of BGP, coupled with its need to adapt to varied
network environments, renders it susceptible to a spectrum of anomalies. These include
Denial of Service (DoS) attacks, routing hijackings, and misconfigurations [1]. The potential
severity of these anomalies is illustrated by Shi et al. [3] which reveals that approximately
20% of hijackings and misconfigurations have the potential to disrupt 90% of internet traffic
in less than two minutes, even though they typically last less than 10 min.

In recent years, most of the approaches towards addressing this escalating problem
are based on machine learning (ML) [4–7] and deep learning (DL) techniques [8–10], and
while these methods are effective in identifying the unusual patterns indicative of cyber
threats, their implementation requires extensive data preprocessing and accurate data
labeling to differentiate between normal and anomalous behaviors effectively. In addition,
these techniques require time and resource-intensive training stages. Moreover, there is a

Future Internet 2024, 16, 146. https://doi.org/10.3390/fi16050146 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16050146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0002-5224-1343
https://orcid.org/0000-0001-5597-939X
https://orcid.org/0000-0002-7678-5487
https://orcid.org/0000-0001-8828-5239
https://doi.org/10.3390/fi16050146
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16050146?type=check_update&version=1


Future Internet 2024, 16, 146 2 of 18

continuous need to update and retrain these models to recognize new, unseen anomalies.
These data preprocessing and updating requirements becomes even more apparent as
recent statistics indicate that these attacks have not only doubled in size over the past two
years [11] but also have become increasingly sophisticated [12]. This critical requirement for
continuous improvement is the primary motivator for our research into developing a novel
detection methodology. Our approach aims to be both adaptable and efficient, particularly
suited to address the dynamic nature of cyber threats targeting the Border Gateway Protocol
(BGP). The novelty of our method lies in its reliance on statistical techniques, alleviating
the complexities and resource demands typically required by machine learning and deep
learning models. Our approach has the ability of adapting swiftly to new threats while
minimizing the need for extensive data preprocessing and training, making it suitable for
proactive threat detection.

This research focuses on the early detection of anomalies linked to major cyber inci-
dents. These include worm attacks like Code Red 1 v2, Slammer, and Nimda, the Moscow
blackout due to a link failure, and the misconfiguration incident at Telekom Malaysia. Such
cyber threats have historically posed significant challenges to the stability of the internet,
highlighting the need for thorough investigation and the development of efficient detection
mechanisms. Our study aims to add value to this field by enhancing the understanding
and detection of these cyber threats.

The research incorporates the median absolute deviation (MAD), a solid statistical
technique, for the analysis of anomalies within BGP update messages. Renowned for its
robustness against outliers [13], the MAD measure is also noted for its technical precision
and operational simplicity. These attributes make it exceptionally suitable for detecting
anomalies at early stages. The effectiveness of the MAD method in this context stems
from its capability to correlate observed anomalies with the occurrence of significant cyber-
attacks, a vital step in distinguishing between normal and anomalous traffic patterns.
This differentiation, inherently challenging due to the complexity of network traffic, is
essential for establishing a clear baseline definition of what constitutes an anomaly within
cybersecurity. By setting this baseline, it becomes possible to identify network anomalies
more clearly and improve our understanding of cyber threat patterns, ultimately leading to
the development of more effective detection and mitigation strategies.

Therefore, we believe that the work presented hereby represents a significant contribu-
tion to the field of cybersecurity by introducing an innovative proactive anomaly detection
approach that utilizes the median absolute deviation (MAD) technique. A key advantage of
this approach is the statistical foundation of the MAD method, which substantially lowers
the need for extensive training on historical data compared to machine learning and deep
learning approaches. This aspect is particularly valuable in the rapidly changing context of
cyber threats, as it ensures the technique’s effectiveness in combating new or previously
unrecognized anomalies by focusing on data variability instead of relying on patterns
from past data. This paper also provides a thorough evaluation and analysis of various
anomalies variations, including indirect anomalies, direct unintended anomalies, and link
failures; compared to other approaches like those by Dai et al. [10] and Ding et al. [5]
which only detected indirect anomalies, our approach demonstrates a broad applicability
in detecting a wide spectrum of network disruptions.

Moreover, MAD can potentially complement machine learning (ML) and deep learning
models in the cybersecurity field. By demonstrating the ability of MAD to identify a wide
range of anomalies with minimal data preprocessing and its potential in detecting unseen
attacks, the study suggests that incorporating MAD significantly enhances the accuracy and
precision of ML-based cybersecurity measures. This proposal paves the way for developing
more flexible and stronger defenses against the constantly changing threats in cyberspace.
To summarize, this study makes the following contributions.

1. The design and introduction of a resource-efficient median absolute deviation (MAD)
method for detecting network anomalies, which significantly lowers computational de-
mands and that could work in tandem with machine learning and deep learning models.
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2. The implementation of MAD’s statistical approach to reduce reliance on extensive his-
torical data, thereby enhancing the adaptability of cybersecurity systems to new threats.

3. The comprehensive analysis of various anomaly types with MAD, demonstrating its
broad applicability and versatility in addressing a spectrum of network challenges.

The structure of this paper is organized as follows: Section 2 delves into related
work, offering both a background and context essential for this study. It then outlines the
theoretical framework, emphasizing the specific attributes for our investigation, followed by
an explanation of the dataset processing steps, detailing the preparation and management
of data for analysis. Additionally, this section presents the methodology used, outlining the
techniques and strategies utilized for detecting and analyzing anomalies. Section 3 presents
the results of this research, followed by the performance evaluation and a comparative
analysis against deep learning models. Section 4 engages in a discussion, and Section 5
concludes the paper and proposes future research directions.

1.1. Related Work

The field of BGP anomaly detection is marked by an extensive exploration of method-
ologies aimed at enhancing the stability and security of the global Internet infrastructure.
This spectrum ranges from statistical techniques to the application of advanced machine
learning (ML) models and Deep Learning (DL) models, among others; each contributing to
the ongoing fight against cyber threats.

Chen et al. [14] introduced a statistical method utilizing an updated visibility matrix
to effectively identify significant BGP disruptions. This approach used a heuristic algo-
rithm to find a denser and larger submatrix from the original indicating unusual activity.
Even though it demonstrated practical relevance, its dependency on heuristic algorithms
implies computational complexity that could escalate with the size of the data and require
significant computational resources. Additionally, Deshpande et al. [15] introduced the
Generalized Likelihood Ratio Test (GLRT) for anomaly detection, analyzing data from
a single BGP router. Their focus on BGP update features such as AS path length and
edit distance provided valuable insights into the behavior of the internet under stress.
However, the detection time, often within an hour, presents limitations for real-time re-
sponses, thereby highlighting the imperative for methods that enable more immediate
detection. Simultaneously, Testart et al. [16] concentrated on identifying Autonomous
Systems (ASes) susceptible to malicious IP block hijacking, creating a classifier for pinpoint-
ing similar ASes. Their research highlighted the critical role of intermittent AS presence
and fluctuating prefix origination behavior as key classification features. Furthermore,
Moriano et al. [17] presented a method for detecting BGP routing anomalies by analyzing
burstiness in announcements updates. Their method’s effectiveness relies on discerning
patterns of frequent announcements followed by periods of inactivity, which are indica-
tive of potential disruption, and while their method showed effectiveness in identifying
anomalous patterns, it found difficulties with differentiating between benign and malicious
bursts, in addition to its dependency on manually verified truth metadata introducing
uncertainties about its real-world applicability.

Li et al. [9] employed Recurrent Neural Networks (RNNs), specifically Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) models, to detect BGP anomalies.
They compared LSTM and GRU performance towards different anomalous events, high-
lighting deep learning’s potential for anomaly detection. However, the complex nature
of deep learning models requiring extensive parameter tuning and relying on accurately
labeled datasets, presents challenges for real-world applications due to computational
demands and sensitivity to missing data. Moreover, the MAD-MulW framework by
Peng et al. [8] presents an advancement in unsupervised anomaly detection within BGP
security events through its multi-window serial framework, integrating W-GAT and W-LAT
modules for adaptive sample weighting and predictive reconstruction. The approach’s
efficiency is evident by its average accuracy score of over 96%. In addition, it demon-
strates a higher performance than classical and recent unsupervised models. Despite
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its effectiveness, the model faces challenges with determining optimal window sizes for
varied datasets and managing increased model space and time resources due to sample
expansion. Finally, Dai et al. [10] proposed a Support Vector Machine-based BGP anomaly
detection method (SVM-BGPAD), employing feature selection algorithms and optimization
techniques. Despite its promising results, the method’s reliance on complex feature selec-
tion and parameter optimization processes presents challenges for practical deployment,
requiring computational resources and machine learning expertise.

In conclusion, while these approaches provide valuable tools for BGP anomaly de-
tection, the most recent and sophisticated models, which are Machine Learning and Deep
Learning models, demand considerable computational resources, extensive preprocessing,
accurate labeling, reliance on high-quality data, and scalability. In contrast, our statistical
approach aims to match or even outperform these models, providing an alternative with
quicker performance, lower computational complexity, and adaptable to network infrastruc-
ture for its easy implementation. Given the shared objective of enhancing internet security
and the similar event anomalies evaluated by our work and the MAD-MulW framework,
a direct comparison between these methodologies is proposed. This comparison aims
to showcase the strengths of a statistical approach in achieving timely, adaptable, and
resource-conscious anomaly detection.

1.2. Theoretical Framework

This section outlines the essential concepts of the Border Gateway Protocol (BGP),
which form the foundation of our research and enable a comprehensive understanding of
its mechanisms and implications in cybersecurity.

The Internet is segmented into numerous distinct regions of administrative authority,
often referred to as Autonomous Systems (ASs) [18]. Each Autonomous System (AS)
comprises a collection of routers managed by a single administrative domain, and is
uniquely identified by an AS number [19]. These identifiers are allocated from either public
or private ranges, ensuring unique identification across the internet [20].

The principal routing protocol for exchanging Network Routing Information (NRI)
among these Autonomous Systems (ASes) is BGP. It operates over the Transmission Control
Protocol (TCP), specifically utilizing TCP port number 179 [2]. Incorporating TCP as the
underlying transport protocol is essential for BGP operations, as it eliminates the need
for BGP to autonomously manage the complexities of message delivery and flow control
among peers. This setup enables a BGP router to establish direct TCP connections with
routers in distinct ASs. Due to the extensive nature of BGP routing tables, these are
shared just once upon the initial establishment of the connection between peering routers.
Only updates, such as the introduction of new prefixes or the withdrawal of existing
ones, are communicated thereafter [7]. This strategic use of TCP not only simplifies
the operational mechanics of BGP but also significantly improves its efficiency and the
reliability of inter-AS connections.

BGP utilizes a series of message types, each with a specific purpose, to communi-
cate between peers: these include OPEN, UPDATE, NOTIFICATION, and KEEPALIVE
messages.

• OPEN Message: This is the first message sent after establishing a TCP connection
between two BGP peers. It is used to initiate the BGP session and includes critical
information such as the AS number and the BGP version.

• KEEPALIVE Message: Sent periodically to sustain the connection, these messages
confirm the active status of the link between BGP peers.

• NOTIFICATION Message: Used to indicate errors or terminate a BGP session, detail-
ing the reasons for session closure or errors encountered.

• UPDATE Message: Perhaps the most significant, these messages perform three key
functions: announcing new routes, withdrawing previously advertised routes, and
modifying existing routes with updated parameters. Additionally, UPDATE messages
can adjust route attributes to adapt to changing network conditions or policies.
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Given the focus of this research on update messages, a detailed examination of route
advertisements and withdrawals is pertinent.

Route Advertisements: In BGP operations, when a router identifies a preferable route
due to changes in network topology or policy decisions, it communicates this update to
its peers through a route advertisement within an UPDATE message [9]. These messages
contain important information, including the network destination (IP prefix) and the AS-
PATH. The primary objective of these advertisements is to ensure that all peer routers are
informed of the most current and efficient routing paths, thereby maintaining the overall
efficiency and stability of internet routing.

Route Withdrawals: Equally significant are route withdrawals, which play a critical
role in upholding the accuracy and efficiency of BGP routing tables. If a previously valid
route becomes obsolete or less desirable, perhaps due to changes in network topology,
policy alterations, or as a consequence of cyber attacks, routers forward this change to their
peers through a route withdrawal message. Such messages specify the IP prefixes that are no
longer accessible, leading peer routers to remove these routes from their routing tables [1].
This process is essential for ensuring that internet traffic is not routed through invalid or
inefficient paths, thereby safeguarding the integrity and efficiency of network routing.

The continuous and efficient exchange of these BGP messages, particularly UPDATE
messages, is vital for maintaining the robustness and reliability of Internet routing. By
understanding these core aspects of BGP, we lay a comprehensive groundwork for exploring
the protocol’s vulnerabilities and developing effective anomaly detection mechanisms,
which are central to this research.

2. Materials and Methods
2.1. Methodology

This section details our methodological approach for identifying and examining un-
usual activities within the Border Gateway Protocol (BGP) framework. Initially, we establish
a clear definition of what constitutes a BGP anomaly, evaluating how this definition encom-
passes a range of anomalies from inefficient but harmless routing decisions to deliberate
and potentially damaging attacks on the network.

Following this definition, our methodology details the tools and criteria utilized in our
anomaly detection method. We provide a comprehensive overview of the statistical justifi-
cation and empirical basis for our approach, aiming to clarify our decision-making process.

2.1.1. BGP Anomaly Definition

In the context of the BGP, defining what constitutes an anomaly is especially challeng-
ing due to the protocol’s complexity and the variety of operational behaviors it supports.
Essentially, anomalous behavior in this context refers to any operational activity that di-
verges from, or adversely affects, the principal objective of the protocol. This objective is to
facilitate the efficient and seamless exchange of Network Reachability Information (NRI)
between various networks, ensuring optimal network interoperability and connectivity.
Such deviations from the expected behavior can significantly compromise the protocol’s
functionality and network performance [21]. This broad definition includes a range of ac-
tivities, from less efficient but harmless routing choices to deliberate attacks on the network
infrastructure.

Detecting anomalies in BGP is not always straightforward; for example, route flapping
might lead to long-term instability, which is a potential sign of an anomaly, while traffic
engineering efforts could cause short-term instability. The difficulty lies in determining
which actions are harmful or beneficial to BGP’s operational goals.

Expanding on the classification system proposed by Al-Musawi et al., BGP anomalies
can be grouped into four main types: indirect, direct intended, direct unintended, and link
failure [1]. An indirect anomaly occurs when an external harmful activity, like a worm
attack or ransomware, indirectly disrupts BGP stability by overloading routes or causing an
increase in BGP messages. Although these attacks do not directly target BGP, they can still



Future Internet 2024, 16, 146 6 of 18

lead to significant instability. For instance, a malware attack aimed at internet components
such as web servers can generate a traffic overload, thereby impacting the ability of BGP
routers to handle regular route updates. On the other hand, direct intended anomalies
are those that intentionally take advantage of BGP vulnerabilities for malicious purposes,
potentially redirecting traffic from legitimate Autonomous Systems to unauthorized ones.
This anomaly includes all of the different types of hijacking. Meanwhile, direct unintended
anomalies typically refer to misconfigurations, which can cause problems like route leaks
or blackholes. These misconfigurations, usually unintentional, can lead to serious issues,
such as disrupting network paths or causing packet loss. Finally, link failure anomalies
occur when there is a breakdown in the connections between Autonomous Systems, often
due to external events like cable breaks or power outages, leading to widespread instability
in the network.

In this research, we focus on specific anomalous events detailed in Table 1. This table
offers a concise summary of all the anomalies, organizing them by their classification and
the dates of occurrence as documented in the existing literature. For incidents such as
Nimda, CodeRed 1 v2, and Slammer, the dates of occurrence are drawn from the research by
Li et al. [4], with times recorded in GMT, which is equivalent to UTC for our purposes. The
dates for the TMnet incident are sourced from Cisco’s BGPMon, also reported in UTC [22].
The analysis of the Moscow blackout, derived from the research by Fonseca et al. [21]
and the study by Besanger et al. [23], presents a detailed hourly narrative of the event.
However, the time zone of the reported times is not specified. Given this uncertainty, we
have assumed that these times were in MSK and have accordingly adjusted them to UTC
to maintain consistency within our research.

Table 1. Summary of anomaly types and occurrence period.

Anomaly Event Category Occurrence (UTC)

Code Red 1 v2 Indirect Anomaly 2001-07-19 13:20:00–2001-07-20 00:00:00
Slammer Indirect Anomaly 2003-01-25 05:31:00–2003-01-25 19:59:00
Nimda Indirect Anomaly 2001-09-18 13:19:00–2001-09-19 10:59:00
Moscow Blackout Link Failure 2005-05-25 04:40:00–2005-05-25 10:33:00
TMnet Direct Unintended Anomaly 2015-06-12 08:43:00–2015-06-12 11:53:00

In the subsequent subsection, we will provide the data processing steps of our study.
Following this, we will present a thorough explanation of the technique employed in our
research. This will include an in-depth discussion of the median absolute deviation (MAD)
methodology, its application within our anomaly detection framework, and the rationale
behind choosing a specific threshold value and time duration. This sequence ensures a
logical flow from data preparation to the intricate details of our analytical approach.

2.1.2. Data Processing: Collection and Preprocessing

The data processing phase of the study encompasses the collection and preprocessing
of BGP data. The primary source of data for this research comes from the Réseaux IP
Européens Network Coordination Centre (RIPE NCC) [24], which offers extensive public
Internet routing data through the Routing Information Service (RIS). The data was obtained
in the Multi-threaded Routing Toolkit (MRT) binary format [25], a standardized format
developed by the Internet Engineering Task Force (IETF) for exporting various BGP proto-
col information, including messages, state changes, and Routing Information Base (RIB)
contents [26]. Specifically, the study extracted routing data from Remote Route Collectors
(RRC), focusing on RRC04 located at the CERN Internet Exchange Point (CIXP) in Geneva,
Switzerland. For details on the extraction dates, total number of observation, and route
collector information for each event, please refer to Table 2. The use of a robust and diverse
dataset ensures that our research findings are substantiated with solid empirical evidence,
thereby enhancing the reliability and validity of the results.
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Table 2. Types of anomaly events detected, route collector, total count of observations per dataset,
and specific dates of data extraction.

Anomaly Event Route Collector Total Extraction Dates (UTC)

Code Red 1 v2 RRC04 1439 2001-07-18 19:06:00–2001-07-21 19:00:00
Slammer RRC04 960 2003-01-24 19:00:00–2003-01-26 18:57:00
Nimda RRC04 1738 2001-09-17 19:00:00–2001-09-21 09:51:00
Moscow Blackout RRC04 1440 2005-05-24 19:00:00–2005-05-27 18:57:00
TMnet RRC04 480 2015-06-12 00:00:00–2015-06-13 00:00:00

To construct the dataset for this study, a specialized Python script was developed. This
script was specifically designed to parse and extract relevant attributes (see Table 3) from
the raw BGP data, utilizing the Python API PyBGPStream, a well known tool for BGP data
processing [27].

Table 3. Features extracted.

Feature Name Category

Number of announcements Volume
Number of withdrawals Volume

The extraction phase primarily focuses on the type of UPDATE messages, specifically
targeting a critical period during which these anomaly events were prevalent, ranging from
1 to 3 days. During these periods, both normal and anomalous behaviors were expected
to be detected through the volume of announcements and withdrawals—these being the
primary features extracted. By processing the data in 3-min batches, we calculated the exact
number of announcements and withdrawals for each batch, with each batch representing a
single row in our dataset, as illustrated in Figure 1.

Figure 1. Dataset overview: detailed preview of the first five entries from the CodeRed 1 v2 Dataset.

To enhance the dataset further, we included timestamps and record counts as addi-
tional parameters. Timestamps were converted from Unix format to a human-readable
form. This conversion was important not only for facilitating the interpretation of the data
but also for enabling a detailed analysis of temporal patterns. Furthermore, a record count
was implemented to track each entry within the 3-min intervals, thereby organizing and
simplifying the analysis of the BGP data’s extensive volume.

To facilitate a comprehensive understanding of the dataset structure and to guide
researchers in accurately reproducing the analysis, Table 2 provides details regarding the
anomalies event, including the specific extracted dates, the route collector used, and length
of dataset per event.

2.1.3. Median Absolute Deviation (MAD)

In our approach to anomaly detection, we employ the median absolute deviation
(MAD). This statistical method was selected for its effectiveness in handling outliers and
its high breakdown point compared to other statistical measures [28]. Unlike the standard
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deviation, which can be easily influenced by extreme values, MAD provides a more reliable
measure of variability in datasets that may contain anomalies. By focusing on the median
of absolute deviations from the dataset’s median, MAD minimizes the impact of extreme
values, ensuring that our anomaly detection approach is more resistant to skewed data [28].
Additionally, the simplicity of its calculation makes it an efficient choice for large datasets
where computational efficiency is crucial.

The formula for the MAD is given by

MAD = median(|Xi − median(X)|)

where Xi represents each individual data point and X the entire dataset. This formula
calculates the median of the absolute deviations from the dataset’s median, providing a
measure that is less sensitive to extreme values [29].

Our Anomaly Definition: Having previously explained the concept of anomalies
within the BGP context, we now detail our criteria for classifying behavior as anoma-
lous. In our anomaly detection framework, an anomaly is identified when the overlap of
announcements and withdrawals surpasses a predetermined threshold and persists for
a specified duration. This threshold is established by multiplying the median absolute
deviation (MAD) value by a factor n. Given the inherently fluctuating nature of BGP, where
variations between announcements and withdrawals are normal, we have incorporated
an additional time constraint, denoted as t. This constraint enhances the accuracy of our
anomaly detection by filtering out truly significant anomalies from routine fluctuations.

Specifically, the criterion for defining an anomaly within the BGP dataset, denoted as
X, is formulated as follows: Let M represent the median of X and MAD denote the median
absolute deviation of X. The threshold multiplier is represented by n, and the minimum
duration for a data point to be considered a significant anomaly is specified as t minutes.

The anomaly detection criterion is defined by the formula

|Xi − M| > n × MAD

where Xi is each individual data point in the dataset X. This condition must be sustained
for a period exceeding t minutes.

In this formula, |Xi − M| calculates the absolute deviation of each data point from the
median M of the dataset. A data point Xi is classified as an anomaly if its deviation from
the median is greater than n times the MAD, and this deviation continues for more than
t minutes.

For instance, in this study, we adopted a threshold value of n = 3 and a time con-
straint of t = 6 min. Consequently, any data point in the dataset X is identified as an
anomaly if it deviates from the median by more than three times the MAD value, and this
significant deviation persists for a duration exceeding 6 min. This temporal criterion is es-
sential for distinguishing between normal BGP traffic fluctuations and anomalous behavior,
thereby minimizing false positives and effectively highlighting significant anomalies that
demonstrate continuous and abnormal activity.

The choice of n = 3 as the threshold multiplier and 6 min as the minimum duration t
for anomaly classification in this study is based on a combination of statistical rationale
and empirical observations of BGP behavior.

Statistical Justification for the Threshold Multiplier (n = 3): In statistical analysis, a
common practice for identifying outliers is to consider values that lie more than three
standard deviations from the mean. By analogy, setting n = 3 in the MAD-based approach
aligns with this widely accepted statistical norm. The MAD, being a robust measure of
variability, when multiplied by 3, effectively isolates extreme deviations that are unlikely to
occur under normal circumstances.

Empirical Basis for the Time Duration (t = 6 min): The selection of 6 min as the duration
for sustaining an anomaly is derived from empirical observations of BGP traffic patterns.
BGP updates, due to the protocol’s nature, exhibit a certain degree of variability. These
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fluctuations are often short-term and do not necessarily indicate a significant problem. Our
analysis of historical BGP data revealed that true anomalies usually maintain their presence
for durations exceeding these brief fluctuations. A time frame of 6 min was identified
as an effective threshold to distinguish between these short-term fluctuations and more
prolonged, unusual patterns. Consequently, this 6-min criterion serves as a practical filter
to reduce false positives, ensuring that only those deviations that demonstrate persistent
abnormal behavior are flagged as anomalies.

To ensure consistent analysis of MAD’s effectiveness across diverse BGP events, we
have decided to maintain constant parameters throughout our evaluations. However,
adjusting these parameters could significantly enhance anomaly detection for specific
scenarios, considering MAD’s reliance on traffic fluctuations and BGP data variability.
Future research will focus on developing an adaptive dynamic threshold mechanism,
capable of self adjusting in response to changes in data variability. Further details can be
found in Section 5.1.

Figure 2 provides a detailed flowchart for this methodology. The first step in our
anomaly detection process begins with the extraction of data, either directly from a data
collector, in our case, we used the RIPE NCC [24], or from an existing dataset. During the
preprocessing phase, we organize this data into 3-min batches and compute the number
of record counts, announcements, and withdrawals for each batch. Once the dataset is
prepared, we compute the median absolute deviation (MAD) and establish the values for
each parameter of our model: the factor n and the time duration t. Following this setup, our
system examines the data, specifically identifying instances where the overlap of announce-
ments and withdrawals exceeds the defined threshold for the required minimum duration.
This process identifies potential anomalies. Subsequently, the output is categorized into two
segments: anomalous BGp traffic or normal BGP traffic; this output can be combined with
an AI-based model to improve the accuracy of the detection of BGP anomalies. The final
step involves a thorough analysis of these results to evaluate the method’s performance,
ensuring that our system can effectively differentiate between normal and anomalous BGP
traffic. This differentiation is crucial for maintaining network integrity and optimizing
performance.

Figure 2. MAD Anomaly Detection System methodology.

By incorporating the median absolute deviation (MAD), a well-known statistical
metric, and providing a detailed explanation and justification of the parameters selected in
our anomaly detection method, coupled with utilizing data from the publicly accessible
RIPE Network Coordination Centre database [24], including explicit extraction dates and
features (refer to Tables 2 and 3), we facilitate the reproducibility of our study. This approach
ensures that others can replicate our results without the need for us to include specific
datasets or scripts in our submission.

Finally, it is worth noting that during the revision stage of this work, we used ChatGPT
as a tool for proofreading and improving the grammatical correctness of the manuscript.
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After using this tool, we have reviewed and edited the content as needed and take full
responsibility for the originality of the publication.

3. Results

This section presents the findings from our study on a novel approach to detecting
anomalies in the Border Gateway Protocol (BGP), illustrated through a series of graphs.
These charts incorporate a color-coding scheme designed to facilitate data interpretation:
blue for BGP announcements, red for withdrawals, detected anomalies are highlighted
in pink, and green to mark the actual times when cyber events occurred. Please note that
when there is an overlap between occurrences and detected anomalies, the resulting color
combination of pink and green may appear light brown. This indicates that the detected
pink anomalies fall within the time range of occurrences, representing an accurate detection.
The graphs are plotted with timestamps on the x-axis, showing continuous data within a
specified time range (refer to Table 2 for exact extraction dates), and the y-axis representing
the volume of announcements and withdrawals.

Next, we provide a brief explanation on interpreting the model’s performance, which
will be foundational towards understanding the performance evaluation in terms of accu-
racy and precision metrics.

• True Positives (TP): When the identified anomalies (highlighted in pink) coincide with
the critical periods of each anomaly event (marked in green), visually this represent
accurately detected anomalies.

• False Positives (FP): These are the anomalies detected that do not overlap with the
green regions, indicating inaccurately detected anomalies.

• True Negatives (TN): Although not explicitly visualized, true negatives can be under-
stood as the portions of the graph not highlighted (the “white” areas), representing
normal events correctly identified as normal.

• False Negatives (FN): These are events within the green regions not highlighted in
pink, indicating missed anomalies.

This visual representation facilitates a clear understanding of when detected anomalies
correspond to actual cyber events, demonstrating our method’s efficacy in responding to
real-world incidents. This visual technique, combined with outputs specifying the detection
period and its duration (as showcased in Figure 3), provides a clear basis for evaluating the
effectiveness of our BGP anomaly detection technique.

Figure 3. Sample data preview: first five rows of the TMnet4 detection output

The outcomes of our graphical analysis for various anomalies are detailed as follows:
Slammer Worm (Figure 4): The detection method accurately identified all anomalies

coinciding with the peak activity of the Slammer worm, demonstrating effective anomaly
detection during this specific event.

TMnet Misconfiguration (Figure 5): A high level of effectiveness was also observed
for TMnet misconfiguration. Visually, our method successfully identified the majority of
anomalies, demonstrating reliable detection capabilities for direct unintended category.
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Figure 4. Implementing MAD for anomaly detection over Slammer Worm Attack: visual representa-
tion of Announcements and Withdrawals volumes over time with anomalies marked in pink and
high-activity occurrence periods in green.

Figure 5. Implementing MAD for anomaly detection over Telekom Malaysia Misconfiguration: visual
representation of Announcements and Withdrawals volumes over time with anomalies marked in
pink and high-activity occurrence periods in green.

CodeRed 1 v2 Worm and Moscow Blackout (Figures 6 and 7): The analyses of these
events further validate the model’s effectiveness in identifying anomalies across the direct
intended and link failure categories, highlighting the method’s robustness and adaptability.

Figure 6. Implementing MAD for anomaly detection over Code Red 1 v2 Attack: visual representation
of Announcements and Withdrawals volumes over time with anomalies marked in pink and high-
activity occurrence periods in green.
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Figure 7. Implementing MAD for anomaly detection over Moscow Blackout: visual representation
of Announcements and Withdrawals volumes over time with anomalies marked in pink and high-
activity occurrence periods in green.

Nimda (Figure 8): The visual analysis showcases that almost all the anomalies were
detected within the occurrence period, showcasing our system’s capability in real-world
event detection.

Figure 8. Implementing MAD for anomaly detection over Nimda Attack: visual representation of
Announcements and Withdrawals volumes over time with anomalies marked in pink and high-
activity occurrence periods in green.

These observations visually demonstrated the method’s reliability and its potential
applicability in monitoring and securing network protocols against a range of cyber threats.
Detailed performance metrics, including accuracy and precision, which quantify the effec-
tiveness of our anomaly detection technique, will be discussed in the subsequent section.

3.1. Performance Evaluation

To evaluate the performance of our model, we used accuracy and precision as metrics.
Accuracy evaluates the overall correctness of a model, measuring the proportion of correct
identifications (both true positive and true negative values) over the total number of
observations. Precision, on the other hand, measures the ability of a model to identify how
many of the detected anomalies were actually true anomalies.

The formula for calculating accuracy is given by

Accuracy =
TP + TN

TP + TN + FP + FN
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The formula for calculating precision is given by

Precision =
TP

TP + FP
where the terms TP (True Positives), TN (True Negatives), FP (False Positives), and FN
(False Negatives) have been defined earlier in this document.

The following table gives a summary of the results of each of the anomaly events with
their respective accuracy and precision values.

The table below (Table 4) provides a detailed summary of our method’s performance
evaluation across the different previously analyzed anomaly events, showcasing the respec-
tive accuracy and precision metrics for each.

Table 4. Summary of anomaly events and their respective accuracy and precision.

Anomaly Event Accuracy (%) Precision (%)

TMnet Misconfiguration 96.1 95.9
CodeRed 1 v2 Worm 95.04 94.9

Moscow Blackout 96.1 87.8
Slammer Worm 88.5 100
Nimda Worm 80.07 97.8

The performance evaluation analysis across various anomaly events provides impor-
tant insights into the method’s efficacy. For the TMnet Misconfiguration, both the accuracy
and precision metrics stand at almost 96%; similarly, the CodeRed 1 v2 Worm attack, ob-
tained an accuracy of 95% and a precision of 94.9%. For these two events, a strong balance
between accuracy and precision is demonstrated, highlighting the method’s consistent
reliability in detecting true anomalies while minimizing false alarms.

The Slammer and Nimda Worm events showcases an exceptional precision rate of
100% and 97.8%, respectively, indicating that every anomaly detected during these events
was a true anomaly. However, its accuracy stands at 88.5% for Slammer and 80% for Nimda,
suggesting that while the detection was highly precise, it might have missed detecting
some true anomalies.

In the Moscow Blackout scenario, the method demonstrated robust accuracy at 96.1%
and a precision of 87.8%. This demonstrates the model’s ability to detect true anomalies
but also indicates that a small proportion of identified anomalies were not true anomalies.

Having observed our model’s performance, it is important to examine its impact, es-
pecially regarding false positives (FP)—a critical challenge in cybersecurity. False positives
occur when normal, non-anomalous activities are incorrectly flagged as threats, leading to
wasted resources, operational inefficiencies, and alert fatigue among security personnel.
Minimizing these false alarms is essential for operational efficiency and ensuring real
threats are addressed.

Our study emphasizes precision—the ratio of true positives to all positive predic-
tions—to assess how well the model identifies actual anomalies. However, precision alone
does not account for the model’s ability to correctly ignore normal events. Here is where
specificity is useful. Defined as the ratio of true negatives to the sum of true negatives
and false positives, specificity measures the model’s success in identifying non-anomalies,
complementing precision in evaluating our system’s effectiveness.

The formula for calculating specificity is given by

Specificity =
TN

TN + FP
The calculated specificity and precision across different scenarios highlight our model’s

ability to effectively reduce false alarms. Remarkably, we achieved a specificity of 99.9%
across all events, with the Slammer event achieving a perfect specificity of 100%. These
values clearly indicate that our model effectively minimizes false alarms, as evidenced by
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the high levels of specificity across all events. By maintaining high precision and specificity,
our model ensures that security teams can focus their efforts on genuine threats, enhancing
the overall security posture without the distraction of false positives.

3.2. Comparative Analysis with Deep Learning Techniques

Following the performance evaluation of our method (which we will refer to as MAD
for simplicity) across various anomaly events, it is essential to compare these results with
existing anomaly approaches. We will compare our model’s results against deep learning
models, including the most recent methodology mentioned in our Section 1.1, the MAD-
MulW model [8], while it may seem that comparing our statistical approach with more
advanced machine learning and deep learning techniques is not entirely fair, we must
highlight that our research intention is not to compete directly with these methods. Rather,
our objective is to demonstrate how integrating our technique with these models can
enhance the overall accuracy of anomaly detection. This approach aims to leverage the
strengths of both methodologies to achieve superior results.

This comparison is particularly pertinent as the MAD-MulW framework evaluates its
performance against more deep learning models and for the exact anomaly events that we
are evaluating (Table 5). Given this context, we extend our comparison to include three
of these deep learning models, including RNN [30] which is a well-known deep learning
model, and MTAD [31] and DAGMM [32] which, coupled with MAD-MulW, are some of
the latest deep learning models toward anomaly detection. This extended comparison is
aimed at showcasing the performance of our statistical approach in terms of accuracy and
precision.

Table 5. Comparison of anomaly detection performance: MAD vs. deep learning models.

Anomaly Event RNN (%) MTAD (%) DAGMM (%) MAD-MulW (%) MAD (%)

Acc./Pre. Acc./Pre. Acc./Pre. Acc./Pre. Acc./Pre.

CodeRed 1 v2 Worm 85.2/51.6 88.9/66.1 94.9/65.5 97.8/96.5 95.04/94.9
Nimda Worm 65.7/58.7 69.7/66.2 67.4/69.4 86.7/86.2 80.07/97.8

Slammer Worm 83.06/65.5 83.6/69.5 83.1/38.2 98.1/98.1 88.5/100
Moscow Blackout 91.9/60.7 98.2/80.9 97.9/53.8 99.3/99.6 96.1/87.8

TMnet Misconfiguration 91.7/60.4 97.1/70.7 96.9/45.4 99.2/99.6 96.1/95.9

The comparative analysis against deep learning models provides important insights.
Our method outperforms the RNN, MTAD, and DAGMM models in both accuracy and
precision for all the indirect anomaly events, which highlights the effectiveness of MAD in
detecting anomalies more accurately than these deep learning models.

In the specific scenarios of the Moscow Blackout and TMnet Misconfiguration, the
MTAD and DAGMM models demonstrated slightly higher accuracy, exceeding MAD’s
results by a narrow margin of 1–2%, making it not substantially significant. On the other
hand, MAD showcased superior precision scores for these anomaly events, affirming its
reliability and effectiveness in identifying true positives with fewer false alarms.

Finally, for the MAD-MulW comparison, MAD demonstrates a strong and competitive
performance, especially considering the Slammer and Nimda Worm events, where it
achieved a perfect precision score of 100% and 97%, respectively.

4. Discussion

Our method’s performance across various cyber anomaly events achieved an overall
accuracy of 90% and a precision of 95%, demonstrating a balance between accurately iden-
tifying true anomalies while minimizing false alarms. For the comparative analysis against
deep learning models, our statistical approach demonstrate a strong and competitive per-
formance surpassing three out of four models assessed. Despite the fact that MAD-MulW
showcases high accuracy and precision in anomaly detection for most cases, our statistical
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approach is particularly effective in the detection of the Slammer Worm and Nimda Worm
events, highlighting its capacity to avoid false positives effectively. This precision reflects
the method’s effectiveness, yet the variability in accuracy across different scenarios points
towards the influence of fundamental factors on these outcomes.

A significant factor behind the observed variations is our uniform approach in setting
the median absolute deviation (MAD) parameters across all anomaly events. These param-
eters were kept consistent to explore the wide array of anomaly types that MAD is capable
of detecting, allowing for straightforward comparisons of the method’s effectiveness across
the diverse anomaly events. Additionally, it lays a strong foundation for presenting our
technique to the research community by ensuring that our evaluation method remains
consistent. However, it is understood that each event possesses distinct characteristics, and
their influence on network behavior can differ significantly. For instance, a cyberattack
that encrypts data on infected systems, effectively paralyzes these systems without neces-
sarily generating additional network traffic. This behavior significantly differs with cyber
threats where infected nodes initiate continuous DDoS attacks, generating significant traffic
volumes as they spread across the network creating clear and detectable BGP anomalies.
Adjusting these parameters—either through an auto-adjustable threshold (refer to the
’Future Work’ section) or by setting specific parameters for each category to align with the
distinct characteristics of each cyber anomaly—could significantly improve the method’s
overall effectiveness, enhancing the balance between precision and accuracy, which is
crucial for maintaining the method’s relevance in cybersecurity.

Another important consideration is our reliance on literature-based timing to identify
anomaly events, while this approach is helpful, it poses challenges for accurately assessing
performance. The assumption that anomalies occur uniformly throughout ‘green’ periods
and that ‘normal’ periods are entirely free of anomalies does not fully capture the sporadic
nature of some anomalies. Not every instance within a green-highlighted period may be
truly anomalous, nor may every ‘normal’ period be free of anomalies. It is entirely possible
that all anomalies detected by MAD accurately represent anomalous behavior, and all
identified normal data points are genuinely normal. This realization suggests MAD’s per-
formance may be more accurate than it appears, especially when considering the variable
nature of anomaly occurrences. Additionally, the literature often generalizes the duration
of worldwide impact events without specifying the affected regions or duration, which may
not accurately reflect the actual impact on specific areas. For instance, Switzerland might
have been significantly affected in the early hours of an attack, with conditions stabilizing
afterwards, unlike in other countries where impacts could have been delayed or extended.
In such a scenario, the Swiss BGP traffic volume would likely be affected in the first 3 h, but
it is improbable that the same level of traffic would persist for the next 9 h, even though the
literature might register the event’s duration as 12 h.

Despite this observation, to ensure analytical consistency, we focused our investiga-
tion exclusively on data from the RRC04 router for all analyzed anomaly events. This
approach, chosen for its comparative consistency, highlights the challenges of using global
evaluations to understand regional impacts and demonstrates the significant variability
in BGP anomaly detection methods’ effectiveness based on the behavioral characteristics
and specific contexts of cyber threats. This observation underscores the importance of
considering the unique context and nature of each cyber threat when evaluating anomaly
detection methods.

Overall, the results highlight the potential of our anomaly detection approach as an
effective tool in BGP anomaly detection and cybersecurity. By accurately identifying anoma-
lies and aligning them with known cyber incidents, our methodology not only minimizes
false positives but also provides crucial insights for understanding and mitigating network
security threats.
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5. Conclusions and Future Work

In this study, we have rigorously tested and proven the effectiveness and reliability
of our anomaly detection method in the Border Gateway Protocol (BGP) environment.
By applying our method to various cyber incidents, including internet worm attacks,
unintentional configuration errors, and critical infrastructure failures, we have shown the
versatility of our statistical approach.

Moreover, evaluating MAD in comparison to deep learning techniques has demon-
strated its competitive performance. However, as previously mentioned, our intention
is not to compete with these deep learning techniques but to complement their detection
methodology. For this reason, we acknowledge that a direct comparison among these
different approaches might not fully highlight the unique benefits of our method, especially
in scenarios demanding reduced computational complexity and enhanced adaptability.

Key advantages of our approach include the following:
Reduced Computational Demands: Our methodology excels in high-performance

detection with significantly lower computational requirements, making it more accessible
and adaptable across diverse network settings.

Minimal Preprocessing Needed: Our method necessitates minimal preprocessing,
which not only enables a faster anomaly detection process but also lowers the risk of
introducing biases at the preprocessing stage.

Suitability for Real-Time Applications: The reduced computational resources and
streamlined preprocessing make our approach well suited for real-time applications. In
BGP anomaly detection, the ability to quickly identify and address anomalies in real-time or
near-real-time is crucial. It enables network administrators to proactively mitigate potential
threats, preventing potential harm or disruptions.

Detect zero day attacks: Our model can potentially detect unseen anomalies without
requiring training on a specific pattern. This capability can be employed to refine and
update the training datasets of machine learning and deep learning models, thereby by
complementing these models with MAD, it can improve their ability to recognize and
respond to new, unexpected anomaly types.

While we recognize the strengths of both statistical and deep learning (DL)/machine
learning (ML) models in anomaly detection, we support combining these methodologies to
achieve a more accurate and effective detection framework. This balanced strategy takes
advantage of both the quick adaptability and lower computational requirements of our
method and the advanced pattern recognition capabilities of DL and ML models to provide
a comprehensive solution to the ever-evolving challenges of cyber security.

5.1. Future Work

Building upon the foundations laid by this study, we identify several key areas for fu-
ture research that promise to further refine and expand the scope of BGP anomaly detection:

Diversification of Data Sources: Incorporating BGP data from a wider array of sources,
including different geographic regions and network environments, will enhance the robust-
ness and applicability of the MAD methodology. This diversification will allow for a more
comprehensive understanding of global BGP dynamics and anomaly patterns.

Automation through a dynamic threshold: An important aspect of our ongoing
research is the development of an algorithm that dynamically calculates the factor n which,
when multiplied by MAD, determines the anomaly detection threshold. This innovation
seeks to replace the static assumption that a factor of 3 is universally applicable, with a
more adaptive threshold that better reflects the specific variability of the data.

Exploration of Real-Time Detection Capabilities: While real-time anomaly detection
capabilities have not yet been tested with our methodology, we recognize it as a crucial
area for future research. Given the lower computational demands of the MAD method,
we strongly encourage further exploration in this direction. Adapting MAD for real-time
data processing could potentially enable the immediate identification and mitigation of
emerging threats. The efficiency of MAD presents a promising foundation for developing
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real-time anomaly detection systems that are both scalable and adaptable to the dynamic
nature of network traffic and threats. In the medium to long term, once we have a Quic
implementation, we consider testing MAD over Quic to assess its performance and compare
it to current implementations since MAD will not be affected by using BGP over Quic [33].

Integrating MAD with ML/DL for Enhanced Detection and Prediction: Integrating
median absolute deviation (MAD) with machine learning (ML) or deep learning (DL) mod-
els represents a promising frontier for future research. This synergy allows for the training
of ML/DL models with MAD-processed data, enabling the identification of anomalies
through traffic pattern analysis while maintaining the capability for independent detection
by either method. This ensures comprehensive coverage, where MAD can catch anoma-
lies that ML/DL models might miss, and vice versa, bolstering the network’s defense
mechanism with both predictive and reactive capabilities.
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