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Abstract: Data input within mixed reality environments poses significant interaction challenges, no‑
tably in immersive visual analytics applications. This study assesses five numerical input techniques:
three benchmark methods (Touch‑Slider, Keyboard, Pinch‑Slider) and two innovative multimodal
techniques (Bimanual Scaling, Gesture and Voice). An experimental design was employed to com‑
pare these techniques’ input efficiency, accuracy, and user experience across varying precision and
distance conditions. The findings reveal that multimodal techniques surpass slider methods in input
efficiency yet are comparable to keyboards; the voice method excels in reducing cognitive load but
falls short in accuracy; and the scaling method marginally leads in user satisfaction but imposes a
higher physical load. Furthermore, this study outlines these techniques’ pros and cons and offers
design guidelines and future research directions.

Keywords: human–computer interaction; mixed reality; natural interaction techniques; immersive
analytics; multimodal interaction techniques

1. Introduction
Recently, mixed reality (MR) interaction has emerged as a significant research fo‑

cus [1]. The proliferation of consumer‑grade MR devices has spurred the application of
MR technology across diverse fields [2–4]. As MR’s natural interaction techniques mature,
tailoring design and evaluation methods to specific application scenarios and user needs
is crucial for enhancing user immersion and satisfaction [5].

Immersive analytics mergesMRwith natural and embodied user interaction, offering
three‑dimensional information presentation, expanded display spaces, and the integration
of physical references with corresponding data [6]. This method demonstrates utility in
education, scientific visualization, immersive workspaces, and data embedding, among
others, surpassing traditional graphic visualizations in supporting user exploration and
comprehension of complex 3D data [7]. Substantial research has been dedicated to de‑
veloping visualization methods for assorted data types within MR environments [6,8,9],
including immersive analytics applications in collaborative work [10].

Thus, this study centers on immersive analytics as its primary application scenario.
To improve users’ abilities to perceive, recall, and comprehend complex data, visual an‑
alytics systems may need to allow users to achieve retrieval, deletion, and other controls
over complex data information byway of inputting the data information. This includes ad‑
justing, retrieving, and inputting complex information like colors and coordinates in data
visualizations. Tomore concretely illustrate the significance and application context of our
research, we envisioned a prevalent scenario within educational and scientific visualiza‑
tion contexts wherein students or researchers were tasked with exploring and analyzing
three‑dimensional datasets through mixed reality (MR) technology. In this scenario, ad‑
justing the RGB color values of data visualizations became essential for users to effectively
differentiate data layers or emphasize particular data points. Traditional numerical input
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methods, such as keyboards or standard sliders, may prove unintuitive or cumbersome
within anMR setting, thus diminishing user immersion and interaction efficiency. Present
studies on data input in MR environments predominantly examine homogeneous meth‑
ods like keyboarding [11,12] and clicking [13]. This study identified a gap in systematic
and comprehensive research on data input tasks within immersive analytics, particularly
concerning interaction efficiency and user experience [5], noting that numerical informa‑
tion plays a crucial role in data visualization, notably in scientific contexts [14], with this
gap partially limiting visual analytics development [10]. Addressing this gap, this study
concentrated on numerical input challenges, devising two multimodal interaction tech‑
niques and comparing them to traditional gesture or keyboard inputs in MR devices like
HoloLens2. The objective was to explore and assess numerical input methods for immer‑
sive analytics inMR, aiming to bridge existing research gaps and advanceMR technology’s
application in data analysis and visualization.

2. Related Works
Mixed reality (MR)merges the real and virtual worlds [1]. MR enables users to have a

natural interaction with both virtual and real objects [15]. Consequently, MR systems have
incorporated advanced techniques like eye tracking, facial expression analysis, and virtual
control manipulation, diversifying information output channels including gaze, gesture,
and speech, allowing for their use individually or in combination to enhance interaction
modality and flexibility [5,16]. This section will review the literature on natural interaction
methods in MR, input research, and data interaction within MR immersive analytics.

2.1. Natural Interaction Methods in Mixed Reality
Advancements in computer vision technology enable the implementation of gesture

recognition in MR devices with minimal hardware costs [17]. Consequently, many MR
devices, such as HoloLens and Meta Quest, predominantly utilize gesture‑based interac‑
tions [13]. However, studies indicate that gestural interactions demand more complex
movements than traditional devices like mice or keyboards, potentially causing user fa‑
tigue and discomfort [18]. The mismatch between motor and visual spaces necessitates
reliance on visual feedback for gesture adjustment, rather than solely on proprioception,
which can elevate cognitive load and the likelihood of misuse [19]. Furthermore, in target‑
intensive or precision‑required environments, gestures may inadvertently select multiple
targets simultaneously, necessitating a disambiguation mechanism for accurate target se‑
lection. However, disambiguation mechanisms may further increase cognitive load [20].

Research indicates that voice interaction ranks as the second most prevalent method
in MR and augmented reality (AR) [21], highlighting its advantages in terms of high ease
of use and low deployment cost [22]. Yet, challenges include language ambiguity and in‑
stability in acoustically challenging environments [23], indicating general limitations. Eye‑
tracking interaction is increasingly integrated into new MR devices. These devices often
use the dwell method for selection, facing issues like misuse and inefficiency (Midas touch
problem) [24].

This study posits that combining multiple interaction modalities into a multimodal
approach could enhance interaction effects. Pfeuffer et al. [25] designed an interaction
modality merging eye‑tracking and gesture. Wagner et al. [13] experimentally showed
that eye‑tracking and gesture interaction outperform single‑gesture interaction in solving
clicking issues efficiently.

2.2. Input Methods in Mixed Reality
Derby, Rarick, and Chaparro [26] conducted experiments comparing the efficiency

and user ratings of Clicker (remote control) versus gesture input for textual information
on HoloLens, finding that participants’ typing speeds and user ratings were higher with
Clicker input than with gesture input; yet, accuracy did not significantly differ between
the two methods. However, the newer HoloLens2 and the recently introduced Apple Vi‑
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sion Pro (Los Altos, CA, USA) have eliminated the Clicker or joystick, indicating a trend
towards tool‑free natural interaction in MR.

Yu et al. [27] assessed three text input methods: DwellType, TapType, and Gesture‑
Type, finding that users tended to use GestureType and TapType and were less satisfied
with DwellType. Dudley et al. [28] compared a physically attached keyboard to a hover‑
ing keyboard in virtual reality (VR) for input efficiency, revealing that physical alignment
improved speed and accuracy, albeit limiting usage scenarios compared to the more flex‑
ible hovering keyboard [29]. Adhikary and Vertanen [11] found voice input superior to
keyboard input in speed and accuracy. Ahn and Lee [12] developed an interactionmethod
combining eye‑tracking and touch, utilizing the speed advantage of eye‑tracking to quickly
select keyboard sections, followed by simple touch gestures to input characters. However,
there has been no systematic study focused on the methods and effectiveness of numerical
input within Mixed Reality environments.

2.3. Data Interaction in Immersive Analytics
Immersive analytics aims to ascertain whether new interfaces and display technolo‑

gies can be used to foster deeper data analysis and exploration [30]. Previous studies have
demonstrated that immersive environments enhance engagement and can intensify emo‑
tions. These factors contribute to making information more accessible [9].

Mota et al. [31] introduced a focus and context visualization technique for
multi‑geometry data, enabling user interaction with real‑time data through VR controllers.
Sicat et al. [6] developed DXR, an MR‑based tool for data visualization and analysis, sup‑
porting selection, filtering, and more via bare‑handed interaction. Cordeil et al. [10] cre‑
ated the IATK tool based on DXR, which offers enhanced data interaction, such as filter‑
ing attributes through sliders or input fields or encoding data attributes by adjusting vi‑
sual channels like color, shape, and size. Büschel, Lehmann, and Dachselt [32] developed
MIRIA, a visual analysis tool using AR headsets that allows analysts to visually explore
spatial interaction data in context‑rich environments, preserving context and enhancing
data comprehensibility and comparability. The system supports multi‑person collabora‑
tion, integrating gestures, eye‑tracking, speech, and entity interactions with data.

While immersive analytics has seen notable achievements, numerous studies have
identified the input of complex or precise data as a significant gap [9,32,33], hindering the
visual analysis of crucial data inMR environments. A systematic assessment of interaction
methods’ efficiency across different data analysis tasks [14] or the development of data in‑
putmethods for complex tasks could expand the range of information suited for immersive
analytics on MR platforms [9].

MR advancements in natural interaction methods like gestures, speech, and
eye‑tracking have enhanced interaction variety anduser experience flexibility; yet, research
in the critical area of numerical input remains under‑explored. Especially in immersive an‑
alytics, the challenge of inputting complex or precise data is notably significant, limiting
MR’s application potential and hindering user comprehension and analysis of complex
data. Currently, an evident research gap still exists in effectively performing numerical in‑
put in MR, particularly in enhancing accuracy and efficiency through natural interaction.

3. Interaction Technique Design
This study introduces two multimodal data input techniques: Bimanual Scaling and

Gesture and Voice, and compares them with three benchmark methods. These methods
are used to input floating‑point datawith varyingdegrees of precision in a 3D environment,
where the data panel is at different distances from the user.

3.1. Bimanual Scaling
The “Bimanual Scaling” interaction model aims to address accuracy issues stemming

from gesture pointers or proximity interactions, employing multimodal interactions to en‑
hance the interaction’s overall fluidity. Building upon traditional gesture interactions, “Bi‑
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manual Scaling” incorporates eye‑tracking selection in the “selection” phase, uses hand
distance for data magnification during the “adjustment” phase, and the termination of a
pinching gesture with both hands as the signal for “confirmation”. The user interaction
process with “Bimanual Scaling” is illustrated in Figure 1. Interaction steps include the
following: (1) The user looks at the numerical panel that needs to be operated. (2) The user
pinches and moves forearms to alter the inter‑hand distance. To reduce the value of the
data, users decrease the distance between their hands, and to enlarge, they do the opposite.
This gesture is similar to the HoloLens2 default zoom action, facilitating user understand‑
ing. (3) By maintaining the pinch gesture, users can achieve the continuous adjustment of
values. Upon completion of adjustments, users can release their hands to signify the con‑
firmation of the input result. Implementation‑wise, reflecting user tendencies for broad
initial adjustments followed by fine‑tuning to approach the target value, Bimanual Scal‑
ing’s hand‑distance magnification function is non‑linear, accommodating coarse‑to‑fine
input refinement. The function is as follows:

y =


(1 + C·SmoothStep(0, 0.5, x′))·x′ i f x′ ≤ 0.5

(1 + C·SmoothStep(1, 0.5, x′))·x′ i f 0.5 < x′ ≤ 1
x′0.5 i f x′ > 1

(1)
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In the above function, x′ is defined as x′ =
√

x
Xo+0.0001 ; x is the current distance be‑

tween two hands and x0 is the original distance between two hands. The constant value C
was designed to adjust the sensitivity of this operation and, on our current device, the value
C was set at 0.45. The values 0.5 and 1 were chosen as thresholds to create distinct scaling
modes or sensitivity ranges within the interaction. For x′ ≤ 0.5, the system entered a “fine‑
tuning” mode where smaller hand movements resulted in more precise adjustments. For
distances x′ > 1, the system shifted to a “coarse adjustment” mode where hand move‑
ments lead to larger, more significant changes. The function part 0.5 < x′ ≤ 1 allowed for
a seamless transition between precise and broad adjustments based on the scale of their
hand movements, enhancing the interaction’s intuitiveness and efficiency.

The SmoothStep(a,b,t) function is defined as follows:

SmoothStep(a, b, t) =


0 i f t ≤ a

(t−a)2·(3b−2t−a)
(b−a)3

1 i f t ≥ b

i f a < t < b (2)

3.2. Gesture and Voice
Different interaction methods present distinct advantages and limitations. Eye track‑

ing offers precision; yet, executing actions like confirmations solely through eye tracking
poses challenges. The prolonged use of gesture‑based interactions may induce fatigue.
While voice input facilitates the input of complex content, discerning and isolating explicit
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commands from lengthy sentences remains challenging. Hence, this study seeks to utilize
the strengths while mitigating the weaknesses of each method by proposing a multimodal
interaction technique named “Gesture and Voice”. This method employs eye tracking for
preliminary input selection, pinch gestures for confirmations, and voice commands for
entering floating‑point data. It was anticipated that merging these interaction strengths
would enhance the overall user experience.

The Gesture and Voice method is illustrated in Figure 2. Interaction steps include the
following: (1) The user looks at the target panel to pre‑select an item. (2) Confirmation is
initiated by the user through a pinch gesture, triggering the voice input process. While
maintaining the pinch gesture, the system records the user’s voice. Simultaneously, a vi‑
sual prompt on the data panel indicates ongoing recording. (3) Upon releasing the pinch
gesture, the recording stops, and the system converts the voice input into a floating‑point
number for display.
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3.3. Benchmark Methods
The benchmark interaction methods, depicted in Figure 3, formed the basis for com‑

parative analysis in this experiment. This experiment employed three standard numerical
input methods from Mixed Reality Toolkit (MRTK) as benchmark methods for compari‑
son with the two multimodal interaction methods investigated in this study. The three
interaction methods are described as follows:
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Pinch‑Slider: This interaction technique capitalizes on the natural gesture of pinch‑
ing. Users simulate a pinching gesture, which, in turn, activates a virtual gesture pointer.
This pointer is then used to interact with a slider mechanism presented within the mixed
reality space.

Touch‑Slider: In contrast to the Pinch‑Slider, the Touch‑Slider method emphasizes di‑
rect tactile interaction. It allows users to manipulate numerical values by physically touch‑
ing and dragging a virtual slider using their fingers. This method simulates the conven‑
tional slider control found in many graphical user interfaces but translates it into the MR
environment.

Keyboard: This method involves using a virtual numeric keyboard, where values are
inputted by directly touching the keys with a finger.

3.4. Comparison
Table 1 compares the properties of five interaction techniques: Touch‑Slider, Key‑

board, Pinch‑Slider, Bimanual Scaling, and Gesture and Voice; Figure 3 shows the interac‑
tion process of all five interaction methods. A key advantage of the proposed interaction
methods is their use of eye–hand coordination, enabling users to complete input taskswith‑
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out diverting their gaze from the data source. Contrary to traditional slider methods, these
interactions offer flexible input ranges without fixed boundaries, allowing users to adjust
both range and precision within a single task, potentially improving input efficiency.

Table 1. Summary of similarities and differences between the techniques we studied.

Touch‑Slider Keyboard Pinch‑Slider Bimanual Scaling Gesture and Voice

Confirm trigger Touch Touch Pinch Pinch Pinch

Data input method Slide Touch Slide Scale Voice

Modalities Hand Hand Hand Gaze and hand Gaze, hand, and
voice

Interaction
metaphor Slider Keyboard Slider Scaling Voice input

Gesture type Motion (slide) +
symbolic (touch) Symbolic (touch) Motion (slide) +

symbolic (pinch)
Motion (scale) +
symbolic (pinch) Symbolic (pinch)

In summary, the primary objectives of this research were as follows:
1. Introduce and evaluate the effectiveness of two novel multimodal data input

techniques, “Bimanual Scaling” and “Gesture andVoice”, within anMRenvironment.
2. Compare these novel techniques against three benchmark methods (Pinch‑Slider,

Touch‑Slider, and Keyboard) to assess their user efficiency in inputting floating‑point
data at varying distances.
By establishing these objectives, this study aims to contribute to the development of

more intuitive and efficient interaction techniques for mixed reality environments, ulti‑
mately enhancing the user experience.

4. Evaluation
4.1. Participants

The research experiment involved 27 participants (14 females and 13 males) aged be‑
tween 18 and 30. Themajority (74.07%) reported that their dailywork and study frequently
entailed data reading, analysis, processing, or visualization. Participants rated their MR
knowledge across three levels: “unfamiliar”, “somewhat familiar”, or “having a clear con‑
cept”, with over half of the participants (59.26%) reporting they were “somewhat familiar”
with MR technology, a portion (37.04%) claiming a clear concept of MR, and one partici‑
pant (3.7%) expressing unfamiliarity with MR. Approximately half (51.85%) had at least
once used a dedicated VR, AR, or MR device, excluding cell phones and tablets. Among
those, 40.74% had experienced devices featuring natural interaction modalities, including
gesture and eye‑tracking interactions.

4.2. Hardware Devices and Experimental Setup
This study’s experimental system was developed with the Mixed Reality Toolkit

(MRTK) in Unity for Microsoft HoloLens2 (field of view 43◦ × 29◦), which supports hand
and eye tracking (viewing angle accuracy of 1.5◦) [13]. Example views of the experimental
system in our study are shown in Figure 4.

Participants were seated in a spacious and quiet room (with a noise level smaller than
60 dB) for the duration of the experiment. The eye tracker was calibrated for each study
participant at the start.

Since the experimental materials were initially in Chinese, we employed ChatGPT
to correct and optimize the English translation during the preparation of this work [34].
This usage of ChatGPT ensured that the translation retained the technical accuracy and
contextual relevance of the original materials [35].
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4.3. Task and Procedure
The overall procedure of the experiment is shown in Figure 5. The experiment was

divided into five sessions. Initially, participants signed a consent form, which confirmed
their voluntary participation and permitted the use of their data for research purposes.
They also completed a questionnaire that collected demographic details, including age,
education, and field of study or work, and assessed their baseline knowledge of MR by
querying their familiarity and previous experiences with using mixed reality technolo‑
gies and devices featuring natural interaction capabilities. Following this, they watched
a demonstration video to gain an initial understanding of the experimental process and
operations. Subsequently, participants donned the HoloLens2 device and launched the
instructional program to acquaint themselves with its basic usage and several fundamen‑
tal interaction methods required for the experiment. Participants were allowed to run the
instructional programmultiple times until they found themselves to be familiar with these
interaction techniques.

The experiment then officially commenced. The formal experiment featured five sec‑
tions, each utilizing a distinct interaction method. During the experiment, participants
were presented with a randomly generated number on a panel directly in front of them.
Participants were tasked with accurately entering the data using the specified data input
method. Random numbers comprised three types: a floating‑point number between 0 and
1, a floating‑point number between 1 and 10, and an integer between 1 and 10, addressing
both precision levels (ten and one hundred) and data types (integer and floating‑point).
Interaction distances between the panel and the participant were set at 0.5 m, 1 m, and
2m, varying to assess the impact of distance on interaction performance. Random number
types and interaction panel distances were combined into 3 × 3 = 9 scenarios, with each
data input task repeated three times per scenario in a section, resulting in 9 × 3 = 27 exper‑
iments per section. In total, the input task was conducted 9 × 3 × 5 = 135 times across the
experiment. Upon completing all input tasks in a section, participants filled out a NASA‑
TLX questionnaire for that interaction. Participants had approximately 15 min rest peri‑
ods between sections. Completing the entire experimental process took each participant
approximately 40–60 min. The experiment yielded a total of 27× 5 = 135 NASA‑TLX ques‑
tionnaires and 27 × 135 = 3645 input data points.
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4.4. Evaluation Metrics
In our study, we used two main metrics to evaluate the performance and subjective

task load. Here are the detailed descriptions:
Task Completion Time (TCT): In order to accurately measure how long it took each

participant to complete a given task, the experiment recorded the moment a target first
appearedwithin the task scenario, as well as the instancewhen the participant successfully
executed the required input action. This method ensured a comprehensive assessment of
the participants’ task completion times.

NASA‑TLX Questionnaire: The experiment utilized the NASA‑TLX (Task Load In‑
dex) questionnaire [13] to evaluate the subjective task load of participants following each
interaction technique. It encompasses six questions on mental, physical, and temporal de‑
mands, as well as perceived success, effort, and frustration, rated on a 7‑point Likert scale
from very low to very high.

In summary, this section meticulously outlined the experimental design, participant
demographics, task procedures, and evaluation metrics, aiming to rigorously investigate
the effectiveness of various interaction methods within MR environments. This study
sought to assess the impact of these technologies on user experience and task performance
efficiency, ultimately contributing to the optimization and innovation of data input and
interaction techniques in MR environments.
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5. Result and Analysis
This study aimed to analyze the experimental data through quantitative and quali‑

tative methods in order to assess the performance of different interaction techniques in
terms of task completion time, cognitive load, and user satisfaction. A series of statistical
methods were employed to analyze the performance of different interaction techniques in
the above aspects. Initially, an ANOVA test was conducted on all subjective and objective
quantitative outcomes. In cases of heteroscedasticity, theWelch test was utilized. Post‑hoc
pairwise comparisons were performed using the Bonferroni correction method to control
the overall error rate of multiple comparisons. For data failing to meet the assumption
of homogeneity of variances, the Games–Howell test was deployed to investigate specific
differences among interaction methods.

5.1. Task Completion Time
Figure 6 shows the average interaction time for each interaction method. In terms of

task completion time, the data indicated significant differences between interaction meth‑
ods (F4

585.26 = 54.807, p < 0.001, η2 = 0.276). No significant differences were found in
interaction time between the Touch‑Slider and Pinch‑Slider. However, both the Touch‑
Slider and Pinch‑Slider methods showed significant differences in task completion time
compared to other interaction methods (p < 0.001), with both slider‑based methods ex‑
hibiting significantly longer interaction times compared to the keyboard and the study’s
proposed multimodal method, suggesting issues with the slider input method’s efficiency
in data input and highlighting the superior efficiency of this study’s proposed methods.
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No significant differences in efficiency were observed among Bimanual Scaling, Ges‑
ture and Voice, and Keyboard; yet, significant differences existed compared to the remain‑
ing methods (p < 0.001). This suggests that while this study’s proposed methods offer
advantages over the slider method in terms of efficiency, they do not show a significant
difference in efficiency compared to the numeric keyboard.

5.2. NASA‑TLX
Figure 7 shows the mean workload of the five sessions. From the perspective of over‑

all user evaluations, data analysis showed significant differences between each interaction
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method (F4
52.254 = 0.002, p = 0.002, η2 = 0.183). Post‑hoc analysis showed that the cogni‑

tive load of Gesture and Voice was significantly lower than that of several other interaction
methods. There were no significant differences in cognitive load between the remaining
several interaction methods. This means that the Gesture and Voice interaction designed
in this study was significantly better than the other interaction methods in terms of cogni‑
tive load, which is because the Gesture and Voice method simplifies the complexity of the
input operation and avoids excessive hand movements. Although the Bimanual Scaling
interaction method proposed in this study had some advantages in terms of interaction
efficiency, it did not have significant advantages in terms of cognitive load compared with
the current methods.
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Figure 8 shows the mean score of each NASA‑TLX dimension. From the perspective
of the six dimensions of NASA‑TLX, no significant differences were observed in scores
between groups for mental demand (F4

52.402 = 0.998, p = 0.417, η2 = 0.041) and frus‑
tration (F4

52.173 = 2.185, p = 0.083, η2 = 0.067). However, significant differences were
observed in physical demand (F4

52.051 = 8.391, p < 0.001, η2 = 0.219), temporal de‑
mand (F4

52.006 = 5.079, p = 0.002, η2 = 0.171), performance (F4
52.325 = 2.641, p = 0.044,

η2 = 0.117), and effort (F4
52.197 = 3.889, p = 0.008, η2 = 0.199) across different inter‑

action methods. This indicates that neither mental demand nor frustration significantly
contributes to variances in users’ subjective perceptions. Firstly, this suggests that the
tasks in this experimental design posed a moderate level of difficulty without imposing
an unreasonable cognitive load on participants. Secondly, it demonstrates that regardless
of the interaction method used, the outcomes of task completion align closely with users’
psychological expectations.
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In terms of physical demand, the Gesture and Voice group scored significantly better
than the other groups (p < 0.01), with no significant differences observed between the
rest. This further demonstrates that interaction methods involving complex gestures can
induce fatigue, lowering user ratings during data input tasks.

Regarding temporal demand, Gesture and Voice was significantly faster than the
Pinch‑Slider (p = 0.013) and Keyboard input methods (p = 0.003), with no significant
differences among the other groups. This suggests that Gesture and Voice is quicker both
subjectively and objectively for users. The Bimanual Scalingmethodproposed in this study
was slightly better in terms of users’ subjective perception of time spent compared to exist‑
ing solutions (compared to Pinch‑Slider p = 0.847, Keyboard p = 0.385, and Touch‑Slider
p = 0.223), though not significantly. This may have been due to the fluidity of the contin‑
uous scaling operations causing users to underestimate the actual time consumed. Con‑
versely, keyboard input, despite being objectively faster than both sliding input methods,
tended to be perceived asmore time‑consuming due to its discontinuity and the additional
cognitive load of searching for characters on the keyboard.

For performance, a significant differencewas observed between theGesture andVoice
and Pinch‑Slider methods proposed in this study, while differences among other groups
were not significant. The Bimanual Scaling method, although slightly better than existing
solutions (compared to Pinch‑Slider p = 0.249, Keyboard p = 0.981, and Touch‑Slider
p = 0.995), was still not significantly superior.

Regarding effort, voice interaction was significantly easier than all other interaction
methods except for scaling interactions. No significant differences were observed among
the other interaction methods. This indicates that users found voice interaction notably
less strenuous. The Bimanual Scaling interaction method proposed in this study showed
some superiority over current common interaction methods, though the effect was not
markedly significant.
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5.3. Discussion
This study evaluated the performance of different interaction techniques in terms of

task completion time, cognitive load, and user satisfaction, yielding several key findings.
First, the experimental results indicate that in terms of interaction efficiency, the Touch‑

Slider and Pinch‑Slider methods, based on slider components, are significantly inferior to
Bimanual Scaling, which utilizes a two‑handed scaling action. This finding suggests that
Touch‑Slider and Pinch‑Slider, traditional slider input methods, necessitate fine touch or
pinch movements to adjust the slider, thereby increasing the operation’s physical com‑
plexity and cognitive load. Conversely, Bimanual Scaling, through the user’s two hands’
natural collaborative movements for zooming in and out of the data range, significantly
simplifies the operation and reduces hand–eye coordination stress, thereby enhancing in‑
teraction efficiency and lessening the cognitive burden.

Furthermore, the intuitive interaction strategy of Bimanual Scaling diminishes the
necessity for precise control, thereby enabling users to concentrate more on the task itself
rather than on manipulating the interface. This enhances the interaction’s naturalness and
user satisfaction. Consequently, as an optimized method of interaction, Bimanual Scaling
not only augments operational speed and efficiency but also improves the user experience.

Second, in terms of cognitive load, the experimental findings demonstrate that the
Gesture and Voice interaction method significantly reduces cognitive load, underscoring
its capability to streamline operations and lessen the burden, particularly for scenarios that
require users to multitask.

From the perspective of interaction time, it was observed that both Bimanual Scaling
and Keyboard interactions exhibited superior performance in input time. However, con‑
sidering the subjective cognitive load, these methods did not demonstrate a significant ad‑
vantage over the Touch‑Slider and Pinch‑Slider interactions. This may be attributed to the
increased fatigue and cognitive stress from interacting with virtual objects and continuous
adjustments of gestures.

The Gesture and Voice interaction method enhances interaction efficiency through its
intuitive and natural approach, reflected in both reduced objective interaction time and
subjective cognitive stress dimensions. Bimanual Scaling offers a cohesive gesture input
method, comparable to Keyboard interaction regarding both objective interaction time and
subjective cognitive stress, yet demonstrates greater input efficiency. Conversely, Touch‑
Slider and Pinch‑Slider interactions fall short in both efficiency and range, revealing no‑
table deficiencies in data input performance.

From the perspective of visual analytics applications, this study reveals the complex‑
ity of numerical input tasks in MR, emphasizing that interaction choices for data input
in mixed reality interaction systems must be adjusted based on the usage environment.
Among the five interaction methods discussed in this study, Gesture and Voice emerges
as themethodwith the lowest cognitive stress and highest efficiency. However, in contexts
like noisy environments or those requiring confidentiality, Gesture and Voice may not be
optimal, underscoring the need for designers to account for environmental constraints and
offer suitable alternatives [22]. Bimanual Scaling and Virtual Keyboard offer simple, rapid
methods for brief, small‑scale data input or when the Gesture and Voice method is imprac‑
tical. These twomethods demand less from the environment, especially Bimanual Scaling,
which necessitates minimal hand–eye coordination and no extra space entities, offering a
robust interaction mode for analyzing complex conditions like motion or confined spaces.
However, designers need to pay particular attention to fatigue issues caused by continuous
handmovements with these two interactionmethods and avoid their use in long‑duration,
large‑volume data entry tasks to prevent fatigue. Pinch‑Slider and Touch‑Slider, based
on the slider component, offer tangible, continuous interaction methods; feedback from
some participants suggests that these methods are more intuitive. The slider may be more
intuitive for situations requiring the continuous input of indeterminate values. Neverthe‑
less, this study’s results indicate the disadvantages of the slider component in interaction
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efficiency and cognitive load for precise inputs, suggesting the need to avoid these two
methods in visual analytics applications requiring precision.

6. Conclusions and Limitations
This study focused on the innovation of interaction methods, user experiments, and

quantitative analysis for numerical data input within immersive visual analytics based on
MR. Initially, it introduced two multimodal interaction methods: Gesture and Voice and
Bimanual Scaling. Subsequently, it conducted an experiment comparing these proposed
interaction methods with three established MR input methods. The experiment revealed
that the Gesture andVoicemethod significantly outperforms current industry‑standard in‑
put methods in both objective and subjective metrics, whereas Bimanual Scaling shows ad‑
vantages in objective metrics and certain subjective metrics, also demonstrating resilience
to environmental noise and greater generalizability. Furthermore, it identified that Pinch‑
Slider and Touch‑Slider interactions necessitate increased hand–eye coordination and finer
manipulation, leading to significantly greater cognitive stress in delicate numerical input
tasks. The experiment’s findings contribute uniquely to overcoming the obstacles associ‑
atedwith inputting precise or complex data in immersive environments, offering guidance
for the design of more complex future immersive visual analytics systems. It is anticipated
that these interaction techniques will find broader applications, offering users a more nat‑
ural, efficient, and enjoyable interaction experience.

Nevertheless, this study has several limitations. Firstly, the focus was primarily on
numerical data input rather than a comprehensive examination of all potential interaction
methods in MR environments. For other data types (such as text and graphics), the effec‑
tiveness and applicability of the proposed interaction techniques might differ. Hence, the
experiment’s findings may not be universally applicable to all data input tasks. Secondly,
technology implementation limitations could have influenced the experimental outcomes.
For instance, speech input accuracy may be contingent on speech recognition algorithms,
while gesture and eye‑tracking interaction accuracy could depend on hardware perfor‑
mance. Such technological constraints may impinge on user experience and interaction
efficiency. Moreover, interactions were tailored to specific hardware (e.g., HoloLens2)
and software (e.g., Unity), potentially restricting their applicability across various plat‑
forms and devices. Factors such as lighting, noise, and varied hardware and software
environments can significantly impact the performance and user experience of the interac‑
tion methods. Additionally, while user experience was evaluated through the NASA‑TLX
questionnaire, this study did not include an evaluation of long‑term usage. User adapta‑
tions and preferences for interaction styles are likely to evolve over time, especially after
prolonged use. Thus, longitudinal user studies could yield more profound insights. Fur‑
thermore, this study’s limitations include a small sample size of 27 and the narrow age
range of participants under 30. Future research should aim to increase the sample size and
include a broader age demographic to enhance the findings’ generalizability. Lastly, the ex‑
periment’s controlled conditions may not have fully reflected the real‑world applications
of MR technologies.
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