
Future Internet 2012, 4, 110-141; doi:10.3390/fi4010110 

 

future internet 
ISSN 1999-5903 

www.mdpi.com/journal/futureinternet 

Article 

Pattern-Based Development and Management of  

Cloud Applications 

Christoph Fehling 
1,

*, Frank Leymann 
1
, Jochen Rütschlin 

2
 and David Schumm 

1
 

1
 Institute of Architecture of Application Systems, University of Stuttgart, Universitätsstraße 38,  

Stuttgart 70569, Germany; E-Mails: leymann@iaas.uni-stuttgart.de (F.L.);  

schumm@iaas.uni-stuttgart.de (D.S.) 
2
 Daimler AG, Epplestraße 225, Stuttgart 70546, Germany; E-Mail: jochen.ruetschlin@daimler.com  

* Author to whom correspondence should be addressed; E-Mail: fehling@iaas.uni-stuttgart.de;  

Tel.: +49-711-685-88486; Fax: +49-711-685-88472. 

Received: 28 November 2011; in revised form: 18 January 2012 / Accepted: 3 February 2012 / 

Published: 15 February 2012 

 

Abstract: Cloud-based applications require a high degree of automation regarding their IT 

resource management, for example, to handle scalability or resource failures. This 

automation is enabled by cloud providers offering management interfaces accessed by 

applications without human interaction. The properties of clouds, especially pay-per-use 

billing and low availability of individual resources, demand such a timely system 

management. We call the automated steps to perform one of these management tasks a 

―management flow‖. Because the emerging behavior of the overall system is comprised of 

many such management flows and is often hard to predict, we propose defining abstract 

management flows, describing common steps handling the management tasks. These 

abstract management flows may then be refined for each individual use case. We cover 

abstract management flows describing how to make an application elastic, resilient 

regarding IT resource failure, and how to move application components between different 

runtime environments. The requirements of these management flows for handled 

applications are expressed using architectural patterns that have to be implemented by the 

applications. These dependencies result in abstract management flows being interrelated 

with architectural patterns in a uniform pattern catalog. We propose a method by use of a 

catalog to guide application managers during the refinement of abstract management flows 

at the design stage of an application. Following this method, runtime-specific management 

functionality and management interfaces are used to obtain automated management flows 

for a developed application. 

OPEN ACCESS 



Future Internet 2012, 4 111 

 

 

Keywords: cloud computing; distributed application; systems management 

 

1. Introduction 

Cloud computing has drastically changed the way in which we consume IT resources. Unlike 

traditional data centers, clouds offer elasticity—the ability to reserve and free resources flexibly (often 

within minutes); pay-as-you-go—users only pay for the resources they actually consume; and 

standardization—through the use of virtualization and the offering of runtime platforms by providers, 

application middleware and hardware stacks are commoditized. Because of these new environmental 

properties, the architecture and management of applications have to be adjusted as well. However, the 

fast and mostly industry-driven evolution of cloud offerings often obfuscates the common concepts of 

offered solutions. Due to different requirements of applications and the components they consist of, 

offerings of different cloud providers have to be integrated in many cases. Using only one cloud 

provider for the complete application landscape of a company is, therefore, often impossible.  

We consider cloud applications to be divided into loosely coupled application components so that 

individual application components can use different cloud offerings which best fit their requirements. 

Applications components are developed specifically for one cloud offering and requirements are often 

not explicitly specified. Exchanging cloud offerings after the initial development of the application, 

therefore, remains a challenge. To describe requirements of application components in a more generic 

form, we have abstracted the development guidelines for specific cloud providers. The obtained 

common architectural principles were compiled into a uniform pattern format in [1] and are available 

online (http://cloudcomputingpatterns.org). These patterns describe good solutions to common 

problems in the area of cloud computing as well as clouds and their offerings. Especially, they allow 

the classification of cloud providers regarding the patterns they support and, thus, ease application 

development and requirements management. 

Building on these patterns, describing architectural concepts of cloud application development, we 

now focus on the runtime management of cloud applications. The runtime management of applications 

is often comprised of manual tasks that are performed according to implicit knowledge of application 

managers. Such tasks are, for example, adequate resource adjustments to changing workloads or 

reactions to failing system resources. Cloud computing has introduced additional challenges to the 

runtime management of such applications: (i) its use is often most beneficial, if application 

management is automated, for example, to exploit pay-as-you-go pricing models more efficiently;  

(ii) to address the often low availability of individual cloud resources, an automation of resiliency 

management is required to address resource failure [2]; and (iii) vendor lock-ins can be avoided if 

application components can be moved automatically between different environments.  

The remainder of this article is structured as follows. In Section 2, we align the new management 

challenges of cloud applications with existing IT management approaches and give examples of how 

today’s cloud providers address and automate them. Existing work on the offering process of cloud 

application is also covered in this section. We extend this process to incorporate the definition of 

automated management flows as an integral part of application development. In Section 3,  



Future Internet 2012, 4 112 

 

 

we then give an overview of existing patterns that we organized in a catalog. Section 4 introduces a 

new pattern class for cloud application management patterns to be included in this catalog. Just as 

architectural patterns are used to guide the implementation of applications, management patterns will 

guide the creation of automated management processes. Section 5 covers annotations of implementation 

artifacts to patterns to guide application developers and application managers. For example, we 

propose to annotate information about management interfaces to be used during the creation of 

automated management flows. We argue that this respects the flexibility and speed that cloud computing 

has introduced to systems management tasks, such as provisioning, deprovisioning, and scaling of 

resources. Further, it enables application managers to address future challenges, for example, to 

automate the replacement of a cloud provider with a different one or with an in-house data center 

during the design time. Such annotations can also help to standardize pattern implementation which 

enables companies to control the allowed runtime environments. The otherwise deployment of 

applications on arbitrary hard- and middleware increases the management complexity drastically [3]. 

In Section 6, we employ the proposed approach in an end-to-end example describing the pattern-based 

development of a web shop application. Especially, we show how patterns can be used to express 

requirements of application components as part of an architecture diagram. We cover how 

management flows can be created in a standardized fashion by refining abstract management flows to 

executable ones. Finally, Section 7 covers limitations of the approach and gives an outlook on the 

future research that will address them. 

2. Offering and Managing Cloud Applications 

In this section, we align the proposed abstract management flows with other management efforts for 

IT systems. Further, we extend an existing cloud application offering process with management 

considerations and introduce a set of management challenges which arise in today’s cloud applications.  

2.1. ITIL-Based Management of IT Systems 

The IT Infrastructure Library (ITIL)-Based Management of IT Systems [4] standardizes IT 

management efforts. In this library a set of common practices and processes are described to 

strategically plan, design, develop, operate and improve IT services. These different aspects of IT 

service management and their relations are depicted in Figure 1. On the very top is the service strategy 

describing how to strategically plan IT services, their abstract specification and how to address 

financial management aspects. The service design of IT services concretizes strategies into service 

specifications and a general architecture of the IT system. During the service transition this general 

architecture and specification is realized in form of an implemented IT service that can be offered to 

other companies or be used internally. After this development of concrete services, required 

operational processes are specified by the service operation that can be used, for example, to ensure 

the required availability and performance of managed IT services. Finally, continual service 

improvement considers methods to evaluate existing IT services and improve their behavior. Such 

improvements may consider cost, performance, ecological footprints, etc. To put the architectural 

patterns and management flows presented in this paper into perspective with the ITIL standard, the 

architectural patterns and management flows here can be considered as a technical concretization of 



Future Internet 2012, 4 113 

 

 

the abstract processes described in ITIL. The presented pattern catalog and an exemplary set of 

management flows aim at guiding application developers during the automation of some of the ITIL 

management aspects regarding service design, service transition, and service operation. During service 

design, the architectural patterns provide a graphical notation for each pattern to be used in 

architectural diagrams to ease architecture discussions. These discussions are additionally supported by 

patterns providing a common vocabulary to focus on concepts rather than on products. The patterns 

may further be used during service transition to express requirements and desired service behavior. 

Since the staff implementing an application often differs from those designing them, patterns ease a 

clear specification of requirements. Finally, the management patterns introduced in this paper, directly 

address best practices during service operation and guide the automation of this management phase. 

Figure 1. IT Infrastructure Library (ITIL) Management Aspects (adapted from [4]). 

 

2.2. Common Management Challenges in Cloud Applications  

Because the quality of service and self-management capabilities of today’s computer systems are 

both very high, human error has become the most significant reason for system downtime in large 

distributed systems [5,6]. The management flexibility introduced by cloud computing has additionally 

increased this effect: management tasks, such as the provisioning of new virtual machines or the 

deprovisioning of unused ones is literally at the systems managers’ fingertips and can be handled 

completely via management interfaces of cloud providers, such as [7] and [8]. Due to this evolution of 

management interfaces, human errors are more likely to occur, since there is hardly any notion of 

physical machines or an underlying physical connection network and management tasks can be 

performed much easier and quicker. Significant effort is required to structure the abstract view on 

managed resources in management interfaces [9]. 

However, the most effective way to avoid human errors during systems management is the 

automation of management tasks leaving only the decision when to trigger them up to human 

application managers. Regarding the scaling of cloud applications and to enable their resiliency 

towards failing cloud resources, significant automation is being introduced by cloud providers and 

cloud application developers [2,10]. Automation of these tasks is fundamental to the successful use of 

cloud resources, because it enables cloud applications to benefit best from pay-per-use pricing models 

Service 

Strategy

Service Design

Service Transition

Service Operation

Continual Service Improvement



Future Internet 2012, 4 114 

 

 

and automation also addresses the often low availability of individual cloud resources. Handling these 

tasks manually would make cloud application too expensive to operate and it would most likely result 

in unacceptable availability assurances. Other management tasks, such as the update of applications or 

the migration of applications to new environments are, however, not automated to a similar degree.  

We now describe how elasticity, resiliency, and the move of applications may be handled in cloud 

applications and motivate further why an automation of these management tasks would be beneficial. 

We cover the current state of the industry regarding these automation efforts.  

Amazon AWS offers monitoring of running virtual machines to analyze central processing unit 

(CPU) usage, memory usage, request processing time etc. Additionally, running virtual machines may 

publish customized monitoring information and metrics [11]. Based on this information, triggers may 

be defined to provision new virtual machines or reduce their number. This functionality may be 

handled for elasticity to scale-out cloud resources. The identification of failing resources, however, 

may require custom monitoring on the application level, because in many cases not all application 

failures can be identified correctly on the system level. Additionally, the application developer has to 

carefully configure the behavior of the systems. Amazon’s elasticity management, Cloud Watch, 

covers the configuration of: (i) the minimum number of virtual machines of a certain type; (ii) the 

maximum number; (iii) the number of machines to be provisioned and deprovisioned in case a 

condition occurs; and (iv) how often to check for such conditions. The actual behavior, and especially 

the success of systems management using this functionality, is highly dependent on this configuration. 

Consider, for example, a web shop that should scale-out automatically. The application developer 

therefore monitors the average CPU utilization of virtual machines every five minutes and specifies a 

trigger that provisions a new instance when the CPU utilization is above 80%. This configuration may 

be sufficient to scale the application most of the time, but fails when the load of the application 

increases drastically within very short time frames. In such a case, more machines should be 

provisioned to adequately react to a workload peak. Only provisioning one new instance every five 

minutes as specified in the example configuration simply takes too long. Even if a cloud provider 

offers advanced scaling and resiliency functionality, the adequate configuration of this functionality is 

still a management challenge.  

Microsoft Windows Azure [12] offers a monitoring functionality similar to that of Amazon. 

Therefore, systems level behavior may be monitored in a similar fashion. How to react to the 

monitored information has to be programmatically implemented by the application developer, whereas 

the behavior is merely configured when using Amazon.  

Moving applications from one cloud provider to another or back into a traditional data center can be 

an even more challenging management task. Even though significant efforts are made by the industry 

to standardize cloud interfaces and used formats [13–16], cloud providers are not generally 

interchangeable. However, the need to switch providers may arise under many circumstances. Changes 

in the pricing model of a provider making other providers a better fit economically is only one factor in 

this scope. Changes to requirements or adherence to new regulations and laws also have to be handled. 

The scenario in which a used cloud provider goes out of business or terminates a used service also has 

to be considered. Migration may also be an issue if different computing environments are to be used 

during the lifecycle of an application. For example, Amazon may be used for application development. 

Afterwards, the application shall be hosted in a more secured internal environment.  



Future Internet 2012, 4 115 

 

 

While these management tasks may also arise in non-cloud applications, the faster provisioning and 

deprovisioning capabilities of cloud computing should be respected. Therefore, the speed at which 

applications and their administrators can react to environmental changes should be increased to match 

the flexibility of clouds. We argue that this can be achieved by standardization of management 

processes and their capturing in automated management flows during the design time of application. 

2.3. Offering Customizable Multi-Tenant Cloud Applications 

In [17] we introduced a cloud application offering process. Here, we extend this process by 

stakeholders and activities handling the automation of management tasks of cloud applications. The 

new cloud application offering process is depicted in Figure 2. We assume that a cloud application 

provider offers an application to multiple tenants. In [17] we described a development style for such 

applications enforcing application componentization and a specific component format to be used 

during the development phase of such applications. This development style enabled the customization 

of the application to a tenant’s specific needs. In detail, we addressed the following application 

variability: user interface variability—the look and feel of the application can be customized; 

functional variability—tenants may alter the processes supported by the application; data variability—

tenants may define custom data objects and queries in the application; provisioning variability—the 

application can be deployed on a variable set of hard- and middleware and on different clouds. After 

the customization phase, the application’s functionality and the desired runtime environment has been 

specified by the application customizer. Prior to the provisioning phase, in which the infrastructure 

manager deploys the application to the desired runtime environments, we added an additional 

management planning phase. During this phase, an application manager defines automated management 

processes to handle management tasks arising while the application is used. The management tasks 

covered in this paper and the creation of automated management flows are addressed during this phase 

of the cloud application offering process. While the process considers cloud applications to be offered 

to multiple tenants, it may also be employed for applications that are only deployed once. In this case, 

the customization phase may be omitted, since the application only supports a fixed set of functions 

and is deployed only into one environment, etc. The remaining phases of the cloud application offering 

process are still applicable in the same form. 

Figure 2. Extended Cloud Application Offering Process. 

 
  

Development Customization
Management

Planning
Provisioning Use

Tenant

Cloud Application Provider

Application
Developer

Application
Customizer

Application
Manager

Infrastructure
Manager

Application
User



Future Internet 2012, 4 116 

 

 

3. Organization of Cloud Patterns in a Catalog 

In the following, we give an overview of the cloud architectural patterns we identified and the 

interrelations between the different pattern classes for cloud types, cloud service models, cloud 

offerings, and cloud architectures. We cover the format used to describe patterns and show how the 

newly introduced management pattern class fits into the catalog. Further, we describe how other 

existing cloud architectural patterns and those targeting other domains may be incorporated to form a 

homogeneous presentation in the catalog.  

3.1. Overview of the Pattern Catalog 

In [1] and [18], we introduced a catalog of architectural patterns to guide developers during the 

design of cloud applications. We also used the uniform pattern format to describe different cloud types 

and their offerings. Especially, we identified existing patterns from other domains, such as  

message-based application [19] or standalone application [20] that are useful in the area of cloud 

computing. These patterns were altered if necessary to respect the specifics of cloud environments and 

were expressed in the same pattern format as the rest of the catalog. Such a homogenization of 

information in a common format eased perception for application developers [21]. Additionally, the 

environment in which a pattern may be applied can be specified more easily, because pattern 

descriptions for cloud types, cloud offerings, and cloud service models may be used to set its context. 

Other existing architecture patterns that target the domain of cloud computing or other related domains 

were referenced with patterns contained in the catalog. The catalog structure depicted in Figure 3is 

divided into four sections: cloud types, cloud service models, cloud offerings, cloud application 

architectural patterns, and the newly introduced class for cloud management patterns (dashed lines). 

This new class contains patterns that describe how cloud applications developed according to the other 

patterns may be managed after their deployment. Existing architectural patterns identified by others are 

referenced from patterns contained in the catalog, if they describe good solutions to problems arising 

during the application of a pattern. For example, many of identified cloud architectural patterns face 

security challenges. Most of these are equivalent to security challenges in non-cloud applications 

which have been expressed as patterns [22]. To provide a linkage between these existing security 

patterns and the cloud patterns in the catalog informal references are made. Other security issues arise 

specifically due to the use of cloud computing mainly due to the sharing of cloud resources with other 

cloud users. For example, there have been security issues in the management interfaces of Amazon 

AWS [23] allowing other users to hijack other user accounts [24]. In this scope, legal implications are 

also quite different due to cloud computing, because providers may be legally responsible for 

employees but not for other users. Since significant work already exists on patterns describing the 

misuse of cloud computing [25], we did not compile this information into the used pattern format but 

referenced them in the cloud patterns catalog. Further domains for which we found existing patterns 

related to or used in cloud computing are also depicted in Figure 3. Messaging patterns as defined  

by [19] are often used to enable asynchronous communication in the cloud to loosely couple 

application components. This componentization is also a fundamental concept of the service-oriented 

architecture (SOA) patterns described by [26]. Similar componentization can be found in object-



Future Internet 2012, 4 117 

 

 

oriented programming defined by patterns in [20]. The management patterns introduced in this  

paper contain a management flow that may be modeled according to business process patterns 

described in [27]. 

Figure 3. Pattern Classes Comprising the Pattern Catalog and their Relations to  

Existing Patterns. 

 

We propose to use this catalog of patterns to coordinate the work of the different stakeholders 

during the cloud application offering process described in Section 2.3. Using a decision 

recommendation table, introduced in [18], the application developer selects patterns describing the 

environment for which he wishes to create an application. By evaluating relations among the patterns, 

architectural patterns describing development guidelines are recommended to him for implementation. 

He selects the ones he wishes to use and implements application components. Based on the 

implemented patterns, the application manager is provided with a set of recommendations for 

management patterns describing abstract management flows to automate the management of the 

application components.  

In the following sections, we will introduce the different pattern classes used by application 

developers and application managers during the cloud application offering process. We give an 

overview of existing patterns we described for clouds and architectural guidelines used by application 

developers and cover management patterns addressing the cloud-specific management challenges 

introduced in Section 2.2.  

3.2. Pattern Format Used in the Catalog 

The patterns in the catalog follow a uniform format to increase readability and comprehensibility. 

This format is often used by the pattern community and is inspired by [19,20,26]. Each pattern is 

identified by a small icon depicting the essence of the pattern. This icon can also be used in composite 

Cloud Pattern Catalog

Management 
Patterns

Cloud Offerings

Application 
Architecture Patterns

Cloud Types & 
Cloud Service Models

m
ak

e 
e

la
st

ic
, m

ig
ra

te
, u

p
d

at
e 

et
c.

Related Patterns

Business Process
Patterns

Security Patterns

Enterprise Architecture
Integration Patterns

SOA Patterns

re
fe

re
n

ce
,  

  u
se

, r
ef

in
e



Future Internet 2012, 4 118 

 

 

patterns to make a graphical reference to the used pattern. The pattern description is then introduced by 

a driving question, which is answered by the pattern. This allows application developers to quickly 

identify patterns which solve the questions at hand. The context section describes the environment in 

which the pattern can be applied in greater detail. Uniform descriptions of cloud types, cloud service 

models, and cloud offerings in the same pattern format was especially motivated so they can be used in 

the context section to set the environment cloud architectural patterns. The context section is followed 

by a detailed description of challenges that are addressed by the pattern. How this is done is briefly 

stated in the following solution section, giving developers steps to follow. The solution is supported by 

a sketch that depicts an overview of the architecture described by the pattern. In this sketch, the icons 

of other patterns may be used to describe a pattern composing other patterns. In the following result 

section, the outcome after application of the pattern is discussed as well as new challenges that might 

have to be addressed. Variations of the pattern are discussed next. These variations are slightly 

different applications of the pattern, but changes are not significant enough to justify their description 

in an independent pattern. Then, references to other patterns are given that solve similar problems, or 

are likely to be combined with the discussed pattern, etc. Finally, known uses of the pattern 

are referenced. 

3.3. Existing Patterns for Cloud Types and Cloud Service Models 

To describe the different environments in which cloud applications may be hosted, we described 

different cloud types in the pattern format. Figure 4 depicts the icons of defined cloud types. Resources 

of public clouds are available to everyone, which often raises concerns regarding privacy, security, and 

trust. Private clouds on the other hand are hosted exclusively for a company. Community clouds are in 

between these two extremes offering resources only to a certain group of companies, for example, to a 

car manufacturer and its suppliers. Finally, a hybrid cloud is formed by an integration of at least two 

clouds of the other types. This is mostly done if one cloud alone cannot handle all requirements of  

a company. 

Clouds offer resources in very different styles leaving more or less control of the hard- and 

middleware to the application developer. For each of these cloud service models, we gave a description 

in the pattern format: Infrastructure as a Service (IaaS)—the offering of (virtual) servers to customers; 

Platform as a Service (PaaS)—the offering of a provider-controlled middleware that can be used by 

customers to host their applications; Software as a Service (SaaS)—providing complete applications 

that can only be customized by users; and Composition as a Service (CaaS)—the offering of a 

configurable composition of cloud offerings of different cloud service models. 

  



Future Internet 2012, 4 119 

 

 

Figure 4. Icons of the Cloud Types and Cloud Service Model Patterns (adapted from [1]). 

 

3.4. Existing Patterns for Cloud Offerings 

While cloud types and cloud service models describe the cloud environments, cloud offerings 

describe the behavior of services available in them. We differentiated these offerings into three 

subclasses as depicted in Figure 5.  

Figure 5. Icons of Cloud Offerings (adapted from [1]). 

 

Public 
Cloud

Private
Cloud

Hybrid
Cloud

Community
Cloud

x

IaaS PaaS SaaS CaaS

C
lo

u
d

Ty
p

es
Se

rv
ic

e 
M

o
d

el
s

=
!

=

Strict
Consistency

Eventual
Consistency

Relational
Data Store

Blob
Storage

Block 
Storage

NoSQL
Storage

Message 
Oriented

Middlware

Reliable
Messaging

At-least-once Exactly-once

High-available
Compute Node

Low-available
Compute Node

Elastic
InfrastructureC

o
m

p
u

ta
ti

o
n

St
o

ra
ge

C
o

m
m

u
n

ic
at

io
n



Future Internet 2012, 4 120 

 

 

Cloud compute offerings provide resources to handle the actual computation workload of 

applications. They are often hosted in an elastic infrastructure that allows them to be flexibly scaled. 

Further, we differentiated between low-available and high-available compute nodes since this resource 

property significantly affects how applications using these resources have to be built.  

The second class of cloud offerings are cloud storage offerings that can be used to store data in the 

cloud. We described relational data stores—a table-based store that ensures a defined data schema [28] 

as well as a certain data structure, blob storage—a data store for large unrelated files, block storage—a 

cloud storage service that can be used similar to physical hard drives; and NoSQL storage—another 

table-based data store relaxing data consistency and schema regulations. Consistency behavior of these 

storage services, which can be strict or eventual, was also described in a pattern-form.  

The third cloud offering class consists of cloud communication offerings, which can be used to 

exchange data between distributed applications or their individual application components. We 

described messaging services as well as their behavior that has a significant impact on the application 

using messaging. We included existing patterns for reliable messaging [19], also called transactional 

messaging and messaging systems [19] not offering transactional behavior. Further, we included 

patterns for the delivery behavior, which may be either exactly-once [19] or at-least-once [19] 

referring to delivering a sent message once and only once or possibly multiple times respectively. 

3.5. Existing Patterns for Cloud Application Architectures 

So far, the pattern classes have described the environment offered by cloud providers and the 

offerings available therein. Cloud application architecture patterns guide application developers during 

the design and implementation of applications components that use cloud offerings and are deployed to 

different cloud types. Again, we introduced several sub-classes in the catalog as depicted in Figure 6.  

Figure 6. Icons of Cloud Application Architecture Patterns (adapted from [1]). 

 

Composite
Application

Loose
Coupling

Stateless
Component

Idempotent
Component

B
as

ic
El

as
ti

ci
ty

A
va

ila
b

ili
ty

Map-Reduce Elastic
Component

Elastic Load
Balancer

Elastic
Queue

1.
1

1.
2

M
u

lt
i-

Te
n

an
cy

Watchdog Update
Transition

Single
Instance

Multiple
Instance

Single Con-
figurable Instance



Future Internet 2012, 4 121 

 

 

Basic architectural patterns give general advice to follow when designing applications for the 

cloud. The concepts of dividing an application into a componentized application and avoiding 

dependencies between these components resulting in loose coupling has been introduced by service 

oriented computing [29]. The pattern to avoid having an internal state in these components to make 

them stateless and better manageable is also based on this computing paradigm. Duplicate messages of 

used cloud offerings providing at-least-once delivery can generally be handled by implementing 

idempotent components adapted from [19].  

Elasticity patterns address the new challenges of cloud applications to ―breathe‖ depending on the 

current workload. We covered different styles to measure this workload based on the load experienced 

by individual components, load balancers, or queues to determine and provision the number of 

required resources. Further, we described map-reduce, introduced by [30], in the pattern format.  

Map-reduce is a divide-and-conquer approach for distributed computing and is frequently used for 

large-scale data analysis.  

The insufficient availability of cloud resources can be addressed by implementing availability 

patterns. These describe how resources may be monitored by a watchdog [31] and how components 

may be designed to be transitioned to a new updated version. The last sub-class describes how 

application components may be shared by multiple tenants. This so-called multi-tenancy [32] can 

either be realized in a single instance of an application component. Alternatively, component instances 

may also be configurable for different tenant or multiple instances may be hosted to serve each tenant 

separately. 

4. Cloud Application Management Patterns 

Previously discovered patterns for cloud architectures, cloud offerings, cloud types, and cloud 

service models have been described in Section 3. In this section, we introduce a new pattern class, 

cloud application management patterns. While cloud architecture patterns mentioned in Section 3.5 

describe how application components shall be designed and interconnected, patterns of this class 

describe how application components should be managed. Therefore, the patterns of this class describe 

cross-cutting concerns how to manage cloud applications. 

The management patterns follow the same pattern format described in Section 3.2 to seamlessly 

integrate into the catalog. The only difference is that the sketch does not depict an abstract architectural 

diagram but an abstract management flow using Business Process Model and Notation (BPMN) [33]. 

This is due to the fact that management patterns are not implemented as application components but in 

the form of automated management flows.  

In some cases, a specific system architecture is required for a management pattern to be applicable. 

For example, the following elasticity management pattern is likely to be combined with the application 

architecture patterns elastic component, elastic load balancer, or elastic queue. This is expressed 

through interrelations between the patterns rather than including duplicate descriptions of management 

flows in every architectural pattern. Another advantage of this separation is that the creation of 

application components and management processes performed by different roles of the cloud 

application offering process described in Section 2.3. In the following, we present management 

patterns we discovered to handle the cloud-specific management challenges mentioned in Section 2.2.  



Future Internet 2012, 4 122 

 

 

4.1. Elasticity Management Pattern 

Icon: the icon of the elasticity management pattern is depicted in Figure 7. 

Figure 7. Icon of the Elasticity Management Pattern.  

 

Driving Question: How can the number of resources to which application components are scaled-

out be adjusted efficiently to the currently experienced workload? 

Context: a componentized application is hosted on an elastic infrastructure and comprised of 

elastic components, elastic queues, or elastic load balancers.  

Challenges: the dynamicity of clouds demands automatic scaling of cloud resources. To perform 

this task, the current resource demand has to be determined and has to be reflected in provisioning and 

deprovisioning of system resources. 

Solution: analyze the current utilization of system resources after certain time intervals, when a 

user requests it, or based on monitored system events to determine the current workload and adjust 

resource numbers accordingly. 

Result: the elasticity management flow can be triggered periodically (every day, month etc.) 

depicted by the timer event in Figure 8. Alternatively, a user of the application can trigger it, for 

example, because he knows that a number of new employees will start using the application at a certain 

date. This case is reflected by a message event passed to the management flow. As a third option, the 

flow can be triggered by signals originating from monitoring. For example, the size of a queue may 

exceed a certain threshold if this management pattern is combined with the elastic queue pattern. 

Figure 8. Abstract Management Flow of the Elasticity Management Pattern. 

 

When the elasticity management flow is triggered, resource utilization is optimized and resource 

numbers are adjusted to correctly reflect the workload. Critical design decisions in this scope are: 

1. Time interval at which system utilization is evaluated (in case of time-based triggers): if this 

interval is too large, the system may be underutilized or overloaded without notice. 

Analyse Monitoring 
Information

Determine System 
Adjustments

Provision / Deprovision
Application Components



Future Internet 2012, 4 123 

 

 

2. Reactions to workload analysis: the reaction must be appropriate, for example, if too few 

resources are added to the system, it takes too long until an increased workload can be handled 

by the application.  

Both design decisions mainly depend on heuristics and prior experiences. When determining the 

time interval at which utilization is measured, it has to be considered how quickly utilization has 

changed in the past. Also, the time it takes to provision new resources has to be considered here. This 

is also an important factor when determining how a change in the utilization should be addressed. 

Historic information, such as user behavior during holidays may be used to adjust these variables [34]. 

Relations to other patterns: the elasticity management pattern can be combined with elastic 

components, elastic queues, or elastic load balancers. These patterns form the architectural basis for 

the elasticity management flow by providing the required monitoring information that has to be 

extracted from the managed application components and their runtime environment. 

Variations: manual triggering of the introduced management flow may not only originate from 

application users. Who is responsible for this task mainly depends on the employed cloud service 

model. In case of IaaS, the user of the cloud likely performs this task. However, in case of PaaS and 

SaaS, the configuration of elasticity management may be hidden from the user. In this case, the task 

instead may be performed by the cloud provider. 

Known Uses: [2] describes how to scale Amazon AWS Resources. Especially, it covers different 

events and conditions when the elasticity management should be executed. [35] evaluates the scaling 

capabilities of Windows Azure, for which [36] offers a scaling software as a service. The concept to 

scale-out applications automatically is, however, not only seen in cloud computing and has been used 

by the industry for quite some time [31].  

Self-adaptive autonomous systems perform a similar management task to adjust their size, structure, 

communication channels, etc. regarding environmental conditions. They undergo a so-called monitor-

analyze-plan-execute (MAPE) loop [37] comprised of similar steps as the elasticity management flow. 

4.2. Resiliency Management Pattern 

Icon: the icon of the resiliency management pattern is depicted in Figure 9. 

Figure 9. Icon of the Resiliency Management Pattern.  

 

Driving Question: How can the availability of a composite application be ensured even if 

individual components fail? 

Context: a composite application that distributes application components among different  

low-availability compute nodes offered by an elastic infrastructure. 

Challenges: if an application depends on the availability of many individual resources, the overall 

availability of the application is may be reduced drastically. This is due to the fact that the chance that 



Future Internet 2012, 4 124 

 

 

at least one of the resources fails is higher, the more resources are used. Therefore, it has to be ensured 

that individual resources may fail without affecting the availability of the overall application.  

Solution: scale-out application components among multiple resources. Ensure that a sufficient 

threshold of component instances is provisioned exceeding what the currently experienced workload 

requires, monitor and react to component instance failures according to the abstract management flow 

depicted in Figure 10. 

Figure 10. Abstract Management Flow of the Resiliency Management Pattern. 

 

Results: the failure of component instances can be detected and automatic reaction is enabled. 

Critical design decisions in this scope are:  

1. Time intervals at which the states of component instances are checked. 

2. Method for failure detection. 

The time intervals mainly depend on the required recovery time and, therefore, have to respect 

provisioning time of resources. Often, cloud providers do not make assurances for these times and 

heuristics have to be employed to predict them. To detect a component failure, providers may offer 

monitoring of network availability, CPU or memory utilization, for example [11]. The application 

manager, however, is obligated to interpret these values and deduct information about application 

component availability from them. Further, none of this information can assure that the component 

functions correctly on the application level. Such tests have to be implemented manually by the 

application developer. 

Variations: sometimes, failures are hard to detect on the application level. Especially, testing how 

application components behave after a very long runtime can be challenging. To address these 

challenges, application components can be randomly treated as failed after certain time intervals and 

are then replaced by newly provisioned instances. 

Relations to other patterns: the components themselves should be implemented as stateless 

components to simplify their management within the scope of this pattern. The resiliency management 

pattern may be combined with the elasticity management pattern if elasticity is also an issue. 

Known uses: The concept has been used to enable high availability of processes running on a single 

machine. In this scope, the system component handling the above described management flow is called 

Check Component
Health

ok

Stop Access to Failed
Component

Provision 
Replacement

Replicate required
Data

Deprovision
Failed Component

failed



Future Internet 2012, 4 125 

 

 

a watchdog to which system components notify their availability [38]. Amazon suggests a similar 

approach to assure fault tolerance in applications using their Elastic Beanstalk service [39]. 

4.3. Move/Update Management with Downtime Pattern 

Icon: the icon of the move/update management with downtime pattern is depicted in Figure 11. 

Figure 11. Icon of the Move/Update Management with Downtime Pattern.  

 

Driving Question: How can an application component be moved to a different environment or 

updated to a new software, middleware, or hardware version, if downtime is acceptable? 

Context: a stateless application component, which has no internal state but, relies on external data 

and is part of a composite application. This component may be unavailable for the timeframe in which 

it is updated/moved. 

Challenges: during the transition it has to be ensured that application components are idle prior to 

their deprovisioning. Further, accesses either have to be stopped on the application level or have to be 

queued during the downtime. 

Solution: as depicted in Figure 12, ensure that no new requests are sent to the component to be 

moved or updated. Then, provision a new component instance with the new version (update) or in the 

new runtime environment (move). Send requests to the new component when it becomes available and 

deprovision the old one once it has finished processing requests. 

Figure 12. Abstract Management Flow of the Move/Update Management with  

Downtime Pattern.  

 

Result: the provisioning of the new component and the deprovisioning of the old component can 

partly be parallelized. Problems may arise if the time required for the migration/update is hard to 

Stop sending requests
to old component

Wait for old
component to finish

Deprovision old
component

Move external data

Start sending requests
to new component

Provision new
component



Future Internet 2012, 4 126 

 

 

estimate or depends on external factors, such as the behavior of the used cloud provider. This is due to 

the fact that the acceptable downtime is often fixed, for example, it could be limited to night hours. 

Variations: if the stateless component does not rely on external data, concurrently provisioning 

both versions of the component is likely to be possible ensuring a very timely switchover. 

Relations to other patterns: a migration/update can also be realized without downtime as 

described by the migration/update management without downtime pattern. The managed components 

are often accessed via messaging queues [19]. 

Know Uses: Peecho [40], offering printing as a service, is based completely on Amazon AWS. An 

overview how it handles updates with minimal downtime is given by [41]. Kununu [42] also 

automated this management flow based on Amazon AWS [43].  

4.4. Move/Update Management Without Downtime Pattern 

Icon: the icon of the move/update management without downtime pattern is depicted in Figure 13. 

Figure 13. Icon of the Move/Update Management without Downtime Pattern.  

 

Driving Question: How can an application component be moved to a different environment or 

updated to a new software, middleware, or hardware version, if downtime is inacceptable? 

Context: A stateless application component, which has no internal state, but relies on external data 

and is part of a composite application. The component must not be unavailable for the timeframe in 

which it is updated/moved. 

Challenges: due to the provisioning time of the new component and the time it takes the old 

component to finish processing request, both components must be operated during the switch from one 

environment/version to the other. This is especially challenging, if the application component depends 

on external data that has to be shared by the old and the new components. 

Solution: as depicted in Figure 14, replicate and synchronize required data to be accessed by the old 

and the new component and provision and operate both versions concurrently. Then, instantly switch 

from the old to the new version of the component.  

Figure 14. Abstract Management Flow of the Move/Update without Downtime Pattern. 

 

=
!

Synchronize required data Provision new component
Route requests to new

component only

Wait for old component to
finish 

Extract and move all data
Deprovision old

component



Future Internet 2012, 4 127 

 

 

Result: because the data accessed by both components is synchronized, a consistent component 

behavior is ensured. The switch between both versions is done instantly. The old component is given 

time to finish any processing that may have been assigned to it prior to the switch. Then, additional 

data that was not needed directly in the beginning, for example, log information or archived data, is 

moved. Finally, the old component is no longer needed and can be deprovisioned. 

Variations: if the managed component does not access external data, the corresponding activities in 

the management flow to replicate and synchronize the data accessed by the managed application 

component can be omitted. 

Known uses: Significant efforts are being made to migrate virtual machines between multiple 

runtime environments without downtime [44,45]. [46] gives an overview of the tasks that have to be 

covered and their order to achieve this. 

5. Cloud Patterns and Implementation Artifacts 

Patterns describe good solutions to a developer, but often they have to be implemented individually 

for each cloud environment used in an application. In [18], we covered conceptually how a list of 

implemented application components, concrete products, and their configuration options can be 

annotated to patterns in order to assist and standardize these efforts. These annotations can be used to 

ensure a homogenization of the runtime environments. This reduces the management effort, which is 

one of the major cost factors of IT systems, significantly [47].  

In a similar form as architectural patterns are refined to a set of implemented software artifacts that 

are hosted on a standardized and restricted infrastructure, we now propose that the abstract 

management flows shall be refined for implemented application components. In Section 4, we gave 

examples how to abstractly make an application component elastic, how to make it resilient regarding 

system failures, and how to move it to a different environment or update it. In this section, we show 

how these abstract management flows may be refined in a structured fashion through the annotation of 

application component implementations, middleware, hardware, and descriptions of management 

interfaces. We argue that this annotation will lead to a similar standardization of application 

management efforts as other patterns have introduced to cloud applications. Figure 15 depicts the 

structure of the presented cloud pattern catalog together with proposed annotations. The new pattern 

class of management patterns covered in Section 4 abstractly describes how implementations of the 

other pattern classes can be managed. In the following, we first describe the annotated artifacts in 

greater detail and then give an end-to-end example how they can guide the implementation of 

management patterns. We described the implementation of other patterns classes is in greater detail  

in [18]. 

Implementation artifacts subsume application models, management functions, and management 

flows. Depending on the pattern class to which these artifacts are annotated, they assist the pattern 

instantiation to application components, cloud offering subscriptions, or management flows. Application 

models have been introduced by [48,49]. They describe the deployment dependencies among 

application components and used middleware. Here, we will use them to describe the dependencies 

among application components and cloud offerings provided by certain clouds. For example, an 

application component may be implemented as a Business Process Execution Language (BPEL) [50] 



Future Internet 2012, 4 128 

 

 

Process. This BPEL Process is then an entity in the application model that has a deployment 

dependency on a BPEL engine component. This component may then again specify a dependency on a 

virtual machine with an installation of Linux. Components in this model which are provider supplied 

have no dependency on other components but are provided, for example, in the form of a cloud 

offering. [48,49] consider each of these components to have a standardized component interface 

offering functionality to instantiate components and, in case of middleware components, to deploy 

other components on them. This standardized interface is used to automate the provisioning of 

applications modeled in the application diagram. Here, we generalize this approach and allow custom 

management interfaces for annotated to application components. For example, a cloud provider may 

offer a management interface to add users, create security credentials etc. Management flows may then 

orchestrate said management functionality to automate management tasks, i.e., those described in 

Section 2.2. 

Figure 15. Organization of Cloud Patterns in the Catalog and Annotated  

Implementation Artifacts. 

 

We now give examples for annotations to a cloud type, a cloud offering, and an application 

component as well as show how they can be combined during the application development process. 

5.1. Exemplary Annotations of a Cloud Provider 

In the exemplary annotation depicted in Figure 16, the users of the catalog wants to use Amazon 

EC2 as a cloud provider for the hosting of pre-configured Linux and Windows virtual machines. 

Further, the management functionality of these virtual machines to install software packages is made 

available via Web services. The provider is, therefore, described by two application models, one for 

the Linux and one for the Windows virtual machine. As management interfaces, the Web service 

Cloud Pattern Catalog

Management 
Patterns

Cloud Offerings

Application
Architecture Patterns

Cloud Types & 
Cloud Service Models

an
n

o
ta

te
an

d
 d

e
sc

ri
b

e

m
ak

e
el

as
ti

c,
 m

ig
ra

te
, u

p
d

at
e 

et
c.

Annotations

Application Models

Management Flows

Management Functions

HW
MW

MW

+
-

provision, 
deprovision, etc.



Future Internet 2012, 4 129 

 

 

interface of Amazon EC2 may be used to start and stop the virtual machines. Further, a VM 

management interface is provided that is offered by a Web service running on the custom virtual 

machine images. It offers functionality to install and uninstall software packages on instances of the 

virtual machines, start and stop a service, upload configuration files, etc. The functionality of these 

management interfaces is used in annotated management flows to install software via the VM 

management interface or add access for a new user to the virtual machine. 

Figure 16. Implementations Artifacts of Amazon EC2. 

 

The set of implementation artifacts associated with Amazon EC2 are annotated to the patterns 

provided by the EC2 cloud offering. These are: (i) the elastic infrastructure pattern, because virtual 

machines may be added flexibly; (ii) the Infrastructure as a Service pattern, because it is the cloud 

service model that Amazon follows; and (iii) the public cloud pattern as services offered by Amazon 

are available to everyone. Whenever a developer selects one of these annotated patterns from the 

catalog, these annotations are, thus, recommended to him. 

5.2. Exemplary Annotations of a Cloud Offering  

A cloud offering for a MySQL server shall be described by annotated implementation artifacts as 

depicted in Figure 17. Again, multiple application models are available. In difference to the cloud 

provider, these application models cannot be instantiated independently but include a dependency on 

either a Linux or a Windows virtual machine. The MySQL offering therefore requires a virtual 

machine of either type providing a management interface to deploy the MySQL installation. To 

automate this functionality, it offers a management flow for its provisioning/deprovisioning that 

accesses the management interface of a running virtual machine in order to install/uninstall the 

MySQL server. The management functionality of MySQL itself is again encapsulated behind a 

management interface. This interface is further used in annotated management flows to create a replica 

of the MySQL server, extract a table dump, etc. 

Amazon: Cloud Provider

Add access
for new user

EC2 Mgmt.
Linux VM
EC2 

Windows 
VM EC2

VM Mgmt.
Add access
for new user

Install
software

Elastic
Infrastructure

IaaS Public Cloud

Application
Models

Management
Interfaces

Management
Flows

annotate



Future Internet 2012, 4 130 

 

 

Similar to the cloud provider, the implementation artifacts describing this cloud offering are 

annotated to the patterns they implement. These are (i) the relational data store pattern, which 

describes how the MySQL offering behaves during the access of the database; and (ii) the strict 

consistency pattern, which describes the data consistency model followed by the MySQL offering. 

Figure 17. Implementation Artifacts of a MySQL Cloud Offering.  

 

6. End-to-End Example for Pattern-Based Application Development and Management.  

Consider the architecture diagram of a componentized application depicted in Figure 18. It is 

created by an application architect and shall now be passed to an application developer to undergo the 

cloud application offering process described in Section 2.3. The used notation is similar to that of 

UML Component Diagrams [51], thus, each box depicts a component and arrows show which other 

components are used by it. The application realizes a Web shop offering arbitrary products. Customers 

access the application through a web-based user interface to browse products in a product catalog. This 

catalog is periodically updated from a stock management component to respect item availability. Once 

customers decide to order an item, they are asked to input their contact and payment information. Input 

is first verified for consistency i.e., to check if the zip code fits the street and city. Then, the ordering 

information is passed to the order processing component handling the billing and shipping process. For 

these tasks, the component accesses functionality of a payment system and a stock management system. 

  

MySQL Server: Cloud Offering

Add access
for new user

MySQL

Relational 
Datastore

Strict
Consistency

Linux VM : 
provider supplied

MySQL

Windows VM : 
Provider supplied

MySQL 
Mgmt.

Create 
replica

Extract table
dump

Provision / 
Deprovision

=
!

annotate

Application
Models

Management
Interfaces

Management
Flows



Future Internet 2012, 4 131 

 

 

Figure 18. Components of Web Shop Applications and their Dependencies. 

 

In the following, we show how the requirements of application components (box) and usage 

dependencies (arrow) on each other and on the runtime environment can be expressed through 

enriching the architecture diagram by pattern annotations. Based on these annotations, we discuss how 

application developers concretize the application components during the development phase by 

creating application models for each component. Finally, the annotated information is used to identify 

suitable management patterns during the management planning phase that are concretized by application 

managers using annotated implementation artifacts. In this example, we assume that the application is 

only developed and deployed once. Therefore, the optional application customization phase of the 

cloud application offering process is omitted. We show how cloud patterns may be used for expressing 

the requirements of the example application and the desired behavior and management of implemented 

application components. The architecture diagram is enriched using these patterns to guide the 

communication between application architects, application developers and application managers. 

6.1. Requirements Management Through Pattern-Based Diagram Enrichment 

To express the behavior expected from application components and communication channels, 

pattern names are annotated to entities in the architecture diagram as depicted in Figure 19. This 

enables application developers to identify suitable cloud offerings and middleware components that the 

implemented application components may use as runtime. Application components holding an internal 

state are characterized as implementing the stateful component pattern, while those relying completely 

on external states are annotated with the stateless component pattern. Further, the order processing 

component is required to be idempotent, which means it has to be able to handle duplicate messages as 

it is accessed via at-least-once-messaging. To address changing workload on the application, the 

application components that are needed for synchronous user interaction, UI, input verification, and 

product catalog, are required to be elastic. Once the order is issued to the order processing component 

timely responsiveness of the application is less critical with respect to the time it requires to ship the 

ordered products. Finally, the product catalog reflects the items handled by the stock management 

UI

Product 
Catalog

Input
Verification

Order 
Processing

Stock 
Management

Payment
System



Future Internet 2012, 4 132 

 

 

component and provides it to the user interface. No real-time information is required, thus, the 

availability of products does not have to be reflected directly in the product catalog. The 

synchronization between the stock management and the product catalog is, therefore, characterized as 

eventual consistent. 

Figure 19. Enriched Diagram of the Web Shop Application.  

 

6.2. Concretization of Architecture Diagrams During the Development Phase 

Based on the annotated pattern information, an application developer may identify potential cloud 

offerings and cloud providers to be used during the implementation of the application components. The 

pattern-based expression of requirements and desired component behavior thus enables the application 

architect and the application developer to use a common language and diagram format. Lengthy textual 

descriptions with unclear semantics are reduced. We argue that this will lead to fewer communication 

errors regarding requirements specification. Here, we discuss this selection of implementation artifacts 

and the resulting concretization of the application architecture diagram for the order processing and the 

product catalog component. 

To implement the process ordering component, the developer decides to manage the state of 

individual orders in a BPEL process ensuring the implementation of the stateful component pattern. 

The resulting application model is depicted in the right of Figure 20. To address duplicate messages, 

he decides to implement a message filter as a Web service as suggested by the idempotent component 

pattern. This message filter accepts messages send to the process ordering components and forwards it 

to the BPEL process. For these implementation components the application developer then requires to 

Order 
Processing

Stock 
Management

relational data store
eventual consistent synchronization

synchronous

stateful

stateful

stateful

synchronous

stateless
stateless synchronous

Customer & 
Payment
System

stateful
at-least-once messaging

Product 
Catalog

transactional messaging

UI
Input

Verification

idempotent

elastic

elastic elastic

idempotent



Future Internet 2012, 4 133 

 

 

find an appropriate runtime environment. He identifies an application model with the Apache ODE 

BPEL process engine [52], and the Apache Tomcat application server [53], because it is annotated to 

both, the idempotent component and the stateful component patterns, as possible runtime. The 

application model then expects the availability of a Linux virtual machine. Since the order component 

handles business critical data, the developer decides to host it in a private cloud. Annotated with this 

cloud type, he finds an application model providing a Linux virtual machine in a private cloud based 

on VMware [54]. He combines this application model with the application components and the cloud 

offering application model to complete the application stack.  

Figure 20. Concretization of the Order Processing Component. 

 

Figure 21 depicts the concretization of the product catalog component from the architecture 

diagram to the application model. To implement this component, the developer decides to realize it as 

Java Web service [55] that accesses a MySQL database [56]. He finds an application model for a 

MySQL server and an Apache Tomcat application server, a runtime for Web services, annotated to the 

relational data store pattern and the stateful component pattern. He decides to use this application 

model as runtime for the Web service and data base schema. As the product catalog component has to 

be elastic and hosts data that is publicly available, the developer further identifies a public cloud as 

suitable hosting environment and finds an annotated application model for hosting the required Linux 

virtual machine on Amazon EC2. To implement the desired eventual consistent synchronization with 

the stock management component, the developer creates a shell script and configuration for the Linux 

virtual machine. This script is executed after certain time intervals as specified in the configuration 

file. It accesses the local MySQL server and issues a poll of catalog data from the stock management 

component. Because this synchronization is only performed after certain intervals, the desired eventual 

consistent synchronization is guaranteed. 

  

idempotent

Order 
Processing

at-least-once messaging

transactional messaging

stateful

synchronous

ODE, Tomcat

Message 
Filter

BPEL
Process

Linux VM
VMware

Linux VM : supplied

Architecture Diagram Application Model

deployed on

deployed on



Future Internet 2012, 4 134 

 

 

Figure 21. Concretization of the Product Catalog Component. 

 

6.3. Pattern-Based Modeling of Management Flows During the Management Planning Phase 

Through the interrelation of abstract management flows with pattern-based descriptions of 

application architecture patterns, cloud types, cloud service models, and cloud offerings, application 

mangers can identify management patterns that are applicable to the created application models. Now, 

we briefly discuss the provisioning of application components, because extensive work exists on this 

subject. Further, we give detailed examples how the management patterns for component migrations 

described in Section 4, can be concretized for the order processing component and the product catalog 

component. Again, this task is performed based on the enriched application diagram and the annotated 

implementation artifacts.  

Provisioning of application components  

Application components are provisioned through execution of provisioning management flows that 

are associated with them. The order in which individual provisioning flows must be executed can be 

obtained from dependencies between the application components. In [57], a method is described how 

this order may be computed automatically. Alternatively, complete provisioning flows may be 

generated from the application model if an additional variability model [49] describing component 

interdependencies in greater detail is also provided.  

Moving the Order Processing Component with Downtime 

Figure 22 depicts the deployment of the ordering processing component that is accessed through a 

messaging queue on the very left. The queue provides asynchronous access to the order processing 

component. Its application model has been identified for use in this setup through an annotation to the 

at-least-once messaging pattern. We now cover the modeling of an automated management flow to 

move this component to a different cloud environment depicted in the center of the figure. On the 

right, the steps of the abstract management flow handling the move of application components with 

Config /
Script

relational data store

stateful

Product 
Catalog

elastic

idempotent

MySQL, Tomcat

Linux VM : supplied

Schema

Linux VM
EC2 eventual consistent

synchronization

Web 
service

deployed on

deployed on

Architecture Diagram Application Model



Future Internet 2012, 4 135 

 

 

downtime are listed. The complete flow can be obtained from Figure 12 part of Section 4.3. The first 

activity in the abstract management flow is firstly to stop sending requests to the old process 

management component. To perform this activity in the management flow, the application manager 

refines this first activity to access the management interface of the messaging queue and to stop the 

delivery of messages. Since no more messages are processed now, the process ordering component is 

unavailable to the rest of the application. The second activity of the management flow (2a) waits for 

the running process ordering component to finish handling requests that were already assigned to it. 

The application manager refines this activity to periodically poll the management interface of the 

process engine to check the number of running process instances. Simultaneously, (2b) the new 

component is provisioned. This activity is handled by refining it to execute the corresponding 

provisioning flows for the used BPEL engine and then accessing its management interface to install the 

process model. In a similar fashion, the Web service handling the message filtering can be 

automatically setup in the new environment. When there are no more active ordering process instances 

running on the old process engine, the (3) process data, i.e., information about completed instances is 

moved to the new ordering process component. The application manager enables this by refining this 

abstract activity to access the management functionality offered of the process engine in order to 

extract the data about the completed instances. Then, the functionality of the same interface at the new 

process engine is accessed to store the extracted data. When the new order processing component is 

ready to handle requests and all data has been moved, the next management flow activity (4a) ensures 

that requests are started to be send to the new component. This is enabled by accessing the 

management interface of the queue and starting message delivery again. At the same time, the 

deprovisioning management flow of the old order processing component is called to implement the 

abstract activity (4b) handling the deprovisioning of the old component. 

Figure 22. Steps to Move the Order Processing Component. 

 

  

2a

1

2b

3
move

4b

4a

1

2a

2b

3

4a

4b

Stop sending requests 
to old component

Wait for old 
component to finish

Provision new
component

Move Data

Start sending requests 
to new component

Deprovision old
component



Future Internet 2012, 4 136 

 

 

Moving the Product Catalog Component Without Downtime 

The move of the product catalog component implemented as the Web service depicted in the left  

of Figure 17 shall also be automated using a management flow. The component is accessed 

synchronously through an enterprise service bus (ESB) [58]. Because the product catalog is required 

by the user interface for application users, its migration management flow shall ensure that there is no 

downtime. The steps of the abstract management flow introduced in Figure 14 of Section 4.4 shown on 

the very right of Figure 23 must therefore be concretized by the application manager. First, (1) the 

product catalog component is provisioned in the new environment by using its provisioning flow. 

Then, the application manager has to specify how (2) the required data shall be synchronized. He does 

so by accessing the management interface of the database residing in the old cloud environment to 

obtain a table dump and also models its replay to the new database component using its management 

interface. Because the data synchronization between the stock management component and the product 

catalog is eventually consistent and is also handled by a script running on the new product catalog 

component, this initial data replication is sufficient. The developer now refines the next abstract 

activity (3) to route requests to the new component by changing the configuration of the ESB using its 

management interface. The management flow then (4) has to wait for the old component to stop 

processing requests. However, the product catalog does not offer a management interface to obtain this 

information. The application manager, thus, refines this abstract activity to use management 

functionality of the cloud provider to check CPU utilization of the underlying virtual machine 

periodically. The following step (5) to extract and move all data can be omitted in this example, 

because during the remaining processing of the old component data is not created or altered. It can 

therefore be (6) deprovisioned by including its corresponding management flow. 

Figure 23. Steps to Move the Product Catalog Component. 

 

6.4. Triggering of Automated Management Flows 

In [59], we present a framework handling the event-based execution of provisioning and 

deprovisioning flows annotated to application components. Based on application model events can be 

ESB

synchronize
1

2
4

move
5

6

3

1

2

3

4

5

6

Provision new
component

Synchronize
required data

Route requests to 
new component only

Wait for old 
component to finish 

Extract and move 
all data

Deprovision old
component



Future Internet 2012, 4 137 

 

 

specified, which are generated by each component or by the user of the application. Additionally, for 

each application component it can be specified if it should be provisioned or deprovisioned if a 

specific event was observed. For example, a queue can throw an event when a certain threshold of 

messages stored in it is exceeded. The necessary provisioning and deprovisioning flows are then 

triggered by the framework through iteration of the application components in the application model. 

Those, whose provisioning or deprovisioning flows are triggered by this event are then added or 

removed from the application respectively. In scope of the queue example, the framework can, 

therefore, ensure that additional components are provisioned to handle messages in case the queue is 

filling up. The refined automated management flows, proposed by this paper, seamlessly integrate into 

this framework through their correlation to events generated by users and application components to 

specify under which conditions they shall be executed. 

7. Summary and Outlook  

We have seen how the pattern catalog may guide application developers during the creation of 

application components. The patterns implemented by individual application components also guided 

the application managers during the identification of management patterns that he could use to manage 

the application component. We have defined such abstract management flows in a pattern format to 

handle elasticity, resiliency, and for moving application components between different environments 

or updating them to a new version. Using the proposed pattern catalog and annotated implementation 

artifacts, we have further shown how these abstract management flows could be refined for different 

components of an exemplary web shop application. Future use of patterns in architecture diagrams will 

have to be further refined to handle a larger catalog of patterns and have to be integrated into 

architecture modeling tools. An extension of architecture modeling languages, such xADL [60], could 

be one solution. The general challenge that needs to be addressed is the creation of a composition 

language to connect the icons of architectural patterns in a structured and well-defined manner. To 

extend tool support, patterns should further be associated with properties of the application that they 

enable, for example, high-availability, privacy, etc. With an increasing size of the catalog, such 

annotations provide an easier accessibility of the patterns. 

A limitation of the presented approach is that the management flows currently consider isolated 

application components. While such isolated management of application components can be helpful 

during the runtime management of the application, considering the complete application would be 

even more powerful. For example, based on the architectural diagram of the example Web shop 

application seen in Figure 18 of Section 6 management tasks may be automated for the overall 

application as well. Conceptually, this would result in a management flow that executes the individual 

management flows of application components in a particular order. This order can likely be determined 

automatically by a graph-analysis of the dependencies expressed in the application architectural 

diagram. Therefore, future research will investigate how the dependencies between application 

components can be evaluated automatically to compose individual management flows of application 

components into management flows handling the complete application. In [57] such computations 

have already been investigated based on similar architecture diagrams and descriptions of variability. 

However, these models only consider deployment dependencies of application components on 



Future Internet 2012, 4 138 

 

 

middleware and hardware to compute the order of provisioning tasks. To incorporate the links of 

architecture diagrams, these models and corresponding algorithms need to be extended respectively. 

Another limitation is that individual components are refined to use separate middleware and 

hardware stacks, thus, each application component is individually combined with cloud offerings by 

the application developer. However, in practice, application components often share middleware and 

hardware due to performance and licensing issues. In [61], we proposed a method, how application 

architecture diagrams can be used to optimize the assignment of application components to different 

middleware installations, virtual machines, and clouds. The above mentioned management flows 

considering the complete application, therefore, have to respect the impact of shared middleware, 

hardware, and cloud offerings as well. The challenge to merge redundant middleware and hardware 

also arises if outsourced IT resources are moved back into a company or two companies merge. 

Therefore, approaches targeting these challenges may be applicable in the domain of pattern-based 

development and management of cloud applications. Recently, [62] started to capture these concepts. 

Acknowledgments 

This work was supported by the German Research Foundation (DFG) within the funding 

programme Open Access Publishing. 

References  

1. Fehling, C.; Leymann, F.; Mietzner, R.; Schupeck, W. A Collection of Patterns for Cloud Types, 

Cloud Service Models, and Cloud-based Application Architectures. Technical Report  

No. 2011/05; University of Stuttgart: Stuttgart, Germany, 2011. 

2. Varia, J. Architecting for the Cloud: Best Practices. Technical Report, Amazon, 2010. Available 

online: http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf (accessed on 15 

January 2012). 

3. DaimlerChrysler TSS GmbH: MDA Success Story ePEP successful with Model Driven 

Architecture, 2005. Available online: http://www.omg.org/mda/mda_files/ 

SuccesStory_DC_TSS_MDO_English.pdf (accessed on 15 January 2012). 

4. Malone, T.; Blokdijk, G.; Wedemeyer, M. ITIL V3 Foundation Complete Certification Kit; 

Emereo Pty Ltd.: Brisbane, Australia, 2008. 

5. Brown, A.B.; Patterson D.A. To Err is Human. In Proceedings of the First Workshop on 

Evaluating and Architecting System dependability (EASY’01), Göteborg, Sweden, July 2001. 

6. Kuhn, D.R. Sources of failure in the public switched telephone network. Computer 1997, 6,  

31–36. 

7. Amazon. AWS Management Console. Available online: http://aws.amazon.com/console/ 

(accessed on 15 January 2012). 

8. Microsoft. The New Management Portal. Available online: http://msdn.microsoft.com/ 

en-us/library/gg441576.aspx (accessed on 15 January 2012). 

9. Mitchell, R. Managing virtual machines. Computerworld, 2006. Available online: 

http://features.techworld.com/operating-systems/2569/managing-virtual-machines/ (accessed on 

15 January 2012). 

http://features.techworld.com/operating-systems/2569/managing-virtual-machines/


Future Internet 2012, 4 139 

 

 

10. Lagar-Cavilla, H.A.; Whitney, J.A.; Scannell, A.M.; Patchin, P.; Rumble, S.M.; De Lara, E.; 

Brudno, M.; Satyanarayanan, M. SnowFlock: Rapid Virtual Machine Cloning for Cloud 

Computing. In Proceedings of the 4th ACM European Conference on Computer Systems, 

Nuremberg, Germany, April 2009. 

11. Amazon. CloudWatch. Available online: http://aws.amazon.com/cloudwatch/ (accessed on 15 

January 2012). 

12. Microsoft. Windows Azure. Available online: http://www.microsoft.com/windowsazure/ 

(accessed on 15 January 2012). 

13. Distributed Management Taskforce (DMTF): Interoperable Clouds Whitepaper, 2011.  

14. IEEE. Intercloud Working Group (ICWG), 2011. Available online: 

http://standards.ieee.org/develop/wg/ICWG-2302_WG.html (accessed on 15 January 2012). 

15. IEEE. Cloud Profiles Working Group (CPWG), 2011. Available online: 

http://standards.ieee.org/develop/wg/CPWG-2301_WG.html (accessed on 15 January 2012).  

16. Storage Networking Industry Association (SNIA): Cloud Data Management Interface (CDMI) 

Whitepaper, 2010. 

17. Fehling, C.; Konrad, R.; Leymann, F.; Mietzner, R.; Pauly, M.; Schumm, D. Flexible Process-

based Applications in Hybrid Clouds. In Proceedings of the 2011 IEEE International Conference 

on Cloud Computing (CLOUD), Washington, DC, USA, July 2011. 

18. Fehling, C.; Leymann, F.; Retter, R.; Schumm, D.; Schupeck, W. An Architectural Pattern 

Language of Cloud-based Applications. In Proceedings of the 18th Conference on Pattern 

Languages of Programs (PLoP 2011), 21–23 October 2011. 

19. Hohpe G.; Wolf, B. Enterprise Integration Patterns: Designing, Building, and Deploying; 

Addison-Wesley: Reading, MA, USA, 2004. 

20. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-

oriented Software; Addison-Wesley: Reading, MA, USA, 1995. 

21. Petre M.: Why Looking isn’t Always Seeing. Commun ACM 1995, 38, 

doi:10.1145/203241.203251. 

22. Schumacher, M.; Fernandez-Buglioni, E. Security Patterns: Integrating Security and Systems 

Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2005. 

23. Amazon. Amazon Web Services. Available online: http://aws.amazon.com/ (accessed on 15 

January 2012). 

24. Somorovsky, J.; Heiderich, M.; Jensen, M.; Schwenk, J.; Gruschka, N.; Lo Iacono, L. All Your 

Clouds are Belong to us – Security Analysis of Cloud Management Interfaces. In Proceedings of 

the 3rd ACM workshop on Cloud computing security workshop (CCSW), Chicago, IL, USA,  

17–21 October 2011. 

25. Hashizume, K.; Yoshioka, N.; Fernandez, E.B. Misuse Patterns for Cloud Computing. In 

Proceedings of the Asian Conference on Pattern Languages of Programs (AsianPLoP), Tokyo, 

Japan, 17–19 March 2011. 

26. Erl, T. SOA Design Patterns; Prentice Hall: Upper Saddle River, NJ, USA, 2009. 

27. van Der Aalst, W.M.; Ter Hofstede, A.H.; Kiepuszewski, B.; Barros, A.P. Workflow Patterns, 

Distributed and Parallel Databases; Springer: Berlin, Germany, 2003. 

28. Date, C.J. An Introduction to Database Systems; Addison-Wesley: Reading, MA, USA, 2000. 

http://standards.ieee.org/develop/wg/ICWG-2302_WG.html
http://standards.ieee.org/develop/wg/CPWG-2301_WG.html


Future Internet 2012, 4 140 

 

 

29. Erl, T. SOA Principles of Service Design; Prentice Hall: Upper Saddle River, NJ, USA, 2007. 

30. Dean J.; Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters. Google 

Whitepaper, 2004. Available online: http://labs.google.com/papers/mapreduce.html (accessed on 

15 January 2012). 

31. Leymann, F.; Roller, D. Workload Balancing in Clustered Application Servers. U.S. Patent 

6681251 B1, 20 January 2004. 

32. Chong, F.; Carraro, G. Architecture Strategies for Catching the Long Tail. Microsoft Whitepaper, 

2006. Available online: http://msdn.microsoft.com/en-us/library/aa479069.aspx (accessed on 10 

February 2012). 

33. Object Management Group (OMG). BPMN 2.0 Specification Document, 2011. Available online: 

http://www.omg.org/spec/BPMN/2.0/PDF/ (accessed on 15 January 2012). 

34. Allspaw, J. The Art of Capacity Planning; O’Reilly: Sebastopol, CA, USA, 2008.  

35. Hill, Z.; Li, J.; Mao, M.; Ruiz-Alvarez, A.; Humphrey, M. Early Observations on the Performance 

of Windows Azure. In Proceedings of the 19th ACM International Symposium on High 

Performance Distributed Computing, Chicago, IL, USA, 21–25 June 2010. 

36. Paraleap Technologies. Azurewatch: Elasticity-as-a-Service for Windows Azure, 2011. Available 

online: http://www.paraleap.com/ (accessed on 15 January 2012). 

37. Tanenbaum, A.S.; van Steen, M. Distributed Systems: Principles and Paradigms; Prentice Hall: 

Upper Saddle River, NJ, USA, 2007. 

38. Leymann, F.; Roller, D. Production Workflow: Concepts and Techniques; Prentice Hall: Upper 

Saddle River, NJ, USA, 2000. 

39. Amazon. Elastic Beanstalk Developer Guide; Amazon Web Service: Seattle, WA, USA, 2010. 

40. Peecho. Print as a Service, 2011. Available online: http://peecho.com (accessed on 15  

January 2012). 

41. Peecho. Minimizing downtime on Amazon AWS, 2011. Available online: 

http://www.peecho.com/blog/minimizing-downtime-on-amazon-aws.html (accessed on 15 

January 2012). 

42. Kununu. Job rating site, 2011. Available online: http://kununu.com (accessed on 15 January 2012). 

43. Amazon. AWS Case Study: kununu.com, 2011. Availableonline: http://aws.amazon.com/ 

solutions/case-studies/kununu/ (accessed on 15 January 2012). 

44. Red Hat. Enterprise Virtualization: Live Migration. Available online: 

http://www.redhat.com/f/pdf/rhev/DOC054-RHEV-Live-Migration.pdf (access on 15 February 2012). 

45. VMware: vMotion, 2011. Available online: http://www.vmware.com/products/vmotion/ (accessed 

on 15 January 2012). 

46. Clark, C.; Fraser, K.; Hand, S.; Hansen, J.G.; Jul, E.; Limpach, C.; Pratt, I.; Warfield, A. Live 

Migration of Virtual Machines. In Proceedings of the 2nd conference on Symposium on 

Networked Systems Design & Implementation, Berkeley, CA, USA, 02–04 May 2005. 

47. Riempp, G.; Gieffers-Ankel, S. Application Portfolio Management: A Decision-Oriented View of 

Enterprise Architecture. Information Systems and e-Business Management 2007, 5, 359–378. 

48. Mietzner, R.; Leymann, F. A Self-Service Portal for Service-Based Applications. In Proceedings 

of the IEEE International Conference on Service-Oriented Computing and Applications (SOCA), 

13–15 December, Perth, Australia, 2010.  

http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://www.redhat.com/f/pdf/rhev/DOC054-RHEV-Live-Migration.pdf
http://www.vmware.com/products/vmotion/


Future Internet 2012, 4 141 

 

 

49. Mietzner, R.; Unger, T.; Leymann, F. Cafe: A Generic Configurable Customizable Composite 

Cloud Application Framework. In Proceedings of the Confederated International Conferences, 

CoopIS, DOA, IS, and ODBASE, Crete, Greece, 17–21 October 2009. 

50. OASIS: Web Services Business Process Execution Language Version 2.0, 2007.  

Available Online: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (accessed on 15 

January 2012). 

51. Object Management Group (OMG). Unified Modeling Language (UML), 2010. Available online: 

http://www.omg.org/spec/UML/2.3 (accessed on 15 January 2012). 

52. Apache Software Foundation: Apache ODE, 2011. Available online: http://ode.apache.org/ 

(accessed on 15 January 2012). 

53. Apache Software Foundation: Apache Tomcat, 2011. Available online: http://tomcat.apache.org/ 

(accessed on 15 January 2012). 

54. VMware: vCenter, 2011. Available online: http://www.vmware.com/de/products/ 

datacenter-virtualization/vcenter (accessed on 15 January 2012). 

55. Oracle. Java Web Services Overview, 2011. Available online: http://www.oracle.com/ 

technetwork/java/index-jsp-137004.html (accessed on 15 January 2012). 

56. Oracle: MySQL. Available online: http://www.mysql.com (accessed on 15 January 2012). 

57. Mietzner, R.; Leymann, F. Generation of BPEL Customization Processes for SaaS Applications 

from Variability Descriptors, In Proceedings of the IEEE International Conference on Services 

Computing (SCC), Hawaii, HI, USA, 8–11 July 2008. 

58. Chappell, D.A. Enterprise Service Bus; O’Reilly: Sebastopol, CA, USA, 2004. 

59. Fehling, C.; Retter, R. Composite as a Service: Cloud Application Structures, Provisioning, and 

Management. IT Inf. Technol. 2011, 53, 188–194. 

60. University of California. Highly-extendable Architecture Description Language for Software and 

Systems, 2003. Available online: http://www.isr.uci.edu/projects/xarchuci/ (accessed on 15 

January 2012). 

61. Leymann, F.; Fehling, C.; Mietzner, R.; Nowak, A.; Dustdar, S. Moving Applications to the 

Cloud: An Approach Based on Application Model Enrichment. Int. J. Coop. Inf. Syst. 2011, 20, 

307–356. 

62. Binz, T.; Leymann, F.; Schumm, D. CMotion: A Framework for Migration of Applications into 

and between Clouds, In Proceedings of IEEE International Conference on Service Oriented 

Computing & Applications (SOCA), Irvine, CA, USA, 12–14 December 2011. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.oracle.com/technetwork/java/index-jsp-137004.html
http://www.oracle.com/technetwork/java/index-jsp-137004.html
http://www.isr.uci.edu/projects/xarchuci/

