
Future Internet 2012, 4, 372-395; doi:10.3390/fi4020372

future internet
ISSN 1999-5903

www.mdpi.com/journal/futureinternet

Article

A Semantically Automated Protocol Adapter for Mapping

SOAP Web Services to RESTful HTTP Format to Enable the

Web Infrastructure, Enhance Web Service Interoperability and

Ease Web Service Migration

Sean Kennedy
1,

*, Owen Molloy
2
, Robert Stewart

1
, Paul Jacob

1
, Maria Maleshkova

3
 and

Frank Doheny
1

1
 Athlone Institute of Technology, Athlone, Ireland; E-Mails: rstewart@ait.ie (R.S.);

pjacob@ait.ie (P.J.); fdoheny@ait.ie (F.D.)
2
 National University of Ireland, Galway, Ireland; E-Mail: owen.molloy@nuigalway.ie

3
 Knowledge Media Institute, Milton Keynes, MK7 6AA, UK; E-Mail: m.maleshkova@open.ac.uk

* Author to whom correspondence should be addressed; E-Mail: skennedy@ait.ie;

Tel.: +353-0-87-2670380; Fax: +353-0-90-646-8148.

Received: 11 January 2012; in revised form: 20 March 2012 / Accepted: 31 March 2012 /

Published: 11 April 2012

Abstract: Semantic Web Services (SWS) are Web Service (WS) descriptions augmented

with semantic information. SWS enable intelligent reasoning and automation in areas such

as service discovery, composition, mediation, ranking and invocation. This paper applies

SWS to a previous protocol adapter which, operating within clearly defined constraints,

maps SOAP Web Services to RESTful HTTP format. However, in the previous adapter,

the configuration element is manual and the latency implications are locally based. This

paper applies SWS technologies to automate the configuration element and the latency

tests are conducted in a more realistic Internet based setting.

Keywords: Semantic Web Services; REST; SOAP; Web Services

1. Introduction

The Web is designed for humans i.e., web pages are designed to be read and understood by humans.

The Semantic Web, on the other hand, is designed for computers i.e., the information content is

structured so that machines can understand it. The Semantic Web is a set of technologies, which

OPEN ACCESS

Future Internet 2012, 4 373

provide “semantics” or meaning to Web content. On the Semantic Web, information is represented as a

set of assertions called statements. Statements consist of three parts (or triples): subject, predicate and

object (in that order). The subject is the concept the statement describes and the predicate is the

relationship between the subject and the object. RDF, a W3C specification, is the Semantic Web’s data

model for representing statements. RDF can be modeled abstractly as a graph. RDF identifiers are URI

references and RDF’s official standard syntax is RDF/XML [1].

RDF’s strength is describing information. Flexible though it is, RDF lacks explicit support for

specifying the semantics behind the descriptions [2]. RDFS (RDF Schema) and the Web Ontology

Language (OWL) provide primitives with defined meaning thereby enabling semantics to be added to

RDF statements [3,4]. RDFS provides a type system for RDF. RDFS provides mechanisms to specify

classes, properties and hierarchies of both. OWL builds on top of RDFS and provides extra primitives

to add further semantics. RDFS and OWL enable ontologies to be constructed. “An ontology defines a

set of representational primitives with which to model a domain of knowledge” [5]. The primitives are

typically classes, attributes and the relationships between class members.

Summary of previous contributions [6]:

This paper extends previous work in which the following conclusions are detailed:

 Implemented, tested and demonstrated a client-side configuration wizard and protocol adapter,

collectively named StoRHm (SOAP to RESTful HTTP mapping). Note that the protocol adapter

is unchanged between StoRHm v1 (outlined in [6]) and StoRHm v2 (outlined in this paper);

where necessary, the version numbers will be used to differentiate between them.

 StoRHm transforms opaque SOAP messages to visible RESTful format supporting all of REST’s

constraints, enabling the Web and its inherent efficiencies.

 StoRHm enables SOAP clients to interoperate with RESTful WS.

 StoRHm is a gradual migration enabler from SOAP to RESTful WS.

 The protocol adapter in StoRHm imposes a 6–7% time penalty and relates to deployment of the

adapter on a local machine.

There are two constraints imposed:

 RESTful Web Services responding to PUT/POST receive the SOAP payload untouched.

 Complex SOAP requests which map to more than one logical URI will be mapped to POST with

the SOAP payload passed on untouched.

The problem and motivation for the solution

The manual nature of the configuration wizard implemented in [6] is outlined in Figure 1:

Future Internet 2012, 4 374

Figure 1. Manual configuration wizard [6].

The issue with Figure 1 is that the user must manually type in a lot of data, select multiple drop

down list boxes and select various check boxes and radio buttons. This is both time consuming and

error prone.

Our hypothesis is that a state of the art solution leveraging SWS technologies would automate this

element. This would reduce the time spent and errors made in generating the mapping file. In addition,

as the protocol adapter element of StoRHm was tested on a local machine, the authors wish to

determine its performance when deployed on the Internet.

The remainder of this paper is organised as follows: Section 2 is Related Work, Section 3 is the

Technology Overview, Section 4 describes StoRHm v2, Section 5 is the Testing section, Section 6 is

the Evaluation section and lastly, Section 7 outlines our Conclusions and Future Work.

2. Related Work

In this section, we discuss integrating both SOAP and RESTful WS into the Semantic Web. An

overview of alternative RESTful WS semantic annotation is also given. Lastly, intrinsic SWS features

related to our work i.e., data mediation and automation are also discussed.

2.1. Integration of Web Services into the Semantic Web

In [7], the authors outline Semantic Bridge for Web Services (SBWS). SBWS is a framework that

wraps around both a SOAP WS (WSDL) description and a RESTful WS (WADL, see below)

description creating a SPARQL endpoint for those services. The SOAP and RESTful WS descriptions

are semantically annotated, thereby enabling SBWS to execute SPARQL queries against them. SBWS

analyses the SPARQL queries to determine what Web Service or combination of Web Services, will

provide the answer.

Future Internet 2012, 4 375

From a traditional WS perspective i.e., SOAP WS, both StoRHm and SBWS describe the SOAP

WS using WSDL. However, to semantically annotate the WSDL file, SBWS uses OWL-S, a W3C

submission since 2004 [8]. Our solution on the other hand, uses SAWSDL, a W3C recommendation

since 2007 [9]. The contrast between the SBWS and StoRHm stacks is demonstrated in Figure 2.

Figure 2. SBWS stack compared to the StoRHm stack for annotation of SOAP WS.

As regards the RESTful WS description, SBWS uses a WADL (Web Application Description

Language) file. WADL is a simple alternative to WSDL for use with XML/HTTP applications. However,

it is argued that the most popular format for describing RESTful WS is plain (X)HTML [10,11].

Consequently, our solution use plain (X)HTML to describe the RESTful WS. In order to make the

unstructured HTML machine-processable (as per WSDL), we annotate the (X)HTML with a microformat

called hRESTS (HTML for RESTful Services) [11]. A microformat is a way “to add semantic

metadata to human readable text in such a way that machines can glean the semantics” [10]. The

hRESTS service model is very similar to the WSDL service model; so much so, that the authors state

that “hRESTS is roughly equivalent to WSDL” [11].

To semantically markup the RESTful WS description, SBWS inserts custom annotations in the

WADL file. In contrast, we use MicroWSMO, a lightweight extension to hRESTS to semantically

annotate our (X)HTML RESTful WS description [11]. MicroWSMO, a microformat based on

SAWSDL, is to hRESTS, what SAWSDL is to WSDL. The contrast between the SBWS and StoRHm

stacks is demonstrated in Figure 3.

Figure 3. SBWS stack compared to the StoRHm stack for annotation of RESTful WS.

2.2. RESTful WS Semantic Annotation Alternatives

As stated above, from the RESTful WS perspective, StoRHm v2 uses both hRESTS and

MicroWSMO to achieve machine automation and semantic annotation respectively. These

technologies are discussed in more detail in Section 3. Other available alternatives are discussed now:

Future Internet 2012, 4 376

GRDDL: GRDDL (Gleaning Resource Descriptions from Dialects of Languages) is a W3C

standard that enables an author to markup an XHTML file with any microformat and specify the

transformation (an XSL file) that extracts the RDF based on that microformat [12]. GRDDL uses the

XHTML profile attribute to specify that this XHTML page contains GRDDL annotations. GRDDL

aware parsers will then look for the rel and src attributes on the link element to locate the

transformation document to apply.

RDFa: RDFa (RDF in Attributes) is also a W3C standard [13]. Using both existing and new

XHTML attributes, RDFa enables the insertion of RDF statements directly into an XHTML page. The

values of these attributes can refer to concepts from any independently defined vocabulary thereby

giving RDFa great flexibility. Parsers can generate RDF files from RDFa-annotated XHTML. SA-REST

(see Section 2.3) uses RDFa to annotate service descriptions with its vocabulary of terms [10].

GRDDL and RDFa both have their advantages and disadvantages. The advantage of GRDDL is that

it is less intrusive than RDFa i.e., GRDDL only requires two lines of code in the head section of the

XHTML document. However, two files must now be maintained: the annotated XHTML file and the

transformation file. RDFa has the advantage of being a standardized microformat. In addition, RDFa is

free to use any vocabulary of terms and requires maintenance of only one file: the annotated XHTML file.

Essentially the decision is between microformats (hRESTS/MicroWSMO) and RDFa (SA-REST/RDFa).

However, at the time StoRHm v2 was being developed, the dearth of tools supporting RDFa/SA-REST

was instrumental. By contrast, a lightweight, browser-based suite of tools, under the umbrella term

Core Dashboard was available for hRESTS/MicroWSMO annotation [14].

2.3. Automation and Data Mediation

An ontology is “a conceptualization of a domain represented in terms of concepts and the

relationships between those concepts” [10]. Moreover, ontologies provide a common nomenclature to

improve interoperability. The ontology layer is the higher conceptual model where disparate Web

Services are matched i.e., two concepts match if they have been annotated with the same ontology

concept [10]. Matching is how automation is enabled.

Integration of discrete Web 2.0 service datasets is known as a “mashup”. The creation of a mashup

is a non-trivial exercise that requires the use of tools e.g., Yahoo! Pipes [15]. The tools are however,

customized for specific services and/or data formats and to ensure seamless integration i.e., no manual

intervention, a semantic mashup (or “smashup”) is required [10]. The authors in [10] propose SA-REST

(Semantic Annotation of Web Resources, formerly Semantic Annotation of RESTful WS). By semantically

annotating the RESTful WS description, automation of matching and data mediation is enabled.

Data mediation using semantic technologies is best explained with the aid of an example. Figure 4

outlines how the semantic layer ontology is used to facilitate data mediation. Let us assume that the

services in Figure 4 are address-based e.g., the SOAP WS outputs its address in one line of XML and

that the RESTful WS requires its input address over two lines in JSON format. The concepts, once

they are matched at the semantic layer can mediate the data. This is done as follows: the SOAP

service provides a “lifting” schema (XSL transformation) to transform the XML message into an

ontology-compliant data structure. The RESTful WS provides a “lowering” schema to transform the

common ontology data structure into the input format it requires.

Future Internet 2012, 4 377

Figure 4. SOAP WS output mapped to RESTful WS input.

At this point it is worth pointing out a novel use in our solution of the SWS technology stacks

outlined in Figure 4. The novelty in StoRHm v2 is the use of the stacks. These stacks were invented for

mediation and integration within and across the SOAP and RESTful HTTP paradigms i.e., to “…chain

together the output from one Web service to the input of another Web service” [7]. As explained above,

Figure 4 demonstrates the mapping of a SOAP WS output up to the (common) semantic layer so that

the output can then be mapped to the input format required by the RESTful WS. Rather than mediate

an output response from a SOAP WS to the input of a RESTful WS, we are mediating the SOAP WS

input to the RESTful WS input. This is demonstrated in Figure 5. The complete replacement of the

SOAP message with its RESTful HTTP counterpart was not envisaged when the stacks were created.

Figure 5. SOAP WS input mapped to RESTful WS input.

3. Technology Overview

In this section, we give an overview of Semantic Web Services.

3.1. Semantic Web Services (SWS)

Semantic Web Services (SWS) are Web services enriched with semantic metadata in order

to facilitate dynamic WS discovery, selection, composition, invocation and automation [16].

MicroWSMO, SAWSDL (Semantic Annotations for WSDL and XML Schema) and WSMO-Lite are

lightweight approaches to semantic annotation. Figure 6 shows the integration of the SWS technologies

into both the SOAP WS and RESTful WS stacks and their cross-layer inter-relationships. The SWS

stacks in Figure 6 support composability, integration and mediation within and across the stacks.

Future Internet 2012, 4 378

Figure 6. Semantic Layers [11]. SOAP-based WS are on the left and RESTful WS are on

the right.

SAWSDL

SAWSDL is a specification for semantically annotating relevant elements in the WSDL file [9].

With WSDL, one is concerned with service signature, service location and the protocol to use when

invoking the Web service. SAWSDL, on the other hand, is concerned with mapping elements from

WSDL to a higher conceptual level i.e., the ontology level. To achieve this SAWSDL defines the

following extension attributes [9]:

 modelReference–associates, via a URI, a WSDL component with a semantic concept. This

attribute is typically used on element declarations, type definitions, interfaces (or port types)

and operations.

 liftingSchemaMapping–added to element declarations and type definitions for specifying the

mapping from XML to the semantic layer.

 loweringSchemaMapping–added to element declarations and type definitions for specifying the

mapping from the semantic layer to XML.

The liftingSchemaMapping and loweringSchemaMapping attributes support data mediation between

Web services. Take for example, two Web services that are trying to communicate where the output

from the first does not match the input of the second. The output from the first Web service can be

lifted to the ontology layer by its liftingSchemaMapping. The second Web service, which is pointing at

the same ontology concept, provides a loweringSchemaMapping that lowers from the ontology to the

input format it requires [11].

hRESTS

RESTful Web service descriptions are generally described in plain, unstructured HTML [10,11].

hRESTS (HTML for RESTful Services) is a microformat aimed at making these HTML based Web

APIs machine readable by annotating the key information on the HTML page. hRESTS uses the

existing class and rel attributes of XHTML to identify the key information of the service description

“effectively creating an analogue of WSDL” [11]. hRESTS defines (XHTML) classes such as:

Future Internet 2012, 4 379

 service

 label

 operation

 method (the HTTP method used e.g., GET)

 address (the URI used; may be a URI template)

 input

 output

MicroWSMO

MicroWSMO is an extension of hRESTS that adds semantic annotations [11]. As explained earlier,

SAWSDL is an extension to WSDL that specifies how to annotate service descriptions with semantic

information. Given that the hRESTS service model is so similar to the WSDL model, it is not

surprising that MicroWSMO is very similar to SAWSDL. MicroWSMO defines three link relations

i.e., anchors with the rel attribute set as follows:

 model–the href attribute points to an ontology concept or instance.

 lifting and lowering–the href attribute points to the transformations to and from the semantic

layer respectively.

WSMO-Lite

WSMO-Lite is used to specify the actual semantic layer ontology [17]. Languages such as RDF,

RDFS and OWL are used at this layer. WSMO-Lite captures four aspects of service semantics [17]:

 Information model–defines the data model of the service.

 Functional semantics–what does the service do when it is invoked. This can be specified by either:

o Categorisation–simple functionality taxonomies where functionality is organised into a

hierarchy of categories. WSMO-Lite offers the RDFS class wsl:FunctionalClassificationRoot

to distinguish functional classification hierarchies from normal ontology hierarchies.

o Capability–preconditions and effects. In [17], a telecoms example has a precondition that the

client has to have a minimal bandwidth before the service can be executed and the effect

identifies the valid outputs as a result of successfully executing the service. WSMO-Lite

offers the RDFS class wsl:Capability and the properties wsl:hasPrecondition and

wsl:hasEffect so that preconditions and effects can be setup in an ontology.

 Non-functional semantics–these are incidental details specific to the implementation (or running

environment) of a service, independent of the central purpose of the service but necessary for

successful completion. Examples would be the price of the service or QoS guarantees.

Non-functional semantics are often used for ranking e.g., which service is the cheapest.

Non-semantic languages such as WS-Policy are often used to express non-functional

characteristics. WSMO-Lite provides the class wsl:NonfunctionalParameter to mark items with

non-functional semantics.

 Behavioural semantics–defines the sequence of operations that a client needs to follow when

invoking a service. This is done in WSMO-Lite by using functional semantics (categories and/or

preconditions and effects). The URI’s of these pieces of functional descriptions are attached to

Future Internet 2012, 4 380

the operation (in either SAWSDL as modelReference or MicroWSMO as model). The client can

now reason about which operation can be executed at a particular point in time (i.e., at a

particular state in the application).

4. StoRHm v2

In this section, we outline StoRHm v2: its requirements, architecture, design and implementation. In

addition, the research methodology used is discussed.

4.1. Requirements

The goal of StoRHm v2 is to avail of Semantic Web technologies in order to automate the

configuration element of StoRHm v1. In addition, the requirements of StoRHm v1, outlined in [6]

must be maintained.

4.2. Architecture

Figure 7 outlines the architecture of StoRHm v2. StoRHm v1 elements are highlighted with a blue

background. StoRHm v2 elements are highlighted in red. The configuration wizard is a front-end to the

mapping file and takes as input:

 a SAWSDL file representing the semantically annotated SOAP WS description.

 a MicroWSMO file representing the semantically annotated RESTful WS description.

 a shared/common ontology outlining the QoS supported by the WS.

Figure 7. StoRHm v2 Architecture.

Future Internet 2012, 4 381

4.3. Design Decisions

As per StoRHm v1, the mapping file is implemented as a CSV file (Comma Separated File). This

CSV file is subsequently used by the runtime protocol adapter to map SOAP WS request to RESTful

HTTP format [6].

4.4. Implementation

The Semantic Web is a promising approach for Web Service selection and automation because RDF

triples can link concepts defined in different vocabularies thereby establishing relationships between

vocabularies [18,19]. As a result, the SAWSDL file, representing the SOAP Web Service; the

MicroWSMO file, representing the RESTful Web service and the ontology, stating the QoS supported

by the Web Service are all semantically annotated a priori.

The tool used to annotate the WSDL description with SAWSDL annotations is Core Dashboard [14].

Core Dashboard is a suite of tools developed by the Knowledge Media Institute at Milton Keynes in

England. These tools enable semantic annotation of Web Service descriptions, both the WS-* and

RESTful variety. One of the tools hosted on Core Dashboard is SWEET (Semantic Web sErvice

Editing Tool) [20]. SWEET was used for annotating the RESTful WS description (an HTML file) with

both hRESTS and MicroWSMO markup. The ontology editor, Protégé, was used to create the

ontology [21].

A desktop-based wizard (Figure 8) supports the configuration function. The wizard is a front-end

GUI for the CSV file creation. The wizard prompts the user for the names of the SAWSDL,

MicroWSMO and ontology files. The files can be URI based or file based.

Figure 8. StoRHm v2 Configuration Wizard.

The user selects OK (see Figure 8) and the wizard obtains the model references (representing the

semantic concepts) of the operations supported and their arguments by parsing the SAWSDL file.

These semantic concepts are located in the MicroWSMO file in order to ascertain the URI and HTTP

verb used by the equivalent RESTful Web Service. The operation concept is located in the ontology to

determine whether security and/or reliability are required. The CSV file (identical to StoRHm v1 [6])

is then populated automatically. However, if any of the SAWSDL concepts are not located in either the

Future Internet 2012, 4 382

MicroWSMO and/or ontology files, an error is reported to the user and the configuration process exits

without creating the CSV file. Figure 9 is a flow diagram detailing the implementation logic executed

when the user selects OK.

Figure 9. StoRHm v2 Configuration Wizard flow diagram.

4.5. Example

In this section an example detailing the semantic matching/automation is given. Sample file

segments relating to Figure 6 are presented. The example will explain why, as shown in Figure 9, there

is no lifting/lowering necessary in StoRHm.

4.5.1. SAWSDL Example

Listing 1 is a sample SAWSDL file outlining a SOAP Banking Web Service. Note that a SAWSDL

file is a WSDL file with semantic annotations (as outlined in Figure 6).

Future Internet 2012, 4 383

Listing 1. SAWSDL example (segment).

Note the semantic annotations of the operation and its input parameters:

“http://www.leitrimmills.ie/ontologies/BankService#ViewService” (line 50, the operation);

“http://www.leitrimmills.ie/ontologies/BankService#BranchCode” (line 33, first input parameter);

“http://www.leitrimmills.ie/ontologies/BankService#AccountNo” (line 36, second input parameter).

4.5.2. MicroWSMO/hRESTS Example

Listing 2 shows the MicroWSMO/hRESTS equivalent of Listing 1. The hRESTS annotations

enable machine automation and are easily identified on lines 9 and 10 with the hr prefix. In addition,

hRESTS leverages an existing model, the Minimal Service Model (msm prefix) used across various

ontologies in the Core Dashboard suite. Given the similarity between MicroWSMO and SAWSDL, it

is not surprising to note the sawsdl namespace prefix for MicroWSMO semantic annotation on lines

13, 18 and 23 of Listing 2. These three lines correspond to the RESTful Web service operation and its

associated input parameters respectively:

“http://www.leitrimmills.ie/ontologies/BankService#ViewService” (line 13, the operation)

“http://www.leitrimmills.ie/ontologies/BankService#BranchCode” (line 18, first input parameter)

“http://www.leitrimmills.ie/ontologies/BankService#AccountNo” (line 23, second input parameter)

Note that the semantic concepts, identified by URI references, match between Listings 1 and 2. This

is how the matching of the SOAP WS to its RESTful counterpart and the resultant automation is

achieved. The MicroWSMO file provides the HTTP verb and URI used by the equivalent RESTful

Web Service (see lines 9 and 11 respectively of Listing 2).

Future Internet 2012, 4 384

Listing 2. MicroWSMO example (segment).

4.5.3. Ontology Example

To determine the QoS required, the service is located in the ontology. Listing 3 is the ontology for

the service described in Listings 1 and 2. The ViewService concept is outlined between lines 73–77.

The URIRef “http://www.leitrimmills.ie/ontologies/BankService#ViewService” (line 73) denotes the

semantic concept. This is the same semantic concept identified on line 50 of Listing 1 (SAWSDL file)

and on line 13 of Listing 2 (MicroWSMO file). The ontology states that this service does not support

Security or Reliability (lines 75–76).

Listing 3. Ontology example (segment).

Once the QoS for the service has been ascertained, the CSV file can be populated for that service.

The CSV file is populated as follows:

 Web Service Name and SOAP Operation from the SAWSDL file

 RESTful URI and HTTP verb from the MicroWSMO file

 QoS from the ontology

Future Internet 2012, 4 385

However, if any of the SAWSDL concepts are not located in either the MicroWSMO and/or

ontology files, an error is reported to the user and the configuration process exits without creating the

CSV file.

4.5.4. CSV Example

The highlighted entry in Listing 4 below shows the CSV file created based on the annotations outlined:

Listing 4. CSV sample file.

4.5.5. No Lifting/Lowering Necessary

Note that the RESTful URI of Listing 4 (column 5) in the highlighted entry contains the SOAP

message/element names from the SAWSDL file i.e., branchCode and accountNo (lines 32 and 35 in

Listing 1 respectively). If the exiting URI from the MicroWSMO file had been used, the RESTful URI

in Listing 4 would have ended “/{branchcode}/{accountnumber}” (line 11 in Listing 2). Though the

difference in case is slight, the impact is significant. By inserting the SAWSDL elements into the

RESTful URI, the StoRHm configurator is effectively inserting XPath expressions that enable the

StoRHm adapter to parse the SOAP message. This was a deliberate design decision and impacts on the

requirement for lifting/lowering.

The confluence of two factors results in the fact that there is no need for semantic lifting/lowering

in StoRHm:

a) SOAP is a standard message format and thus its structure is well known; this enables the

automatic parsing of the SOAP message as far as the SOAP Body element.

b) the remaining XPath expressions required to parse the SOAP Body element are obtained from

the RESTful URI of the CSV file.

Thus, with the semantic concepts of MicroWSMO informing StoRHm where to insert the data in

the RESTful URI; and the CSV, with its in-built XPath expressions based on SOAP element names,

informing StoRHm what data to insert; StoRHm is able to transform the SOAP message to RESTful

format without the need for lifting/lowering. This means that the ontology is used for matching

operations and determining the QoS associated with the relevant operations.

Future Internet 2012, 4 386

4.6. Research Methodology

The research strategy used for the software artefacts was design and creation. Experimentation was

the strategy used for testing and performance measurement of the framework. The data generation

method is document based i.e., the generated CSV file, SOAP and RESTful HTTP messages were

examined as part of testing. Lastly, the data analysis method is qualitative.

5. Testing

StoRHm v2 was tested in an Internet based setting (as opposed to StoRHm v1 which was tested on

a local machine). In this section, the test environment is outlined and performance of the adapter

is analysed.

5.1. Test Environment

A test environment has been implemented in an Internet based setting (see Figure 10). The client

machine is a Dell Optiplex 780 desktop machine running Windows 7 with 4GB RAM and Intel Core2

Duo CPU processors. The server is a Dell Dimension 8400 running Windows XP with 3GB RAM.

One of the Dell machines hosts the client and protocol adapter software while the other machine hosts

the server software and database. Glassfish [22] is the application server used. The server machine is

connected to the Internet via a 3Mb/sec ADSL line.

Figure 10. Test environment.

5.2. Test Results

While performance is not central to this research, performance is an important consideration for any

distributed technology and therefore the latency delay due to the introduction of the adapter was

Future Internet 2012, 4 387

measured. One of the standard measurements taken is the “round-trip method invocation time” which

is the time difference between the client invoking the remote method and the remote method returning

its results [23].

In Table 1, we present performance tests comparing the round-trip method invocation times (in

msecs) of a normal SOAP WS request with that of the same SOAP request routed via the adapter to its

equivalent RESTful WS. The Web Services were deliberately chosen so as to map to different HTTP

verbs: ServiceView (GET); ServiceAdd (POST); ServiceDelete (DELETE) and ServiceUpdate (PUT).

Note that the adapter-based figures represent a worst-case scenario i.e., a full round trip on each

occasion with no efficiencies such as caching implemented.

Table 1. Internet Adapter statistics.

SOAP Statistics

(all figures in msecs)

Average Standard

Deviation

Standard

Error

zLow

95%

zHigh

95%

Verb Adapter

+/–

Significant

Value

95%

(+/– 1.645)

ServiceView no

adapter

67 12.08 1.2 65 69 POST n/a 3.45

adapter 72.11 8.54 0.85 70 74 GET +8%

ServiceAdd no

adapter

65.29 7.95 0.79 64 67 POST n/a 2.23

adapter 68.98 14.48 1.44 66 72 POST 6%

ServiceDelete no

adapter

66.87 13.64 1.36 64 70 POST n/a 3.39

adapter 72.22 7.85 0.78 71 74 DELETE +8%

ServiceUpdate no

adapter

65.46 7.65 0.76 64 67 POST n/a 2.67

adapter 67.84 4.52 0.45 67 69 PUT +4%

Each SOAP WS was directly accessed (no adapter) 100 times in order to get an average delay. In

addition, the following statistical values were also recorded: the standard deviation, standard error and

low and high values (with 95% confidence). The tests were then repeated 100 times with the client

accessing the RESTful Web Services via the adapter and the results recorded again.

In situations where the adapter maps to PUT or POST, the adapter performs no parsing and the

entity body (of the RESTful HTTP request) contains the original SOAP message request. As Table 1

shows, there is a 4–8% penalty for inserting the adapter into an infrastructure.

5.3. Statistical Analysis of Results

Table 1–In this scenario, a one-tailed test is appropriate. At the 95% significance level, the t-table

value is 1.645. All rows are applicable in Table 1. ServiceView, ServiceAdd, ServiceDelete and

ServiceUpdate have test statistic values of 3.45, 2.23, 3.39 and 2.67 respectively. As all values are

greater than 1.645, the alternative hypothesis is therefore accepted i.e., the average time taken to route

Future Internet 2012, 4 388

these SOAP requests via the adapter to their RESTful Web Service equivalents is significantly longer

(statistically) than the average time taken to issue these requests directly to the SOAP Server.

5.4. Linear Regression Analysis

The adapter behaves consistently when mapping to PUT/POST i.e., the message body is copied

from the incoming SOAP request to the outgoing RESTful request. However, this is not the case with

GET/DELETE, where parsing of the incoming SOAP message is required to populate the RESTful

URI. The example SOAP files used in the requests to create Table 1 were based on sample files used

in industry. All the files were 1643 bytes in size. In addition, these files required the adapter to perform

very little parsing when mapping to a GET or DELETE (the adapter had to evaluate 2 XPath

expressions). Therefore, further tests were required and undertaken in order to measure whether or not

the penalty imposed by the adapter when mapping to GET/DELETE is a function of:

a) the size of the SOAP request file and/or

b) the amount of parsing to be conducted by the adapter

Size of SOAP request file

Figure 11 below represents test results where the request file size is increased steadily for

15 iterations in an environment where there is no adapter in situ i.e., the requests travel directly to the

server. All response times are based of averages of 100 requests.

Figure 11. Performance–increasing file sizes, static parsing, no adapter.

As Figure 11 demonstrates, the response times increase as and when the request file sizes increase.

The correlation value between the size of the request files and the response times is 0.936. Thus, as one

would expect, when requests travel directly to the server, there is a strong correlation between the size

of the request files and the response times.

Figure 12 represents the graph where the exact same requests are issued with the adapter in situ i.e.,

the requests travel to the server via the adapter. The requests map to a GET and in order to isolate the

file size impact, the parsing requirement remains constant across the requests (2 XPath expressions to

be evaluated as in Table 1).

Future Internet 2012, 4 389

Figure 12. Performance–increasing file sizes, static parsing, via adapter.

The correlation value between the size of the request file and the response time when the adapter is

in place is –0.276. Thus, there is a very weak linear relationship between the size of the request file

and the response time taken when requests travel via the adapter. If we fitted the least squares line to

the data the equation would be:

Time = –3/10000 × file size + 79.35

The extremely weak correlation value is demonstrated by the linear regression equation. The

response time is almost entirely dependent on the constant. Thus, the file size has virtually no bearing

on the response times. Two factors explain this:

a) Firstly, the adapter resides on the local machine and thus the increase in file size is not as

influential as it would be if the adapter resided on a remote machine

b) Secondly and more importantly, the parsing conducted by the adapter is consistent across all the

requests, regardless of file size. This means that, regardless of the increasing file sizes arriving at

the adapter, the subsequent RESTful requests emanating from the adapter are all the same size.

It is interesting to note by comparing Figure 12 with Figure 11 that the penalty imposed by the

adapter disappears as the file size increases. The data in Table 1 was generated using a sample

industry file of size 1643 bytes. At that file size, the adapter does impose a statistically

significant penalty.

Point (b) above is best explained with an example. Listing 5 is a sample CSV file segment used

by the adapter to map SOAP requests to RESTful HTTP format. Listing 5 states that the SOAP

operation ServiceView in the Web Service BankService is mapped to a GET on the URI

http://127.0.0.1:3050/RESTServer/BankServices. The XPath expressions {branchCode} and

{accountNo} are used by the adapter to parse these elements from the incoming SOAP message and

insert them into the RESTful GET request.

Future Internet 2012, 4 390

Listing 5. Sample CSV file segment.

Listing 6 is the sample ServiceView file used in generating Table 1. On receiving the request in

Listing 6, the adapter, informed by the mapping file in Listing 5 generates an HTTP GET request on

the URI http://127.0.0.1:3050/RESTServer/BankServices/123456/12345678.

Listing 6. Sample request file that maps to GET.

Listing 7 is a larger ServiceView file. The important point here is that, Listing 7 generates the same

HTTP GET request even though it is a much larger file–Listing 6 is 1643 bytes in size and Listing 7 is

13,000 bytes in size.

Future Internet 2012, 4 391

Listing 7. Larger sample request file that maps to GET.

Parsing requirement

In order to affirm that the penalty imposed by the adapter is a function of the parsing requirement,

testing was performed whereby the file size remained constant (the file from Listing 6 was repeatedly

used) but the parsing requirement increased. Figure 13 represents the results.

Figure 13. Performance–increasing parsing requirement, static file sizes, via adapter.

As is evident from the graph, the adapter penalty increases in line with the parsing requirement. The

correlation value of 0.931 supports this assertion. Thus, there is a strong positive correlation between

Future Internet 2012, 4 392

the parsing requirement of the adapter and the response times: the greater the number of XPath

expressions to be evaluated by the adapter, the higher the method invocation response times.

As stated previously, the authors based their testing on a sample industry file. This file has limited

nesting and the evaluation of 10 XPath expressions was more than sufficient. Listing 8 below shows

the XPath expressions (enclosed by {}), evaluated by the adapter in the generation of the results for

Figure 13. They are listed in order, from 1 to 10, delimited by “/”. For example, {branchCode}

requires 1 XPath expression to be evaluated whereas {branchCode}/{accountNo} requires 2 XPath

expressions to be evaluated.

Listing 8. XPath expressions evaluated.

Note that the structure of the SOAP message is enterprise-specific which could result in various

different levels of nesting within the SOAP message. As a result, we performed extra tests with a

different level of nesting. Figure 14 represents the results.

Figure 14. Performance–increased nesting, static file sizes, via adapter.

The correlation value in this instance is 0.973. Thus, the strong positive correlation between the

amount of parsing to be performed by the adapter and the response times is once again confirmed. In

fact, with the extra level of nesting, the correlation is slightly stronger.

Future Internet 2012, 4 393

Listing 9 below shows the XPath expressions evaluated by the adapter in the generation of the

results for Figure 14. They are listed in order, from 1 to 10, delimited by “/”. The extra level is

encapsulated by the element inputData.

Listing 9. XPath expressions evaluated.

6. Evaluation

Our hypothesis was that SWS technologies could be leveraged to automate the previously manual

configuration element of StoRHm v1. In addition, Internet based latency tests of the protocol adapter

element were required.

6.1. Configuration Wizard

The wizard prompts the user for the names of the SAWSDL, MicroWSMO and ontology files. The

user selects OK. The SOAP operations and associated input parameters’ model references will be parsed

from the SAWSDL file. The equivalent concepts will be located in the MicroWSMO and ontology files

using the model references. Data from all three input files is then used to populate the CSV file.

6.2. Protocol Adapter

There is a 4–8% penalty for inserting the adapter into an infrastructure. Statistically speaking, the

average time taken to route these SOAP requests via the adapter to their RESTful Web Service

equivalents is significantly longer than the average time taken to issue these requests directly to the

SOAP Server. Performance measurements demonstrated that increasing the size of the request files

while maintaining a constant parsing requirement does not impact negatively. Conversely, increasing

the parsing requirement across static file sizes, does impact performance.

Future Internet 2012, 4 394

7. Conclusions and Future Work

We have implemented, tested and demonstrated an automated configuration wizard. The

configuration wizard is automated in line with SWS technologies best practice. The protocol adapter

has been tested in an Internet based setting. There is a 4–8% time penalty involved in using the adapter

which is statistically significant. This time penalty is dependent on the amount of parsing the adapter

must perform.

The following areas outline where we wish to focus next:

 One of the constraints imposed by the architecture is that, in situations where the target HTTP

verb to be used is PUT or POST, the entity body of the request is sent on untouched. Typically,

the outer element of the SOAP Body element contains the operation to be executed e.g., the

WSDL wrapped document-literal pattern enforces this. However, this “operation” element is not

needed by RESTful HTTP implementations as the “operation” is identified by the URI coupled

with the verb. In order to address this, research is required on XSLT transformations to cater for

scenarios as described above, where the XML content to be passed on differs from the XML

content received.

 This paper is not centered on performance and consequently the performance tests carried out are

indicative rather than extensive. The latency performance of the adapter could be extended. This

would include: the performance impact of message reliability and the effect of multiple similar

requests with efficiencies such as caching and Conditional GET in place.

 The architecture enables SOAP clients to access pre-existing RESTful HTTP Web Services. The

adapter is a client-side migration enabler. Research could be conducted to extend the framework

to focus on the server i.e., provide a server-side migration enabler from SOAP WS to RESTful

WS. Should an enterprise wish to migrate from SOAP WS to RESTful WS, this new extension

would be executed first to migrate the server. With the server migrated, the current framework

would then be used to enable the enterprise to gradually migrate the clients.

References

1. Resource Description Framework specification. Available online: http://www.w3.org/RDF/

(accessed on 5 April 2012).

2. Hebeler, J.; Fisher, M.; Blace, R.; Perez-Lopez, A. Semantic Web Programming; Wiley:

Indianapolis, IN, USA, 2009.

3. RDF Schema specification. Available online: http://www.w3.org/TR/rdf-schema/ (accessed on 5

April 2012).

4. Web Ontology Language (OWL) specification. Available online: http://www.w3.org/

TR/owl-semantics/ (accessed on 5 April 2012).

5. Gruber, T. Ontology. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.;

Springer-Verlag: Berlin, Germany, 2008.

6. Kennedy, S.; Molloy, O.; Stewart, R.; Jacob, P. StoRHm: A protocol adapter for mapping SOAP

based Web Services to RESTful HTTP format. Electron. Commer. Res. J. 2011, 11, 245–269.

Future Internet 2012, 4 395

7. Battle, R.; Benson, E. Bridging the Semantic Web with Representational State Transfer (REST).

J. Web Semant. 2008, 6, 61–69.

8. OWL-S: Semantic Markup for Web Services. Available online: http://www.w3.org/

Submission/OWL-S (accessed on 5 April 2012).

9. SAWSDL: Semantic Annotations for WSDL and XML Schema. Available online:

http://www.w3.org/TR/sawsdl/ (accessed on 5 April 2012).

10. Lathem, J.; Gomadam, K.; Sheth, A. SA-REST and (S)mashups: Adding Semantics to RESTful

Services. In Proceedings of International Conference on Semantic Computing, Irvine, CA, USA,

17–19 September 2007; pp. 469–476.

11. Kopecky, J.; Vitvar, T.; Fensel, D. MicroWSMO and hRESTS, Technical Report 2009. Available

online: http://sweet.kmi.open.ac.uk/pub/microWSMO.pdf (accessed on 5 April 2012).

12. Gleaning Resource Descriptions from Dialects of Languages (GRDDL) specification. Available

online: http://www.w3.org/TR/grddl/ (accessed on 5 April 2012).

13. RDF in Attributes (RDFa) specification. Available online: http://www.w3.org/TR/

rdfa-syntax/ (accessed on 5 April 2012).

14. SOA4All Core Dashboard tool suite. Available online: http://coconut.tie.nl:8080/

dashboard/#1304859734132 (accessed on 5 April 2012).

15. Yahoo! Pipes. Available online: http://pipes.yahoo.com/pipes/ (accessed on 5 April 2012).

16. Sycara, K.; Pauoucci, M.; Ankolekar, A.; Srinivasan, N. Automated discovery, interaction and

composition of Semantic Web Services. J. Web Semant. 2003, 1, 27–46.

17. Fensel, D.; Fischer, F.; Kopecky, J.; Krummenacher, R.; Lambert, D.; Vitvar, T. WSMO-Lite:

Lightweight Semantic Descriptions for Services on the Web. Available online:

http://www.w3.org/Submission/2010/SUBM-WSMO-Lite-20100823/ (accessed on 5 April 2012).

18. Bizer, C.; Heath, T.; Berners-Lee, T. Linked Data – The Story So Far. Int. J. Semant. Web In.

Syst. 2009, 5, 1–22.

19. Paliwal, A.;Shafiq, B.; Vaidya, J.; Ziong, H.; Adam, N. Semantics based automated service

discovery. IEEE Trans. Serv. Comput. 2011, 99, 1.

20. Maleshkova, M.; Pedrinaci, C.; Domingue, J. Semantic annotation of Web APIs with SWEET. In

Proceedings of 6th Workshop on Scripting and Development for the Semantic Web at Extended

Semantic Web Conference, Crete, Greece, 31 May 2010.

21. Protégé. Available online: http://protege.stanford.edu/ (accessed on 5 April 2012).

22. Glassfish Open Source Application Server. Available online: http://glassfish.java.net/ (accessed

on 5 April 2012).

23. Juric, M.; Kezmah, B.; Hericko, M.; Rozman, I.; Vezocnik, I. Java RMI, RMI Tunneling and Web

Services Comparison and Performance Analysis. ACM SIGPLAN Notices 2004, 39, 58–65.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

