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Abstract: The performance of traditional direction of arrival (DOA) estimation algorithm 

based on uniform circular array (UCA) is constrained by the array aperture. Furthermore, 

the array requires more antenna elements than targets, which will increase the size and 

weight of the device and cause higher energy loss. In order to solve these issues, a novel 

low energy algorithm utilizing array base-line rotation for multiple targets estimation is 

proposed. By rotating two elements and setting a fixed time delay, even the number of 

elements is selected to form a virtual UCA. Then, the received data of signals will be 

sampled at multiple positions, which improves the array elements utilization greatly.  

2D-DOA estimation of the rotation array is accomplished via multiple signal classification 

(MUSIC) algorithms. Finally, the Cramer-Rao bound (CRB) is derived and simulation 

results verified the effectiveness of the proposed algorithm with high resolution and 

estimation accuracy performance. Besides, because of the significant reduction of array 

elements number, the array antennas system is much simpler and less complex than 

traditional array. 
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1. Introduction 

With the development of array signal processing, the direction of arrival (DOA) estimation 

algorithms are used widely in radar, sonar, atmosphere, communication and so on. Since the 1980s, 

many high resolution 2-dim (2-D) DOA algorithms were proposed in succession. Among them, the 

multiple signal classification (MUSIC) algorithm [1,2] marks a symbolic method of the spatial 

spectrum estimation algorithm. In ideal conditions, MUSIC algorithm has better estimation accuracy 

and resolution performance and nowadays there are still a lot of scholars devoting themselves to 

MUSIC algorithm [3–7]. However, in practice, MUSIC algorithm has strict requirements with the 

placement of array elements, which has a great influence on DOA estimation accuracy, resolution and 

stability [8]. As a symbolic plane array, the uniform circular array (UCA) can provide both azimuth 

and elevation information ranging from 0° to 360° and also has other excellent performance such as 

circular symmetry properties [9–14]. Utilizing array manifold directly, the algorithm proposed in [15] 

could estimate the 2-D DOAs of a single extended signal combining least-squares (LS) method with 

weighted total LS (WTLS), which leads to a better performance. A much amplifier algorithm proposed 

in [16,17] can achieve a better stability, but only apply to one single source. A unitary transformation 

method was proposed in [18] based on array space; this method can reduce the computational 

complexity and improve the practicability of the MUSIC algorithm. By base-line rotation and phase 

integration, the algorithm proposed in [19,20] utilized rotating interferometer to solve the ambiguity 

problem. However, the algorithms mentioned above have not solved the problem as below: (1) DOA 

estimation performance has strict restrictions with the radius r of antenna dish in UCA; the larger the 

radius is, the better the resolution is; (2) More antenna elements can provide better resolution and 

estimation accuracy, but too many elements will cause high energy loss and that will make it difficult 

to calibrate channel mismatches. On the other hand, the number of elements cannot be too high 

because of the space restrictions of the antenna dish. To solve these issues, a virtual antenna array 

technique can be used by moving the receiver antenna to various locations and then measuring the 

static signal at those locations. In addition, another method for DOA estimation using single antenna 

devices was presented in [21–23]. 

In this paper, a novel rotation MUSIC (R-MUSIC) algorithm for static targets based on the array 

rotating technique is proposed. This algorithm can obtain any even number of elements by rotating 

only two elements, so that it can receive the signal data at multiple positions. Besides, the R-MUSIC 

algorithm can break the constraints that the number of antenna elements must be more than the number 

of incident signals. Most importantly, the array system will be much simpler than the traditional array. 

Computer simulations verified the effectiveness and superior performance of the proposed method. 

The remainder of this paper is organized as follows. Section 2 introduces the MUSIC algorithm 

based on 2-D UCA. Section 3 elaborates the structure model of the rotation array and contains the core 

work of this paper, in which the R-MUSIC method is proposed for 2D-DOA estimation. Section 4 
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derives the Cramer-Rao bound (CRB). Section 5 presents the computer simulation result. Section 6 

gives the final conclusions. 

2. The MUSIC Algorithm of 2-D UCA 

Consider a UCA with M elements impinged by D narrowband signals si(t), i = 1, 2, …, D (D < M), 

where t is the time variable, as shown in Figure 1. The D sources are assumed to be from far-field with 

azimuth θi and elevation φi, i = 1, 2, …, D. Assume the radius of UCA is r and the noise is additive 

white Gaussian noise (AWGN). 

Figure 1. Uniform circular array diagram. 

θ
ϕ
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Consider the reference point is 0, the ideal steering matrix can be obtained from the array  

geometry as 

1 1 2 2( , ) [ ( , ), ( , ), , ( , )]D Dθ ϕ θ ϕ θ ϕ θ ϕ= A a a a  (1)

T
1 2( , ) [ ( , ), ( , ), , ( , )]i i i i i i M i ia a aθ ϕ θ ϕ θ ϕ θ ϕ= a  (2)

( )( , ) exp( j ) exp( j cos 2π( 1) / cos )k i ki i i ia dr k Mθ ϕ ωτ θ ϕ= − = − − −  (3)

where k = 1, 2, …, M; i = 1, 2, …, D; λ  is wavelength; d = 2π/ λ . The array output of the kth element 

at time t can be written as 

i 1

( ) ( , ) ( ) ( )
D

k k i i i kx t a s t n tθ ϕ
=

= +  (4)

Equation (4) can be written in matrix form as 

( )= ( )+ ( )t t tX AS N  (5)

where X(t) is M × 1 array output vector; A is M × D array steering matrix; S(t) is D × 1 signal vector; 

N(t) is M × 1 noise vector. X(t), S(t) and N(t) are abbreviated as X, S and N, respectively, and the array 

covariance matrix of X can be written as  
H H 2=E[ ]= +σR XX APA I  (6)
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where P = E[SSH] = diag[P1, P2, …, Pi, …, PD]; Pi is the power of the ith signal; σ2 is noise power; I is 

M × 1 identity matrix. E[ ] and H[ ] denote the statistical expectation and the Hermitian transpose, 

respectively. In real systems, the covariance matrix R can be estimated from a finite set of sample 

snapshots as 

1

ˆ 1
 = ( ) ( )

L

n

n n
L

Η

=
R X X  (7)

where L is the total number of snapshots. Then the eigendecomposition of R̂  can be written as 

H H

1

ˆ
M

i i i
i

λ
=

= =R U U v v  (8)

where 1 2diag{ , , }Mλ λ λ= ≥  ; iλ and iv  are the eigenvalue and corresponding eigenvector of R̂ , 

respectively. In ideal conditions, 2
1 2 1D D Mλ λ λ λ λ σ+≥ ≥ ≥ = = =  . Assume that the number of incident 

signals D is known, R̂  can be described as 

H H
S S S N N N

ˆ = +R U U U U   (9)

where [ ]S 1 2, , , D= U v v v and [ ]N 1 2, , ,D D M+ += U v v v are the signal subspace and noise subspace, 

respectively;  S 1diag{ , , }Dλ λ=  and  N 1diag{ , , }D Mλ λ+=  are diagonal matrices related to the 

signal and noise power, respectively. Because the D-incident sources spanning the signal space are 

orthogonal to the noise space, so the MUSIC algorithm can estimate the DOA as 

MUSIC
N N

1
( , )

( , ) ( , )
θ ϕ

θ ϕ θ ϕΗ Η=P
a U U a

 (10)

where MUSIC ( , )P θ ϕ  is expected to show a large positive value if ( , )θ ϕ is a true DOA, because 
H ( , ) 0, 1, ,iv i D Mθ ϕ = = + a . Here, the signal is processed before the data is demodulated, where the 

carrier phase information is maintained through the sampling. 

3. The Proposed Algorithm 

3.1. The Rotation Array Structure of Proposed Algorithm 

As shown in Figure 2, D narrowband far-field sources are observed by a rotation array with two 

antenna elements, “1” and “2”. Assume the baseline 1–2 is rotating around Z-axis in XOY plane at a 
constant velocity by anticlockwise direction. The rotate velocity is Zv , Z Z Z2v r f rω π= = , where Zω  is 

rotational angular frequency; Zf  is rotation frequency. The rotation period is T. After time Δt (Δt < T), 

the elements 1 and 2 are rotating to the position 1ʹ and 2ʹ, respectively. Assume the array radius is r; l 
is the incident signal direction; l′ is the projection of l onto the XOY plane; θ  and ϕ  are azimuth and 

elevation, respectively. 
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Figure 2. Rotation array structure diagram. 
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In order to derive the proposed algorithm, some assumptions are clarified at first, 

(1) While the baseline 1–2 is rotating, the baseline is certainly vertical to Z-axis with absolute 

uniform velocity; 

(2) Select 2M elements at uniformly-time interval to make them form the virtual UCA within  

T/2 period; 

(3) The signals remain static during the measurement time. 

At time mt , the elements 1 and 2 start to sample the received signal data, so mt  can be expressed as 

1 ( 1)mt t m τ= + − Δ  (11) 

where 1 0t = , 1,2, ,m M=  ; τΔ is the time delay which is needed for selecting two neighboring 

elements, 0 / 2Tτ< Δ < . As we know, the wave path difference between the reference point O and the 
mth element for the ith signal is miτ . In the rotation array model, the element m is obtained by rotating 

element 1 through time ( 1)m τ− Δ , so the total wave path difference 1mτ  is  

1 ( 1)m mi mτ τ τ= + −   (12)

Then Equation (4) is modified as  

1 1
1

( ) exp( j ( ( 1) )) ( ) ( )
D

m m mi i m m m
i

x t m s t n tω τ τ
=

= − + − Δ +   

1
1

exp( j ) exp( j ( 1) ) ( ) ( )
D

mi i m m m
i

m s t n tωτ ω τ
=

= − − − Δ +  (13)

1 1
1

( , ) exp( j ( 1) ) ( ) ( )
D

m i i i m m m
i

a m s t n tθ ϕ ω τ
=

= − − Δ +   

Assuming the signal sources remain static, the element rotation will cause the Doppler frequency 
shift. As shown in Figure 2, v is denoted as the velocity component of zv in the source incident 

direction l′ , we obtain 

sin( )cosz zv v tθ ω ϕ= −  (14)

According to the Doppler frequency formula d / cf v f=  , df  can be written as 

d sin( )cos / cz zf v t fθ ω ϕ= −    
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2 sin( )cos / cz zf r t fπ θ ω ϕ= −   (15)

where f is signal frequency. Therefore, in (13), ω  should be modified as 

2 ( )df fω π= +  (16)

Let exp( j ( 1) )
mt

mφ ω τ= − − Δ , the vector received by element 1 within T/2 period can be expressed by 

111 1 11 1 11 1
1

( ) ( , ) ( ) ( )
D

i i t i
i

x t a s t n tθ ϕ φ
=

= +  

212 2 12 2 12 2
1

( ) ( , ) ( ) ( )
D

i i t i
i

x t a s t n tθ ϕ φ
=

= +  (17)

  

1 1 1
1

( ) ( , ) ( ) ( )
M

D

M M M i i t i M M M
i

x t a s t n tθ ϕ φ
=

= +  

where 
mt

φ is the phase difference of element 1 at time mt  relative to the initial position. Equation (17) 

can be further simplified as  

1

2

1 1 1

M

t

t

t

φ
φ

φ

 
 
 = + 
 
  


X A S N  (18)

where 1 11 12 1[ , , , ]Mx x x Τ= X is 1M ×  array output matrix; 1 1 1 1 2 1[ ( ), ( ), , ( )]Mn t n t n t Τ= N is M × 1 noise 

matrix. The steering matrix 1A  can be written as 

1 1 1 1 1 2 2 1[ ( , ), ( , ), , ( , )]D Dθ ϕ θ ϕ θ ϕ= A a a a  (19)

1 11 1 1 12 2 2 1( , ) [ ( , ), ( , ), , ( , )]j j M D Da a aθ ϕ θ ϕ θ ϕ θ ϕ Τ= a  
(20)

where 1 ( , ) exp( j )m i i mia θ ϕ ωτ= − ; 
( )2π 1

cos cos
cmi i i

mr

M
τ θ ϕ

− 
= − 

 
; 1,2, ,m M=  ; 1, 2, ,i D=  . 

Denote
1 21 diag[ , , , ]

Mt t tφ φ φ= Φ , (17) can be expressed by 

1 1 1 1= +X Φ A S N  (21)

In the same way, the vector received by element 2 within T/2 period is  

121 1 21 1 21 1
1

( ) ( , ) ( ) ( )
D

i i t i
i

x t a s t n tθ ϕ φ
=

= +  

222 2 22 2 22 2
1

( ) ( , ) ( ) ( )
D

i i t i
i

x t a s t n tθ ϕ φ
=

= +  (22)

  

2 2 2
1

( ) ( , ) ( ) ( )
M

D

M M M i i t i M M M
i

x t a s t n tθ ϕ φ
=

= +  
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Similarly, denoting
1 22 diag[ , , , ]

Mt t tφ φ φ= Φ ; 
mt

φ  is the phase difference of element 2 at time 

mt  relative to the initial position; therefore, the array output matrix of element 2 within T/2 is modeled as 

2 2 2 2= +X Φ A S N  (23)

When the array elements are rotating more than T/2 period, we can select 2M elements to construct 
a virtual UCA. Then, integrate 1X with 2X , X  can be represented by 1X and 2X  

1 1 1 1

2 2 2 2

       
= = + = +       
       

X Φ A N
X S ΦAS N

X Φ A N
 (24)

where 1

2

 
=  
 

Φ
Φ

Φ
, 1

2

 
=  
 

A
A

A
, 1

2

 
=  
 

N
N

N
. 

Using Equations (7), (9) and (10), MUSIC spectrum function will be obtained. 

Seen from the analysis above, the key advantages of the proposed method is, by sampling the 

received signal date at a uniform time interval while the array antennas are rotating, more than two 

antenna elements can be obtained and it can estimate more than two DOAs. Besides, because the 

number of antennas is much smaller, the array system is greatly simplified than the traditional array 

and it will become much easier to calibrate with channel phase errors in practice. 

3.2. How to Choose Array Rotation Velocity 

Consider the rotation frequency is zf , and 1/zf T= , sf  is the sampling frequency of the receiver. 

Select 2M antenna elements within T/2 period while array rotating. Because the characteristics of 

element 1 are the same as element 2, we only need to analyze element 1 in this subsection. As we 

know, the received signal data is sampled while the array is rotating, which will cause a tiny phase 

difference between every two sampled data. In order to ensure the stability of sampled data, τΔ  

should satisfy the following equation 

1

2 s

T

f
τ> Δ   (25)

where τΔ  is much greater than the sampling time interval. We have 

1

2 2 z

T

M Mf
τΔ = =  (26)

Assume the snapshots is L, then  

1 1

2 2z z s

L

f Mf f
>   (27)

, 1
2

s
z

f
f M

ML
>

 
(28)

As a result, if (28) is satisfied, the stability of the algorithm could be ensured. Consider the 

sampling frequency of a receiver is 50 MHz, the elements number is 8, the snapshots number L is 100, 
according to (28), we can get 31250zf   Hz. If the antenna rotation frequency is much smaller  

than 31,250 Hz, the stability of the sampled data will be guaranteed. 
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4. The Cramer-Rao Bound 

Cramer-Rao bound (CRB) gives a lower bound of unbiased parameter estimation. In this section, 

some assumptions are considered to hold throughout this section first: (1) The number of selected array 
elements should be greater than that of signals (M > D); (2) The noise { ( )}n t  is Gaussian distributed 

and H 2E{ ( ) ( )}n t n t Iσ= , TE{ ( ) ( )} 0n t n t = ; (3) The signal covariance matrix RS = E{SSH} is positive 

definite. Furthermore, the signals and noise are uncorrelated for all time. Under these conditions, we 

derive the Cramer-Rao bound (CRB) formula for the algorithm proposed in this paper. The derivation 

process approximates the method proposed in [24]. 
Define u is the angle parameters vector contained in the signal covariance matrix SR , 

T T T[ , ]=u θ ϕ  (29)

where T
1[ , , ]Dθ θ= θ , T

1[ , , ]Dϕ ϕ= ϕ . The CRB of the angle parameters is defined as 

var( ) CRB≥u  (30)
Tˆ ˆvar( ) E[( )( ) ]=u u - u u - u  (31)

-1CRB = F  (32)

The 2 2D D×  Fisher information matrix (FIM) for the parameter u is given by  

θθ θϕ

ϕθ ϕϕ

 
=  
 

F F
F

F F
 (33)

where θθF is the block matrix of azimuth estimator and ϕϕF is the block matrix of elevation estimator. 

The m, n elements of F is represented as  

-1 -1[ ]m,n
m n

L trace
∂ ∂=
∂ ∂

F  R RR R
u u

 (34)

where [ ]trace •  is the trace of matrix[ ]• . L is the snapshot. Define  

[ , ]θ ϕG = G G  (35)

1

[ , , ]
D

θ θ θ
∂ ∂=
∂ ∂

a aG  (36)

1

[ , , ]
D

ϕ ϕ ϕ
∂ ∂=
∂ ∂

a aG  (37)

Then the matrix θθF , ϕϕF , ϕθF , θϕF  is represented as 

{ }H 1 H 1 T H 1 H 1 T
S S S S2 Re ( ) ( ) ( ) ( )Lθθ θ θ θ θ

− − − −= +F   R A R G R A R G R A R AR G R G  (38)

{ }H 1 H 1 T H 1 H 1 T
S S S S2 Re ( ) ( ) ( ) ( )Lϕϕ ϕ ϕ ϕ ϕ

− − − −= +F   R A R G R A R G R A R AR G R G  (39)

{ }H 1 H 1 T H 1 H 1 T
S S S S2 Re ( ) ( ) ( ) ( )Lϕθ θ ϕ θ ϕ

− − − −= +F   R A R G R A R G R A R AR G R G  (40)

{ }H 1 H 1 T H 1 H 1 T
S S S S2 Re ( ) ( ) ( ) ( )Lθϕ ϕ θ ϕ θ

− − − −= +F   R A R G R A R G R A R AR G R G  (41)
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where  denotes the Hadamard product. 

5. Simulation Examples 

This section demonstrates the performance of the proposed method via numerical simulation. In all 

simulation examples, we use the rotation array structure shown in Figure 2. The radius r is 0.124 m, 

the rotation frequency zf  is 15 Hz, and the noise background is AWGN. Select M = 8 and  

M = 10 elements for forming the UCA to estimate DOAs. To verify the performance of the R-MUSIC 

algorithm, some comparison simulations of MUSIC algorithm with five elements UCA and eight 

elements UCA are carried as well. 

5.1. Resolution Performance Simulation 

In this part, the resolution is defined as  

1 2
ˆ ˆ( ) ( )ˆE[ ( )] E[ ]

2m

P P
P

θ θθ +=
 

(42)

where 1 2( ) / 2mθ θ θ= + . When the right-hand side of (30) is smaller than the left-hand side, the two 

angles can be distinguished; while the right-hand sides of (30) is great than the left-hand sides, then the 

two angles cannot be distinguished. Furthermore, the successful resolution probability is defined as the 

ratio of successful test numbers to the total test numbers. 

5.1.1. The Spatial Spectrum of the R-MUSIC Algorithm 

In order to verify the effectiveness of the proposed method, some spatial spectrum figures are 

shown in this section. Assume there are several incoherent signals impinging on the array, the signal 

frequencies are 6 GHz, SNR (signal to noise ratio) is 20 dB and the snapshots are 100. Figure 3 shows 

the spatial spectrum of two, three, and four incident signals, respectively. It can be seen that the 

proposed method has better resolution and estimation accuracy performance. In addition, it can 

estimate more than two sources successfully. 

5.1.2. The Resolution Probability versus SNR 

Two signal DOAs are (90°, 81°) and (90°, 85°), respectively, and both the signal frequencies are 

6 GHz. Figure 4 displays the resolution probability of the eight-element R-MUSIC, 10-element  

R-MUSIC, five-element UCA MUSIC, and eight-element UCA MUSIC versus the SNR from  

−2 to 8 dB with snapshots number L = 100. While Figure 5 displays the resolution probability of the 

four methods versus the snapshots number from 16 to 144 with SNR = 20 dB. Every data is averaged 

over 200 Monte Carlo simulations. It can be seen from Figures 4 and 5 that the resolution performance 

of the proposed eight-element R-MUSIC is close to that of the five-element UCA-MUSIC, but the 

successful probability is lower than that of the eight-element UCA-MUSIC. However, if we select 

10  elements to form a UCA, then the resolution performance will be better than that of the eight-

element UCA-MUSIC. 
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Figure 3. Spatial spectrum with multiple signals. (a) Two signal DOAs are (90°, 70°) and  

(90°, 80°); (b) Three DOAs are (60°, 30°), ( 90°, 60°) and ( 120°, 80°); (c) Four DOAs are 

(60°, 40°), (90°, 80°), (120°, 60°) and (140°, 40°). 

(a) 

 
(b) 

 
(c) 
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Figure 4. Successful resolution probability versus SNR. 

 

Figure 5. Successful resolution probability versus snapshots number. 

 

5.2. Estimation Accuracy Performance Simulation 

Two signal DOAs are (90°, 81°) and (90°, 85°), respectively, both the signal frequencies are 6 GHz. 

Figure 6 displays the root mean square error (RMSE) of the eight-element R-MUSIC, 10-element  

R-MUSIC, five-element UCA MUSIC, and eight-element UCA MUSIC versus the SNR from 2 to 

14 dB with snapshots L = 100. While Figure 7 displays the resolution probability of the four methods 

versus the snapshots from 16 to 144 with SNR = 10 dB. Every data is averaged over 200 Monte Carlo 

simulations. It can be seen from Figure 6 and 7 that the RMSE of the proposed algorithm approximates 

to the CRB and the RMSE of the four methods is decreasing with increasing snapshots. Besides, the 
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estimation accuracy performance of the proposed eight-element R-MUSIC is better than that of the 

five-element UCA-MUSIC, but which is lower than that of the eight-element UCA-MUSIC. However, 

the estimation accuracy of the 10-element R-MUSIC is better than that of the eight-element UCA-MUSIC. 

Figure 6. RMSE versus SNR. 

 

Figure 7. RMSE versus snapshots. 

 

5.3. Channel Mismatch Errors Simulation 

The influence of channel mismatch errors on the resolution probability of the eight-element  

R-MUSIC and five-element MUSIC is shown in Figure 8. The channel mismatch errors range from  

0 to 40°, SNR is 6 dB and the snapshots number is 100. The two DOAs are the same as the simulation 

in Subsection 5.2. Every data is averaged over 200 Monte Carlo simulations. Table 1 shows the RMSE 
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versus the channel mismatch errors. Because the statistical characteristics of the two DOAs are the 

same, both Figure 8 and Table 1 shows the estimation results of DOA = (90°, 85°). 

It can be seen from the Figure 8 that the proposed R-MUSIC algorithm can provide better 

robustness than that of the classical MUSIC in large channel mismatch errors. Table 1 shows the 

estimation accuracy performance of R-MUSIC is much better than that of the classical MUSIC, when 

the channel mismatch errors exist. This is because the R-MUSIC algorithm only needs two elements; 

the number of elements of R-MUSIC is much less than that of the classical MUSIC. Furthermore, the 

problem of element channel calibration is easier to solve too. 

Figure 8. Successful resolution probability versus different channel mismatch errors. 

 

Table 1. The RMSE versus different channel mismatch errors[degree] 

Channel mismatch errors 
[degree] 

5-elment UCA-MUSIC 
8-element  
R-MUSIC 

0 0.1414 0.2739 
5 0.2191 0.2162 
10 0.4817 0.4000 
15 0.5441 0.4427 
20 0.6132 0.4336 

5.4. Resolution Performance versus Rotation Frequency Errors 

There are two inherent incident signals with DOAs are (90°, 81°) and (90°, 85°) respectively, both 

the signal frequencies are 6 GHz. The snapshots number is L = 100, and in theory, the rotation 
frequency is 15Hzzf = . However, in fact, the rotation velocity will be greater or smaller than the 

theory rotation frequency zf . Now, assume the actual rotation frequency is f ′ , and let f ′  range from 

14.3 to 15.5 Hz by the step 0.1 Hz in this simulation. So, the rotation frequency error is zf f f′Δ = − . 
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Figure 9 shows the successful resolution probability versus rotation frequency error when SNR = 4 dB, 

8dB, 10 dB and 20 dB, successively. 
As shown in Figure 9, when zf f′ =  and the SNR>8 dB, the successful resolution probability of the  

R-MUSIC is 100%; However, when the actual rotation frequency f ′  is larger or smaller than zf , the 

successful resolution probability will decrease. The larger the fΔ  is, the lower the successful 

resolution probability is. On the other hand, when SNR = 4 dB, the successful rotation frequency 

(>60%) ranges from 15 − 0.3 ~ 15 + 0.3 Hz; When SNR = 10 dB, the successful rotation frequency 

ranges from 15−0.4 ~ 15 + 0.4 Hz; When SNR = 20 dB, the successful rotation frequency ranges from 

15 − 0.5 ~ 15 + 0.4 Hz; that is to say, with increases in SNR, the rotation array system can tolerate 
wider rotation frequency error range. However, when fΔ is larger than a certain value, even increasing 

SNR would not improve resolution. That is because according to Equation (15), a larger rotation 

frequency error will cause a Doppler frequency shift, which has a great influence on the estimation and 

resolution performance of the proposed algorithm. 

Figure 9. Successful resolution probability versus rotation frequency errors. 

 

6. Conclusions 

The performance of classical MUSIC algorithm based on UCA is constrained by array aperture 

greatly, and most DOA estimation algorithms demand that the number of elements be larger than that 

of incident signals. Focusing on this problem, a novel multiple DOAs estimation algorithm based on 

rotation array is proposed in this paper, which has lower energy loss and complexity. Computer 

simulations verify the effectiveness of the proposed method, and the number of incident signals that 

the algorithm could estimate is more than that of the elements. Besides, the proposed array model 

could be used for any algorithm based on UCA. In the future work, we will focus on the application of 

the proposed algorithm [25]. 
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