
Future Internet 2015, 7, 94-109; doi:10.3390/fi7020094

future internet
ISSN 1999-5903

www.mdpi.com/journal/futureinternet

Article

Inefficiency of IDS Static Anomaly Detectors in

Real-World Networks

Edward Guillen 1,*, Jeisson Sánchez 1 and Rafael Paez 2

1 Telecommunication Engineering Department, Nueva Granada Military University, Bogotá 110911,

Colombia; E-Mail: u1400881@unimilitar.edu.co
2 Engineering Systems Department, Xaverian University, Bogotá 110911, Colombia;

E-Mail: paez-r@javeriana.edu.co

* Author to whom correspondence should be addressed; E-Mail: edward.guillen@unimilitar.edu.co;

Tel.: +57-650000 (ext. 1284).

Academic Editor: Steven Furnell

Received: 14 November 2014 / Accepted: 31 March 2015 / Published: 6 May 2015

Abstract: A wide range of IDS implementations with anomaly detection modules have been

deployed. In general, those modules depend on intrusion knowledge databases, such as

Knowledge Discovery Dataset (KDD99), Center for Applied Internet Data Analysis

(CAIDA) or Community Resource for Archiving Wireless Data at Dartmouth

(CRAWDAD), among others. Once the database is analyzed and a machine learning method

is employed to generate detectors, some classes of new detectors are created. Thereafter,

detectors are supposed to be deployed in real network environments in order to achieve

detection with good results for false positives and detection rates. Since the traffic behavior

is quite different according to the user’s network activities over available services,

restrictions and applications, it is supposed that behavioral-based detectors are not well

suited to all kind of networks. This paper presents the differences of detection results

between some network scenarios by applying traditional detectors that were calculated with

artificial neural networks. The same detector is deployed in different scenarios to measure

the efficiency or inefficiency of static training detectors.

Keywords: NIDS; knowledge database; artificial neural networks; anomaly detection;

information security; intelligent detection

OPEN ACCESS

Future Internet 2015, 7 95

1. Introduction

Nowadays, network security systems require new techniques or methodologies to detect and avoid

threats from intruders. An intruder tries to find the way to enter and explore a system with the maximum

possible access [1]. Intrusion detection systems (IDS) are designed to recognize intrusion attempts in

order to block attacks or produce alerts to be analyzed by an intelligent instance. According to the

detection method, IDS are categorized into anomaly detection and misuse detection [2–4]. Although this

classification is not recent, in general, the same categorization is accepted to classify IDS. For example,

in 2000, Stefan Axelsson presented an IDS taxonomy to classify some research approaches, as can be

seen in Figure 1 [5], among many other taxonomies that have been proposed.

Figure 1. Intrusion detection system taxonomy.

In 2012, Liao et al. worked in the IDS taxonomy based on the Computer Emergency Response Team

(CERT) statistics report of the increment of the amount of intrusions year-by-year [6]. They classified

the intrusion detection approaches into five subcategories: statistics based, pattern based, rule based,

state based and heuristic based. Finally, they concluded that the pattern-based approach is effective at

identifying unknown and hidden attacks.

In recent years, anomaly detection IDS have been the source of great interest because of their

capabilities for zero-day attack detection and self-learning. Anomaly detection is composed of a set of

processes to identify differences between normal activities by comparing observed events with

behavioral deviations in a network. The IDS analysis scheme can build profiles according to selected

features from knowledge databases [7]. Those profiles are created by selecting, analyzing and ordering

the behavioral characteristics of the computer network, such as connections, virtual ports, user profiles,

among others, over a defined time period in normal operation [8].

Intrusion
Detection
Systems

Anomaly

Detection

Self-Learning

Non-Time
Series

Rule
Modeling

Descriptive
Statistics

Time Series
Artificial
Neural

Network

Programmed

Descriptive
Stat

Simple State

Simple Rule
Based

Threshold

Default Deny State Series
Modeling

Signature/Misuse
Detection

Programmed

State
Modeling

Petri Net

State
Transition

Expert
System

String
Matching

Simple Rule
based

Future Internet 2015, 7 96

According to the data source and connectivity properties, IDS are classified into two types, network

intrusion detection systems (NIDS) and host intrusion detection systems (HIDS) [3,9]. Although many

hybrid approaches have been proposed, commercial network security implementations have deployed

NIDS because they are more efficient against malware attacks than HIDS [10]. An NIDS has a sensor

that is activated in promiscuous mode to capture all data traffic in a network and stores the attack patterns

in a database [11].

For many years, IDS have been widely deployed in secure network infrastructures as the first line of

defense against security threats and intruders. As early as 1985, Denning and Neumann [12] suggested

a basic model of IDS that included system design and activity profiles. Nowadays, new threats are born

within every hour, and the time between attack deployment and detection is uncertain. Most of these

attacks are Internet-based events that are triggered by activity from inside or even outside of the

computer network.

For some approaches, attacks are classified into four categories: denial of services, remote to local

(R2L), user to root (U2R) and probes [13,14]. Tang and Cao in 2009 proposed a new approach to

discover novel attacks, which aims at machine learning implementation to demonstrate the high

performance against common attacks, with detectors obtained with artificial neural networks

(ANN) [15]. The portion of analyzed attacks can be seen in Figure 2.

Figure 2. The portion of analyzed attacks with the ANN approach [15].

In 2003, Lazarevic et al. evaluated anomaly detection techniques in NIDS with DARPA datasets to

analyze the unsolved problems for IDS design and the complexity of deploying machine learning

techniques with real network data [16]. They concluded that with the DARPA dataset, it is possible to

achieve an effectiveness of up to 74% to detect attacks in multiple connections and a detection rate of

56% in a single connection, which is obviously not as useful today. Subsequently, Zhao et al. in 2010

conducted an analysis to design IDS based on data mining methods in order to identify the advantages

and disadvantages of using hybrid systems with misuse detection and anomaly detection techniques.

They concluded that the combination of intrusion detection engines is efficient to detect known and

unknown threats, but the design of an accurate system is more complex [1].

Another important issue is the selection of the relevant features, as Olusola et al. identified in

2010 [17]. They evaluated the relevance of feature selection for IDS design along with data mining and

Attack type

Probes

82.4%

Attack type

DoS

59.7%

Attack type

U2R

65.9%

Attack type

R2L

14.3%

Future Internet 2015, 7 97

machine learning methods. With most of these approaches, when the proposals are implemented in real

network scenarios, the results had failed for false positive rates or even detection results.

Most of the anomaly detection approaches have deployed similar steps:

(1) Acquire or use knowledge databases for traffic behavior in network scenarios, such as KDD99,

CAIDA or CRAWDAD, among others, with samples of normal and under attack behavior.

(2) Select the best representative features.

(3) Reduce the search space by diminishing redundant information.

(4) Apply a machine learning method to generate detectors.

Detectors must be applied in network scenarios in order to detect threats for real time traffic, but,

when they are applied in real scenarios, the results for false positives and the detection rates are not

predictable. This is in part because the behavior of a network depends on conditions, such as applications,

servers or even telecommunication architectures, and the network where the IDS is installed does not

have the same behavior as that in which the detector was trained. The main goal of this paper is to show

the statistical differences of the performance between the same detectors in dissimilar network scenarios.

2. Materials and Methods

The applied method began by acquiring the traffic information for real scenarios to then select the

correct features and to filter them to reduce the search space. ANN is the machine learning method

deployed to generate detectors. The system was trained based on a real network scenario, and the

obtained ANN was tested for four different network scenarios with a dissimilar network behavior. Insider

attacks were deployed to calculate the performance for detection and false positive rates.

2.1. Features Selection

The features are acquired with the Spleen application [18], and the structure of the variables are

similar to KDD99 [19]. It is important to make clear that neither the database nor the same number of

features of KDD99 were used, just its structure. The dataset is acquired from normal traffic and under

attack samples and finally labeled by the application. The data is captured from the network traffic

samples during peak hours.

Principal component analysis (PCA) was the method selected to extract the attributes, because it is a

useful technique for very large-dimensional datasets compared to other analysis tools that are limited to

low-dimensional datasets [20]. The relevant advantage of PCA for anomaly detection is its capacity to

identify high and low values of the features with high accuracy [21]. In this work, PCA is employed for

the feature selection phase, in order to reduce the dimensionality in the feature space. The method has

been employed in previous approaches for feature selection for IDSs, specifically with KDD, NSL-KDD

and CAIDA, among others [22–24]. In the work of Kuchimanchi, et al. [24], they employed the critical

eigenvalue test. The test recommends using the principal components whose eigenvalues exceed the

threshold τe = d0.6/15, where d is the dimension of the dataset before the feature selection process. With

our dataset, the threshold is τe = 0.7136. The rest of the features are assumed to contain redundancy and

noise. In previous works, the significant features of KDD were calculated for 19 of the original 42,

Future Internet 2015, 7 98

but we had to calculate the relevant features again, because our dataset is different from KDD, as was

stated before.

With the selected features, it is necessary to learn the search space with a machine learning technique.

Many machine learning approaches, such as genetic algorithms (GA), support vector machines (SVM),

artificial immune systems (AIS), decision trees or ANN, among others, have been applied to anomaly

detection, and although it is possible to find differences regarding the detection results between those

methods, their effectiveness is not so different, so the machine learning technique employed in this work

is ANN [25], because it is a well-known Machine Learning (ML) method with proven performance for

anomaly detection and there are many approaches to compare with our results [2,5,9,10,21,26].

The basic attributes are analyzed in different network scenarios as unusual TCP flags, the number of

out of sequence packets and the average of the payload size [27]. The number of connections and the

percentage of connections are statistical features based on the host checking the number of packets with

the optimal connection during the three-way hand-shake process and synchronization. Other features are

based on the behavior change detector (BCD) as shown in Table 1. The advantage of BCD features for

IDS is their capacity to detect anomaly changes in events during connection [28–30].

The features are shown in lines through an array of m trainings and n features. Datasets are generated

in comma separated value (CSV) files, and they contain 52 features. The selected features are numeric

and the non-selected features are represented as a null value with the “$” symbol. Null fields for the

non-selected features are then simplified into a new variable. The connections structure is represented

in the next matrix. The feature representation is based on the number of connections and the number

of features.

𝐹11 𝐹12 … 𝐹1𝑥𝑛

𝐹21...

𝐹22...

 … 𝐹2𝑥𝑛...

𝐹𝑚𝑥1 𝐹𝑚𝑥2 … 𝐹𝑚𝑥𝑛

The main variables are a combination of the original features stored in a new matrix that represents

the network profiles. Network scenarios have different features and data traffic, according to frequent

services, virtual ports, traffic requests, the number of users, among others.

2.2. Network Scenarios

Four network scenarios were selected for the deployed detectors. Tests were made during working

hours and at the same time periods. The first scenario is a wireless network in a public segment. The

second scenario is a wired network in a private environment, mostly with World Wide Web traffic. The

third segment is a server farm with a secure configuration. The last scenario is a LAN in a militarized

zone (MZ) with VoIP and streaming services.

2.2.1. Wireless Scenario

The architecture of the wireless network is presented in Figure 3. The most frequent identified

services were e-mail, streaming, data and audio transmission through ports 80, 2869, 993 and 5222.

There were 100,023 connections during the test time, which is equivalent to around 300 users. Datasets

were collected in 51 buffers, and there were 58,679 closed connections.

Future Internet 2015, 7 99

Table 1. Behavior change detector features description.

Feature Description

Unusual TCP flags
Boolean variable to check the connection when

it has received packets with an unusual TCP flag configuration.

Number of out of

sequence packets

Number of packets that arrive with delay and

change the message’s order (latency).

Average of the

payload size in bytes

This is the average size of the real message without the header. Payload size is

shown in an integer variable represented in bytes series. The result sizes

shown depend on services requested and connections active.

Count of the connections

from this client in the

last connection

This feature has control of the connections from

the specific host-client only in the last capture or data analysis.

This feature is an integer variable.

Percentage of connections

from the current client with

the States S0 and S1

The S0 state is a configuration to check an initial Synchronization (SYN), but

after, there are no reports of a server request. The S1 state is the configuration of

the three-way

hand-shake connection, but does not show more packets between the

network traffic.

Percentage of connections

from the current client

to the current host

This is a feature shown in a double variable, because it represents a percentage

of the connections from the current client that has the same host and

request services.

Percentage of connections

to the current host with

State S0 and others

The percentage of connections that has attempted connecting

with the server, but has not received answer. Then, the same sends another

package with a new attempt to receive an answer.

Difference between the

number of connections to

the current host

Represents the connections rejected from the host. The host rejected

difference is compared with the ACK package request that has this host.

Difference between the

number of connections to

the current service

Represents the connections rejected, but depends on the service

requested. The service rejected difference is compared for the

current service approved against requested services.

Unanswered host count

This feature is shown in an integer variable based on the number of

connections unanswered by the host. It is based on the number of

packages that have not arrived to the destination.

Unanswered service count

This feature is shown in an integer variable for the number of connections

unanswered according to the services request. It is based on the number of

packages that have not arrived to the destination.

2.2.2. Wired Scenario

The wired network has a structure with 20 hosts connected, including serial port connections with

standard output devices. User’s access is limited to web services such as corporate e-mail, database

access and secure websites. The most frequent identified services were connected through ports: 80, 443,

13,000, 445, 16,881 and 2,011. The wired network architecture is shown in Figure 4. There were 35,047

connections. Datasets were collected in 17 buffers, and there were 27,465 closed connections with

3,534,549 packets.

Future Internet 2015, 7 100

Spleen

Host

Servers IMAP,

(Extensible

Messaging and

Presence Protocol)

XMPP,HTTP

(Service defined by

IANA) ICSLAP

Host Client

172.17.20.X

Host Client

172.17.21.X

Host

Client

172.17.22.

X

Figure 3. Architecture of the wireless network scenario.

GATEWAY

CLIENT
HOST

CLIENT HOST
CLIENT
HOST

SPLEEN
HOST

PROXY,

ADMIN,

EMAIL, WEB

SERVER

Figure 4. Architecture of the wired scenario.

2.2.3. Server Scenario

The server’s network provides services, such as firewall, local DHCP, basic streaming, DNS and web

servers, streaming and FTP, as can be seen in Figure 5. The identified services employed ports 88,

13,000, 445, 135, 49,155, 389 and 8,443. One of the main protocols for the analyzed traffic was

Kerberos [31]. There were about 100,100 connections. Datasets were collect in 33 buffers, and there

were 3,839 closed connections with 6,769,309 packets. Demilitarized Zone (DMZ) is composed by six

servers, and a host with the tool to monitor the traffic is also included.

2.2.4. LAN MZ Scenario

The selected LAN is in an MZ, as in Figure 6. Each user has access to the intranet to update and share

information across departments. The most frequent services were identified through ports 80, 443,

13,000, 445, and 5,678. Management traffic services are bigger in the intranet than over Internet

connections. Some common services are remote replication agent connection (RRAC) with 5678

Future Internet 2015, 7 101

TCP/UDP protocols. Another frequent service is Windows-DS through port 445. The number of

connections was approximately 111,000, with about 15 users during the test time. Datasets were

collected in 21 buffers, and there were 5,505 closed connections with 16,818,686 packets.

CLIENT HOST

SPLEEN HOST

FTP SERVER

WEBSERVER

EMAIL SERVER

FIREWALLCLIENT HOST

CLIENT HOST

Figure 5. Architecture of the server scenario.

ACCOUNTING

ADMIN

COMPUTER S

ROOM ADMIN

LIBRARY

ADMIN

E-MAIL, DHCP,

WEB SERVER

FIREWALL

HTTPS, HTTP,

WINDOWS-

DS, RRAC

Figure 6. Architecture of the LAN militarized zone (MZ) scenario. RRAC, remote

replication agent connection.

2.3. Artificial Neural Network as the Machine Learning Method

Variables that were selected with PCA from the original datasets according to characteristics and

priority weights are employed in the training, validation and test stages [31]. The features applied to the

ANN are composed of four BCD variables, and they are complemented with four variables from the

traditional features [13,32,33]. Each feature represents an input to the neural network, based on the status

flag of the main attributes. The first stage is to select the data and to load the matrix with eight input

variables. The target is loaded to establish the output network. The percentage of the training, test and

validation stages is configured according to the dataset samples. Fifty percent of the dataset samples was

selected for the training stage, 25 percent for the testing stage and the remaining 25 percent for the

validation stage. Then, a suitable neural network is designed by selecting the hidden neurons and the

output layer based on the target.

Future Internet 2015, 7 102

A variable’s status depends on its statistical value and its selection in each connection. The destination

host error rate is a BCD variable that has two status flags, which are represented in bits. The input

variable is normalized between those values that represent the true or false status of the error. The

features with percentage values are normalized for the training. Normalization is implemented to

improve the training time and to standardize the inputs in order to stabilize weights and biases. The

normalization value has a range 0 to 1 to represent the high and low status. Weight and bias values are

stored into a matrix; afterwards, they are tested in each network scenario.

The training was performed with the Levenberg–Marquardt (LM) standard back-propagation

algorithm. LM is an iterative algorithm represented in Equation (1) [34]. The LM algorithm is one of the

most efficient algorithms to combine the gradient descent method and the Gauss–Newton method for

the training stage.

𝑓(𝑥) = ∑(𝑦(𝑥, 𝑡𝑖) − φ(𝑡𝑖))
2

𝑚

𝑖=1

 (1)

The function has m number of connections, where x is a vector of input variables and t is a scalar.

φ is a scalar that includes the weights of the inputs of the training matrix. The LM algorithm is based on

the Hessian matrix [34,35]. The Hessian matrix can be calculated with Equation (2) as a typical training

feedforward network.

𝐻 = 𝐽𝑇𝐽 (2)

where J is the Jacobian component of the principal matrix with input variables. The matrix has m rows

that represent the number of connections and has n columns that represent the input variables.

J implements a gradient vector for each function with e, which is the vector of network errors. The

gradient vector is represented in Equation (3) [35].

𝑔 = 𝐽𝑇𝑒 (3)

The selected features applied to the ANN are described as follows: The first input is the number of

connections with the same service at the current connection in the past two seconds. The second feature

is the percentage of connections that have synchronization status error. The third feature is the percentage

of connections that have a reject status error. The last variable of the normal database for IDS is the

count of connections having the same destination host. The BCD features are: the average of payload

size in bytes, the count of connections from this client in the last connection, the percentage of

connections from the current client to the current host and the percentage of connections to the current

host with States S0 and others. The processing system and the power of the network is delayed for the

training algorithm. The appropriate fitting configuration in this ANN is represented with ten hidden

neurons for the input data. The ANN structure is shown in Figure 7, with eight inputs trained by the

Levenberg–Marquardt algorithm and one output. The output variable acquires two values: possible

attack or a normal connection. We create an ANN for each type of attack; that means that there are three

developed detectors. The initial ANN was set to train for 320 epochs for the first set of detectors,

360 epochs for the second set and 290 for the third set.

Tests were reported for the connections captured with the software tool. Statistical events are

extracted from services for the TCP requests, HTTP sessions and processing times, among others. String

Future Internet 2015, 7 103

and decimal classes are processed to convert the values to binary representation based on the variable’s

status. The target is the last variable of the connections collected in a vector array. The first target is used

to identify the attack type. The attacks are based on the probe category to test each scenario; Table 2

shows the attack types implemented during the training and the code.

Inputs

Variables

Weights

Biases

Hidden Neurons

Weights

Biases

Output

1

Figure 7. Artificial neural network structure for each type of attack.

Table 2. Attack types and their numerical representation.

Attack type Numerical value

Normal 00

ExplorePorts probes 01

IpAgry probes 10

Nessus probes 11

Each attack has been used to test the efficiency in detection. Vulnerabilities are scanned to develop

IDS detectors and to generate reports based on alerts for the incidents. The Nessus scan ports looking

for intrusions in a system.

Analysis of the changes in the behavior in the network scenarios is based on the mean squared error

(MSE). For each single detector, the MSE was calculated, and the final detection result is the mean of

the three detectors.

The evaluation stage has additional tests of the training network. The main process is to analyze the

weights and biases of training network, because these results are located in an array and modified in all

of the scenarios to make the test. Inputs and targets are selected in this step to test the new network. Each

scenario is tested, and its results are collected in statistics graphics.

3. Detection Results

As was stated, detectors were acquired with lab traffic applied to an ANN at three stages, training

validation and testing. Afterwards, those detectors were deployed in acquired databases in each single

network scenario without retraining the ANN. Due to the nature of the ANN training process, the

analysis was made in the same portion of the traffic scenarios, which is why there are results for scenarios

for the training stage although, there was no training process; this is just to compare the results under the

same conditions. The results can be seen in Figure 8.

MSE is the difference between targets and practical outputs; its ideal value is closer to zero, and it is

related to the detection rate. The MSE training ANN represents the results of the detectors with the

portion of the traffic database in the lab environment. These are the optimal results, because the lab data

Future Internet 2015, 7 104

were employed to generate the ANN. The next results show the MSE of the network scenarios with the

detectors of the lab data [36].

The best result for the performance test is the server network with an error of 0.116, and the worst

performance was for the wireless network with 0.21719.

In order to determine if the detectors developed under the lab conditions can be used in real

environments, due to the behavior for which they were trained being different from that for which they

were set up, the traffic samples for each network scenario were employed to generate new detectors. The

results for the detection with detectors created with ANN based on the same scenario in which they were

deployed are called “MSE own training”, and the results explained previously are called “MSE ext

training”. The results can be seen in Figure 9.

Figure 8. Detection results for the test stages of each network scenario to compare the

detectors trained in the lab environment when applied in real-world networks.

Figure 9. Statistics results for MSE external training and its own training network.

0

0.05

0.1

0.15

0.2

0.25

Training Validation Test

MSE Training ANN

MSE Wireless net

MSE Wired net

MSE LAN MZ net

MSE Servers net

0.000

0.050

0.100

0.150

0.200

0.250

Server Net LAN Net Wireless Net Wired Net

MSE Ext training

MSE Own training

Future Internet 2015, 7 105

Detection is improved when the ANN is retrained, but in a real environment, this means that new data

must be acquired each time a detector is installed.

4. Discussion and Analysis

Internet-based attacks are changing dynamically from polymorphisms to mobile integrated attacks.

As we increase web services and cloud dependency, the number of security holes also increases, which

is posing a completely new threat in the near future. It is necessary to employ intelligent methods, and

anomaly detection could provide the necessary detection availability. However, it turns out that most of

the intelligent approaches employ similar general steps with different machine learning techniques. The

main problem is not the learning method, as it is possible to see differences between them, but these

differences are not really significant. It seems that the difficult point is to find a way to obtain the training

data from realistic scenarios and to create a technique to retrain the system constantly, something similar

to a biological immune system, not as an algorithm, but as a complete network solution. In fact, artificial

immune systems and sub-applications have been presented as machine learning methods, but as was

stated, this is just another interesting method.

With anomaly detection, the results show that an IDS detector that was developed in the context of a

network’s behavior is not useful in another network with dissimilar applications. The detector is well

adapted in its own environment, but it needs to be retrained to achieve good detection results. The

detection differences between the network where the ANN detectors were calculated and the tested

scenarios are unacceptable in real environments, going from an error of 0.1% in the same network that

was used for training, to almost 22% in a different scenario.

It would be useful to apply a methodology for transfer learning, also known as knowledge transfer.

This is an emerging field in machine learning that tries to solve the problem of rebuilding the solution

when the feature space and distribution have changed [37]. In fact, from the differences shown in this

paper regarding the detection results in different network scenarios, it is clear that there will be a

definition for the problem of knowledge transfer that could solve detection stability for IDS architectures

in the near future.

Additionally, most approaches use old datasets, which is useful to probe machine learning

methodologies, but is not helpful for new attack detection. This changes the accuracy of the system,

because the old datasets were developed for simulation scenarios or with different network topologies.

The parameters to be considered in Anomaly Detection (AD) IDS design are: network applications,

security policies, memory capabilities to reinforce detectors, support of learning on the go, coordination

between detectors for different behaviors and compatibility with auditing processes.

Although there are uncountable network user behaviors, it is possible to imagine a network

classification according to its behavior, but in order to probe this statement, it is necessary to establish

traffic behaviors that are not necessary related to topologies. For example, we calculated differences for

detectors with two similar network topologies: a wired network and a LAN MZ network, but the

variation of the detection error is near 10%, so a classification by Layer 1, 2 or 3 of the Open System

Interconnection (OSI) model is not possible.

Future Internet 2015, 7 106

5. Conclusions

As expected for AD-based on behavior, detectors that were trained in a network environment are not

suitable when installed in a network where the behavior is quite different. Those differences are not easy

to model, because the user’s behavior depends on variables, such as available ports, security policies for

appliances, network architectures and even operating systems. What is normal in a network is not

necessarily normal in another.

Nevertheless, the advantages of AD, such as the detection of zero-day attacks, obfuscated variations

and insiders and their ability to reduce the search space compared with the growing rules of misuse

detection, are motivations to develop a system capable of self-learning in the network in which the

detector is set up.

Acknowledgments

Edward Guillen thanks Jhordany Rodriguez for his work at “Grupo de Investigación en Seguridad y

Sistemas de Comunicaciones” GISSIC on Spleen programming. This work was possible in part with the

support of the Military University with funds of Project ING1199, and Colciencias young

research program.

Author Contributions

E.G author worked on the design of the tests, network scenarios, and analysis of results.

J. S author worked with the measurements of the scenarios and ML method.

R. P. worked on the architecture of the network scenarios

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Zhao, D.; Xu, Q.; Feng, Z. Analysis and Design for Intrusion Detection System Based on Data

Mining. In Proceedings of the 2010 Second International Workshop on Education Technology and

Computer Science (ETCS), Wuhan, China, 6–7 March 2010; pp. 339–342.

2. Chen, C.-M.; Chen, Y.-L.; Lin, H.-C. An efficient network intrusion detection. Comput. Commun.

2010, 33, 477–484.

3. Hoque, M.S.; Mukit, M.A.; Bikas, M.A.N. An implementation of intrusion detection system using

genetic algorithm. Int. J. Network Secur. Appl. 2012, 4, 109–120.

4. Kim, G.; Lee, S.; Kim, S. A novel hybrid intrusion detection method integrating anomaly detection

with misuse detection. Expert Syst. Appl. 2014, 41, 1690–1700.

5. Axelsson, S. Intrusion Detection Systems: A Survey and Taxonomy; Technical Report: Chalmers

University of Technology, Goteborg, Sweden, 14 March 2000.

6. Liao, H.-J.; Richard Lin, C.-H.; Lin, Y.-C.; Tung, K.-Y. Intrusion detection system:

A comprehensive review. J. Netw. Comput. Appl. 2013, 36, 16–24.

Future Internet 2015, 7 107

7. Cannady, J.; Harrell, J. A comparative analysis of current intrusion detection technologies.

In Proceedings of the Fourth Technology for Information Security Conference, Houston, TX, USA,

May 1996.

8. Scarfone, K.; Mell, P. Guide to intrusion detection and prevention systems (idps). NIST Spec. Publ.

2007, 800, 94.

9. Corchado, E.; Herrero, Á. Neural visualization of network traffic data for intrusion detection.

Appl. Soft Comput. 2011, 11, 2042–2056.

10. Bhat, A.H.; Patra, S.; Jena, D. Machine Learning Approach for Intrusion Detection on Cloud Virtual

Machines. Int. J. Appl. Innov. Eng. Manage. 2013, 2, 57–65.

11. Guillen, E.; Padilla, D.; Colorado, Y. Weaknesses and strengths analysis over network-based

intrusion detection and prevention systems. In Proceedings on the IEEE Latin-American

Conference on Communications, 2009 (LATINCOM'09), Medellín, Colombia, 10–11 September

2009; pp. 1–5.

12. Denning, D.E.; Neumann, P.G. Requirements and Model for Ides—A Real-Time Intrusion Detection

Expert System; SRI Intermational Final Technical Report: Menlo Park, CA, USA, 28

February 1985.

13. Kayacik, H.G.; Zincir-Heywood, A.N.; Heywood, M.I. Selecting features for intrusion detection:

A feature relevance analysis on KDD 99 intrusion detection datasets. In Proceedings of the Third

Annual Conference on Privacy, Security and Trust, New Brunswick, Canada, 12–14 October 2005.

14. Mukkamala, S.; Janoski, G.; Sung, A. Intrusion detection using neural networks and support vector

machines. In Proceedings of the 2002 International Joint Conference on Neural Networks, 2002

(IJCNN'02.), Honolulu, HI, USA, 12–17 May 2002; pp. 1702–1707.

15. Tang, H.; Cao, Z. Machine Learning-based Intrusion Detection Algorithms. J. Comput. Inf. Syst.

2009, 5, 1825–1831.

16. Lazarevic, A.; Ertцz, L.; Kumar, V.; Ozgur, A.; Srivastava, J. A Comparative Study of Anomaly

Detection Schemes in Network Intrusion Detection. In Proceedings of the Third SIAM International

Conference on Data Mining, San Francisco, CA, USA, 1–3 May 2003; pp. 25–36.

17. Olusola, A.A.; Oladele, A.S.; Abosede, D.O. Analysis of KDD 99 intrusion detection dataset for

selection of relevance features. In Proceedings of the World Congress on Engineering and Computer

Science, San Francisco, CA, USA, 20–22 October 2010; pp. 20–22.

18. Rodriguez, J. GTS: GNU Triangulated Surface Library. Available online: http://gts.sourceforge.net/

(accessed on 13 April 2015).

19. Stolfo, S.J.; Fan, W.; Lee, W.; Prodromidis, A.; Chan, P.K. Cost-based modeling for fraud and

intrusion detection: Results from the JAM project. In Proceedings of the DARPA Information

Survivability Conference and Exposition, 2000 (DISCEX'00), Hilton Head, SC, USA, 25–27

January 2000; pp. 130–144.

20. Kim, B.-J.; Kim, I.K. Machine Learning Approach to Realtime Intrusion Detection Systems. AI

2005: Advances in Artificial Intelligence; Springer Berlin Heidelberg: Berlin, Germany, 2005,

pp. 153–163.

Future Internet 2015, 7 108

21. Camacho, J.; Macia-Fernandez, G.; Diaz-Verdejo, J.; Garcia-Teodoro, P. Tackling the Big Data 4

vs for anomaly detection. In Proceedings of the 2014 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS); Toronto, Canadá, 27 April–02 May 2014;

500–505.

22. Eid, H.F.; Darwish, A.; Abraham, A. Principle components analysis and support vector machine

based intrusion detection system. In Proceedings of the 2010 10th International Conference on

Intelligent Systems Design and Applications (ISDA), Cairo, Egypt, 29 November–1 December

2010; pp. 363–367.

23. Chen, Y.; Li, Y.; Cheng, X.Q.; Guo, L. Survey and taxonomy of feature selection algorithms in

intrusion detection system. In Information Security and Cryptology; Springer Berlin Heidelberg:

Berlin, Germany, 2006; pp. 153–167.

24. Kuchimanchi, G.K.; Phoha, V.V.; Balagani, K.S.; Gaddam, S.R. Dimension reduction using feature

extraction methods for Real-time misuse detection systems. In Proceedings of the Fifth Annual

IEEE SMC on Information Assurance Workshop, West Point, NY, USA, 10–11 June 2004;

pp. 195–202.

25. Govindarajan, M.; Chandrasekaran, R. Intrusion detection using neural based hybrid classification

methods. Comput. Netw. 2011, 55, 1662–1671.

26. Amiri, F.; Rezaei Yousefi, M.; Lucas, C.; Shakery, A.; Yazdani, N. Mutual information based

feature selection for intrusion detection systems. J. Netw. Comput. Appl. 2011, 34, 1184–1199.

27. Rangadurai Karthick, R.; Hattiwale, V.P.; Ravindran, B. Adaptive network intrusion detection

system using a hybrid approach. In Proceedings of 2012 Fourth International Conference on

Communication Systems and Networks (COMSNETS), Bangalore, India, 3–7 January 2012;

pp. 1–7.

28. Guillén, E.; Rodriguez, J.; Páez, R. Evaluating Performance of an Anomaly Detection Module with

Artificial Neural Network Implementation. Int. J. Comput. Inf. Syst. Control Eng. 2013, 7,

836–842.

29. Sommer, R.; Paxson, V. Outside the closed world: On using machine learning for network intrusion

detection. In Proeedings of the 2010 IEEE Symposium on Security and Privacy (SP), Oakland, CA,

USA, 16-19 May, 2010; pp. 305–316.

30. Wang, K.; Stolfo, S.J. Anomalous payload-based network intrusion detection. In Proceedings of the

Recent Advances in Intrusion Detection, Sophia Antipolis, France, 15–17 September 2004;

pp. 203–222.

31. Neuman, B.C.; Ts’o, T. Kerberos: An authentication service for computer networks.

IEEE Commun. Mag. 1994, 32, 33–38.

32. Mahoney, M.V.; Chan, P.K. PHAD: Packet header anomaly detection for identifying hostile

network traffic; Florida Institute of Technology Technical Report: Melbourne, FL. USA,

April 2001.

33. Sung, A.H.; Mukkamala, S. Identifying important features for intrusion detection using support

vector machines and neural networks. In Proceedings of the 2003 Symposium on Applications and

the Internet, Orlando, FL, USA, 27–31 January 2003; pp. 209–216.

34. Wilamowski, B.M.; Yu, H. Improved computation for Levenberg–Marquardt training. IEEE Trans.

Neural Netw. 2010, 21, 930–937.

Future Internet 2015, 7 109

35. Yu, H.; Wilamowski, B.M. Levenberg-Marquardt Training. Ind. Electron. Handb. 2011, 5, 1–15.

36. Guillén, E.; Rodriguez, J.; Páez, R.; Rodriguez, A. Detection of non-content based attacks using

GA with extended KDD features. In Proceedings of the World Congress on Engineering and

Computer Science, San Francisco, CA, USA, 24–26 October 2012; pp. 30–35.

37. Pan, S.J.; Yang, Q. A survey on transfer learning. Knowledge and Data Engineering. IEEE Trans.

2010, 22, 1345–1359.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

