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Abstract: Currently, the field of smart-* (home, city, health, tourism, etc.) is naturally heterogeneous
and multimedia oriented. In such a domain, there is an increasing usage of heterogeneous mobile
devices, as well as captors transmitting data (IoT). They are highly connected and can be used for
many different services, such as to monitor, to analyze and to display information to users. In this
context, data management and adaptation in real time are becoming a challenging task. More
precisely, at one time, it is necessary to handle in a dynamic, intelligent and transparent framework
various data provided by multiple devices with several modalities. This paper presents a Kali-Smart
platform, which is an autonomic semantic-based context-aware platform. It is based on semantic web
technologies and a middleware providing autonomy and reasoning facilities. Moreover, Kali-Smart
is generic and, as a consequence, offers to users a flexible infrastructure where they can easily control
various interaction modalities of their own situations. An experimental study has been made to
evaluate the performance and feasibility of the proposed platform.
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1. Introduction

Pervasive mobile applications are growing and their complexity is increasing dramatically.
As a consequence, their maintainability and adaptability are becoming a challenging task. Moreover,
in such systems, there is an increasing usage of different and heterogeneous mobile devices, as well
as captors transmitting data (IoT). They are highly connected and can be used for different services,
such as to monitor, to analyze and to display information to users. Therefore, data management and
adaptation in real time are becoming challenging tasks. Context management is a key element for
deriving semantically-rich context insights about mobile users (high-level adaptation task, preferences,
intentions) from low level measurements (location, type of activity, etc.) to their online multimodal
interactions, or more compellingly, from a combination of these. We argue here that users’ mobility,
users’ situations (e.g., activity, location, time) and the limited resources of mobile devices (e.g., battery
lifetime) need to ensure the service continuity on mobile devices.

Today, the field of smart-* (home, city, health, tourism, etc.) is highly multimedia oriented
by nature; contents are heterogeneous; and it lacks a smart way to manage various modalities
according to the current users’ needs, usage situations and execution context. As a consequence,
mobile applications certainly exist, but most often are inadequate according to users” expectations and,
more precisely, the instant expectations. Moreover, the massive use of new technologies has led to
a dramatic multiplication of a wide range of mobile applications, different usages and a huge amount
of information. Using many different devices (home and professional PCs, set-top boxes, smartphones,
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etc.) make the user quite confused. This could imply that he or she would need to install a number of
applications on various devices even if it is only just for short-lived interactions. That will provoke
a huge multiplicity of applications (to install/uninstall /update), configurations and redundant context
and user profiles. Therefore, it becomes mandatory to find a dynamic, intelligent way that can manage
multiple devices at the same time. These devices need to communicate regardless of the difference
of hardware/software. Our goal is to provide the suitable services and interactive applications in
a transparent way for the user, according to his or her needs (personal, health, social and professional)
and to his or her current context.

In order to design smart context-aware mobile applications, we need to exploit semantic web
technologies, as well as the Kalimucho middleware [1], where the mobile application qualities are
managed in an efficient way according to user needs and available context sources. Our proposed
platform is implemented using an ontology-based approach. This ontology captures a shared
conceptual schema common in location in specific application domains, such as tourism, healthcare,
transport, sport, etc., and maintains semantic quality information in heterogeneous service providers
for the service model. Our application will run on a flexible, extendable semantic model that will
be able to evolve at every moment without any intervention of the users. We extend our previous
knowledgebase set on a high semantic level on a cloud architecture [2] to include full distributed
situation management in heterogeneous environments. To capture and characterize situations, we
scan their environments (sensors and smart devices) and reason upon context changes in which
multimodal and distributed behavioral adaptation is required. Our goal is to manage transparently
all of the functionalities and additional modules that users may require in an ideal situation not
available nowadays.

Our proposed platform is implemented using an ontology-based approach. This ontology
maintains semantic quality information in heterogeneous service providers. We particularly focus on
context-aware e-health mobile applications. To keep capturing the context in an efficient way, we need
to have a platform able to monitor and handle continuous context changes. The distributed /centralized
context monitor and event manager collect and manage any important information that could be
important for the context regardless of its source and store it in a database. Then, it is represented and
inferred within this context using our ontology and centralized context reasoner in order to deduce the
current situations that are reported to the service controller. The latter is responsible for selecting the
appropriate quality service to the user according to the inferred situations according to our strategy [3].
The execution is based on Kalimucho [1]. Such middleware allows a dynamic (re-)deployment strategy
of services. Kalimucho is a platform that allows dynamic reconfiguration of applications on desktops,
laptops and mobile devices. However, this platform is not currently focusing on the service selection
and the service prediction, and then, it does not allow providing the appropriate service to the user.

Our main objectives are to extend the Kalimucho platform with a new layer called Autonomic
Semantic Service Adaptation Controller and Reconfiguration (ASSACR) in order to: (1) dynamically
monitor usage resources and user constraint changes among heterogeneous network protocols
and mobile platforms (laptop, smartphone, etc.); (2) provide a centralized/distributed semantic
multimodality event detection in order to manage relevant context information that could be important
for the context regardless of its source; (3) provide a distributed action mechanism that will give
the application the flexibility and dynamicity; (4) provide centralized semantic adaptation decision
making to achieve the efficient adaptation of decisions; (5) find and select relevant semantic services
for several heterogeneous mobile devices, many cloud services for a full usage multimodality and
connected mobiles devices being shared every time; (6) maximize redundancy relays and switching
mobile services; (7) autonomic optimization of the response time of situation matching under the
criteria’s priority (location, time, category). Our platform uses semantic technologies and the concept
of multi-devices’ context data representation to facilitate a seamless and interactive media service in
a common contextual mobile environments.
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Section 2 deals with related works in context-aware software platforms and possible types of
adaptations. Section 3 focuses on our contribution, i.e., the ASSACR framework. In this section, we
will detail our smart semantic-based context-aware service selection strategy. Section 4 describes our
adaptation platform architecture, i.e., the Kali-Smart platform. Section 5 validates our proposal, and
Section 6 concludes the paper with some future works.

2. Related Works

The first related area of research is some platforms involving the adaptations of component-based
applications referring to the evolving needs of the users and the execution context by exploiting
event-condition-action rules (e.g., WComp [4], MUSIC [5], OSGi [6], Kali2Much [7], Kalimucho [1]).

MUSIC [5] is the most well-known autonomous platform supporting self-adaptative mobile
and context-aware applications. This platform can be adapted to the dynamic changes of the
environment (e.g., location, network connectivity) in order to satisfy the user requirements and
device properties (battery, memory, CPU). The adaptation process defined in MUSIC is based on
the principles of planning-based adaptation. This work has not taken into account the multimodal
aspects for user-machine interaction and the contextual information that can be gathered by bio-sensors
and the distributed action mechanism. WComp [3] proposed a powerful framework for adapting
multimodal mobile services in a pervasive computing environment by constructing a private mobile
service adaption agent for each mobile user in the cloud. The main drawback of such a platform is the
distributed adaptation action mechanism and some smart multimodal event detection mechanisms
(Usb (Universal Serial Bus) inputs/outputs, social inputs, etc.).

Recently, Da et al. [7] have proposed a context management middleware Kali2Much to provide
services dedicated to the management of distributed context at the semantic level on the shared domain.
This work offered excellent smart service management and a predefined policies” deployment strategy,
but disagrees in the user-defined policies and did not consider the prediction of user context changes.

Another interesting work is SenSocial [8], which defines middleware for integrating online social
networks and mobile sensing data streams. This middleware is based on social networks for capturing
and filtering context data. It proposes a generic solution to manage and aggregate context streams
from multiple remote devices. This work provides richer contextual information from online social
networks and did not take into account the semantics of services and that of the category, QoS and
context constraint.

More recently, Taing et al.’s [9] work was based on the Context Toolkit infrastructure; it supports
the change of XML files and fire events to an unanticipated adaptation component that can be associated
to fully described situations, including time, place and other pieces of context. This work uses
a transaction mechanism to ensure uniformly-consistent behavior for every smart object executing
inside a transaction and supports only a notification as an action type without multimodality aspects
that can be triggered as a result of situation identification and smart event detection.

The second related areas of research are multimodal adaptation projects [10-13]. However,
these works lack a new way (i.e., using a detection function to detect modality (touch, gesture, voice)
to activate it in another device) to respond to the user needs in a dynamic intelligent way.

Roberto Yus et al. [10] proposed a system that processes user requests continuously to provide
up-to-date answers in heterogeneous and dynamic contexts according to the locations of the mobile
users to offer customized information. Ontology techniques are used to share knowledge among
devices, which enables the system to guide the user to select the service that best fits his/her needs in
the given context. This work is efficient and shared between different services using OWL as the best
candidate to describe and format it. However, SHERLOCK does not support multimodal standards
for representing the application-specific semantics of user input.

Etchevery et al. [11] intended to focus on the Visual Programming Language (VPL), which
allows designers to specify the interactions between the system and users who have a minimum
computer-science background. The power of VPLs is the possibility of interpreting the meaning of
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diagrams in order to automatically generate executable code; each interaction is described by a diagram
specifying the user action initiating the interaction, as well as the system reactions. VPL could be
profitable for touristic or educational purposes. However, this work lacks the semantic expressiveness
and efficient context management.

Primal Pappachan et al. [12] proposed (Rafiki: a Semantic and Collaborative approach to
Community Health-Care in Underserved Areas) a system for mobile computing devices, which guides
community health workers through the diagnostic process and facilitates collaboration between
patients and healthcare providers. Interactions in community healthcare could be done by the
Internet-based approach or a peer-2-peer (P2P) approach. Semantic context rules specify the desired
reactive behavior and can be manually defined by designers or generated by applications.

To improve the interactions between machine and users, Joyce Chai et al. [13] have developed
a tool called (Responsive Information Architect) RIA: A Semantics-based Multimodal Interpretation
Framework for conversational Systems. The idea is whatever the use input (text, gesture, voice),
the input should be interpreted according to the user situation and desires. The work proposed
an event-condition-action rule specification that satisfies the functional requirements of covering the
five semantic dimensions and handling various data collected from sensor devices and smartphone
middleware, as well as supporting composite contexts.

All of the above described related works provide a mechanism for dealing with the inherent
heterogeneity and complexity of ubiquitous environment. Hence, to compare to our proposal
(see Table 1), they do not: (1) provide a distributed action mechanism with smart multimodality
aspects and a service prediction strategy that will give the application the flexibility and dynamicity
needed to run through the user’s environment, which, to our knowledge, have not been proposed yet
in this field; (2) support migration of context middleware components (i.e., event detection, situation
reasoner, action mechanism) in a transparent and uniform way; and (3) distributed /centralized context
monitor and semantic event detection in order to manage relevant information that could be important
for the context regardless of its source. In addition, we implement a centralized semantic context
reasoner making the decision a centralized process that will be handled by the main host (e.g., cloud,
server, etc.). This choice is meant to prevent the redundancies of adaptation decisions.

Table 1. Related works’ comparison.

Related Works Context Monitorand  Smart Multimodality Situation Action Mechanism
Event Detection Event Detection Reasoner and Prediction
[13] Centralized None Centralized None
[1,7,9,12] Distributed None Centralized Centralized
[8] Centralized Social mechanisms None Centralized
[4,5,12] Distributed multimodal Centralized Centralized

The combination of the Kalimucho middleware [1], mobile computing and IoT, with ontologies
and rules-based-approaches, provides a new design approach for context-aware healthcare systems.
In addition, the context model that we have proposed allows not only representing and reasoning
about contextual information, but also providing a generic and flexible model to the developer that
facilitates modeling the context and developing context-aware system.

We extended our previous works [3] by allowing a user to define his or her preferences to
generate a primary context configuration as desired with a distributed action mechanism with
multimodality aspects and a service prediction strategy. We propose an autonomic and dynamic service
management that monitors, analyzes, plans and optimizes the service latency delay and maximizes
service reliability. ASSACR (Autonomic Semantic Service Adaptation Controller and Reconfiguration),
provides an automatic discovery of equivalent multimodal services/duplicated adaptation paths by
analyzing the execution context and makes relevant semantic services for multi-heterogeneous mobile
devices and many more one-cloud services for all full use, connected mobiles devices and mobile
objects being shared every time.
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3. Kali-Smart: Autonomic Semantic-Based Context-Aware Adaptation Platform

Kali-Smart extends the Kalimucho platform [1] to find the appropriate service/device with the
multimodality aspect. Mainly, the platform should continuously monitor the all of incoming sensor
events and immediately detect a certain abnormal situation from them. Furthermore, the platform
needs to predict context changes for various user-oriented application services. As the solution to this,
we extended the existing Kalimucho platform to be seamlessly integrated with the incremental service
prediction strategy and the distributed adaptation action mechanism. This strategy encouraged us to
efficiently minimize service switching risks, which may cause traffic congestion and a long blockage of
mobile device.

Kali-Smart is based on a distributed semantic context monitor in order to manage important
context information according to the current user’s need when moving in his or her smart environment.
We opted for a centralized context reasoner making the decision in a centralized process that will
be handled by the main host of services (e.g., server, computer, cloud, etc.). This choice is meant to
prevent redundancies of adaptation decisions. Nonetheless, we will defy the above related works by
implementing a distributed action mechanism that will give the application flexibility and dynamicity.

3.1. Platform Architecture

Here is a general overview of the on the fly smart semantic-based services adaptation architecture
(Figure 1). It is composed of four layers (Figure 1):

1.  The Knowledge Base (KB) Management Layer is the part of the platform that is responsible for
the representation of the context information in OWL-DL(Description Logics). In our approach,
KB consists of the central component, which corresponds to a knowledgebase of different
users’ profiles, semantic multimodal services and reconfigurations files and a knowledgebase
of semantic service description. We exploit most of the capabilities that OWL provides, such
as reusability, sharing and extensibility, in way to offer wide representation of the context in
smart-* domains.

2. The Semantic Context-aware Services Management Layer is responsible for managing the
adaptation process and providing a continuous response to a user by adapting dynamically
its context provisioning paths according to the change happened during its execution. This core
layer relies on the following components:

e  The User Context Manager is responsible for capturing user context changes and storing
these in a KB repository. The user context is enriched from different explicit constraints and
implicit resource characteristics, services with various modalities and shared multimedia
documents. This component includes:

- Semantic Constraint Analyzer: interprets the profile, which expresses the users’ preferences
(e.g., explicit constraint), context information about the device (memory size, battery
level, CPU speed, screen resolution, location, etc.), supported documents (media format,
media type, content size, etc.), network characteristics (bandwidth, protocol type, etc.).

- Constraint Translator: converts some semantic users’ constraints specified in qualitative
terms into triplet pattern in the OWL format.

- Context Collector: collects static and dynamic context (user’s information, device’s
information and sensor data) via different interfaces. The collected information will be
integrated to make the low-level context and stored as the XML format.

- Context Pre-Processor: is responsible for analyzing sensor data in order to remove
duplicated data und unify sensor data that can have different measurement units.

- Context Translator: is responsible to convert the context data into a triplet pattern in the
OWL format.
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Services Context Manager is responsible for extracting and storing the context service
multimodal description (gesture, voice, pen click and mouse click) with semantic context
service constraints in a service repository. It is enriched by various QoS parameters (media
quality, execution time, etc.).

3. The Autonomic Semantic Service Adaptation Controller and Reconfiguration (ASSACR)
Layer supports the building of personalized and adapted process from available adaptation
services. It is designed to follow an incremental dynamic strategy for provisioning services
regarding the context changes during execution. We takes user’s current context (battery level,
CPU load, bandwidth, user location) and all of his or her surrounding resources as the input
(local, remote). Solving the single user constraint in a low service space (local, neighbors) is easier
and less time consuming.

Context Monitor: is responsible of verifying the user’s context change by contacting the
User Context Manager component.

Context Reasoner: is responsible for making inferences on the ontology information,
determining and deploying the appropriate services according to the deduced situations.
This component includes:

- Situation Reasoner: This is based on the JESS (Java Expert System Shell) inference
engine [14], executes the SWRL (Semantic Web Rule Language) situation rules and
infers the current situations. The SWRL situation rules include user-defined rules written
and executed on the available context information in order to infer additional knowledge
and conclusions about it. We choose to follow the rules-based approach for the basic
advantage that a user can simply reconfigure the behavior of the environment by defining
new rules, without having to change the source code.

- Action Reasoner: which is based on the JESS inference engine, as well [15], executes
the SWRL service rules and determines the appropriate actions according to the
deduced situations.

- Prediction Reasoner: is responsible for generating predictions about the activity and
situations happening in the environment.

Service Controller is responsible for re-routing the data transfer to another path when there
is poor QoS, connection failure, low battery, etc., in order to ensure service continuity and
perform reconfiguration changes at the Kalimucho server.

- Automatic Semantic Service Discovery: all gateways and services in the same local network
are automatically discovered by sending SNMP (Simple Network Management Protocol:
which represents the management information control that describes the router state)
broadcast. Only mobile devices hosting the Kalimucho platform with SNMP will
send a response to the SNMP request broadcast by ASSACR. SNMP responses will
be processed by ASSACR to establish the neighbors/services individuals of the OWL
Host and Services Classes in the ontology repository.

- Semantic Service Analyzer: analyzes equivalent semantic services based on location, time
and activity with different qualities (execution time, modality input/output). Two cases
are possible for equivalent semantic services with different qualities: (1) semantic
equivalent services with different service qualities at the same Kalimucho gateway;
in this case, redundancy is supported by the Kalimucho gateway; and (2) semantic
equivalent services with different service qualities selected from two (or more) gateways.
In this case, redundancy is supported by the Kalimucho server.

- Reconfiguration Generator: SNMP is a simple protocol to ensure dynamic service
reconfiguration; ASSACR can automatically create configuration files to be saved in
a Kalimucho repository.
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- Service Deplorer: the configuration file created in the previous phase is copied in the
Kalimucho cloud server, and all mobile devices affected by the equivalent path and the
new services configuration are saved.

4.  The Kalimucho Platform Layer: offers service-level functions: the physical (re-)deployment and
dynamic incremental reconfiguration strategy according to its system (Android, laptop with
QoS requirement, dynamic supervision of adaptation components and communication protocols
between mobile nodes).

!

ASSACR

[ Service Controller

Reconfiguration
Generator

=g Service Discovery Service Analyzer

Context Reasoner

|
|
= |
|
|

< q Situation Reasoner

' Context Service Manager | Context User Manager
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Context | Constraint Manager | Context Manager ||

- !

| | Constraint Analyzer |[ Context Listener Context Collector |
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1 Network Manager { | Constraint Translator || Context Translator :
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Figure 1. Kali-Smart: platform architecture. ASSACR (Autonomic Semantic Service Adaptation
Controller and Reconfiguration).
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3.2. Functional Model of the Smart Semantic—Based Context-Aware Adaptation Platform

The objective of the smart semantic-based context-aware platform is to provide a suitable service
to users. This service has to fit with the usage context, such as: physical characteristics of the device,
the bandwidth, the user’s wishes, etc. An overview of the functional model of the smart semantic-based
context-aware platform is provided in Figure 2.

"Sensor Data" ./

=D o | @
7

‘ UI Kalimucho

o Object Samples

—
& ~ {
’ DataBase ’<;SE‘S_°"S_ 3

ECA Rules 0

Spatio-temporal ECA

Rules

Analyzer
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Individuals

Optimizer and R o g
g ' ReDeployment\1U

OWL Classes Inference

o e :j Save and Execute Reconfiguration File
~ T« [10) | @

-4
A OWL Individuals e e T e e Generate
Generation of reconfiguration actions ) Reconfiguration Scripts

OWL Individuals >

A

Generate Predictive
Reconfiguration Scripts

o =D

Figure 2. Model of the Kali-Smart adaptation platform. ECA (Event Condition Action); SWRL
(Semantic Web Rule Language); OWL (Web Ontology Language).

As shown in Figure 2, the pervasive environment represents user, sensors, smart devices, smart
objects and services. The pervasive environment is supervised by the Context Monitor and the Service
Controller. The Context Monitor collects contextual information from the pervasive environment, which
represents row and heterogeneous data, analyses and interprets these data with respect to high level
information, which will present the adaptation of the system behavior and will be reported to the
Service Controller. The Service Controller is used to generate the chain of quality services according to
the situations raised. The Service Deployer deploys and executes the service chain.

In the following part, we give more details about the context model of our architecture.

4. Ontology and Rules-Based Context Model

4.1. Context Modeling

The main objective of our approach is to improve the efficiency and accuracy of users’ adaptations
tasks. This objective is achieved through finite sets of semantic relevant adaptation services and
various users’ contexts. A user has a context in which he or she wishes to adapt his or her multimedia
documents within a specific activity in a known time and location using one of the offered modalities;
any smart service can be used in a local way or using the cloud, which allows him or her to handle the
data storage that he or she needs to run his or her applications.
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In order to facilitate the conception and the development of our ontology, we divide it into
four hierarchical levels: (1) Contextual Information level; (2) Contextual Situations level; (3) Contextual
Services level; (4) Contextual Constraint level. These levels contain seven main classes, which are: Context
class, Event class, Situation class, Service class, Context Constraint Class, ContextProperty class,
ContextPropertyLogicValue class. These classes represent generic concepts, which can be used in any
pervasive context-aware distributed mobile application that aims to provide appropriate services to
the user according to the current situations.

4.1.1. Context Sub-Ontology

We divided the context sub-ontology into seven sub-contexts (see Figure 3).

o  The RessourceContext describes the current state of the hard equipment and soft equipment
(memory size, CPU speed, battery energy, etc.).
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e 1strai L N
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el iicions (T et orovegly contomtisaiciaioes” " Lagic vanse
Figure 3. An overview of the structure of the common context ontology.
o  The User Context describes information about the user, which can alter the adaptation service.

User preferences include user age, preferred languages and preferred modalities (voice, gesture,
pen click, mouse click, etc.). A user can select which multimedia object can be adapted (image,
text, video or audio), for example if he or she receives audio when he or she is at work, he or she
would rather receive a text instead; that means we need an adapting service to change the audio
to a text. We can find also a description of the user’s health situation, as the user can be healthy or

handicapped (Figure 4).
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Figure 4. User context sub-ontology.
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e  The Smart-Object Context describes data that are gathered from different sensors and describe
orchestrated acts of a variety of actuators in smart environments (Figure 5). We have three types
of sensor data: (1) bio-sensor data represent data that are captured by bio-sensors, like blood
pressure, blood sugar and body temperature; (2) environmental sensor data represent data that
are captured by environmental sensors, like home temperature, humidity, etc.; (3) device sensor
data represent data that are captured by sensors, like CPU speed, battery energy, etc.
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NoiseSensor -\w'mdanensor) iy =

Nl S ot

Figure 5. Smart-object context sub-ontology.

e  The QoS Context describes the quality of any mobile-based application, which can be represented
in our ontology, which is defined as a set of metadata parameters. These QoS parameters are:
(1) continuity of service; (2) durability of service; (3) speed and efficiency of service; and (4) safety
and security (see Figure 6).

Context

k-a

ContextQoS

I-a Is-a Is-a

/ el o { L . - ] ey .
Availibility_Of Service | | Continuity_Of_Service Media_Quality_Of_Service | Security_Safety_Of_Service /.
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(QoS_Speed_Efﬁcencv_Of_Service_LogicNaiutD

Figure 6. QoS context sub-ontology.
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e  The Host Context represents different hosts of services proposed by providers. For example,
services can be hosted on local devices or on the cloud. The local device class contains information
about fixed devices or mobile devices. Mobile devices have limited resources, such as battery,
memory and CPU. The Cloud class contains information about the cloud server (e.g., Google
cloud) that can be used for hosting services. The service is deployed and migrated on the host,
and as the service has constraints, so a substitution of the service location could occur (a possible
scenario is when the battery level is low, the service should be migrated on the cloud, so that
the data could be stored separately and that could help minimize the use of energy). As mobile
limited resources can break the mobile services, we are looking to the cloud or resources in
proximity as a way to ensure the service continuity on mobile devices (see Figure 7).

{ Device \

{ o
\_ InteracatedThrough ) g Dev:emspalyr/\,

Context

f'/ “\ T
\\ DevicePlateform )‘ " HasBattery |
J

\ /
. /

i A
o4 < [ contexthost |
§ Device \ Xe S

o
| SupportedMedia /' sl )

[ oevie ) e ( coud

N
A

Is: Is-a
2 X B a ™
(" Fxedbevice ) [ MobileDevice )
\__ _ > _ oy

p

/ \ \ ( N {7 N \ f \ [
[ cameralP f] ( PC ) L SmartTv ) L Laptop ) { Smartphone ) | Smartwatch )\ Tablet )

Figure 7. Hard context sub-ontology.

e  The Environment Context describes spatial and temporal information (Figure 8):

- Temporal information can be a date or time used as a timestamp. Time is one aspect of
durability, so it is important to date information as soon as it is produced.

- The Place describes related information about the user’s location {longitude, altitude and
attitude}, in a given location, where we can find available mobile resources. The mobile
resources are mobile devices, such as tablets, smartphones, laptops and smart objects, such as
bio-sensors, environment sensors and actuators, etc. Resources are accessible by users.

- The ActivityContext: according to a schedule, a user can engage in a scheduled activity.

Context

- HasInteractiveObjec > Device )

( Latitude >< —
E Context
e Environnen\ent) _ ) i
Longitude i _ HasNonIntercativeObjec
N~ = 5 Context
N SmartObject
Location )4 -a

e Cm e

Is-2 Is2

Is-a Is-z k-a
( Home ) ( Hospital ) ( University >‘ (’ Work \‘ C Street 7)

Figure 8. Environment context sub-ontology.

e  The Document Context describes the nature of the documents (text, video, audio). The document
context specifies a set of properties related to a specific media type: (1) text: alignment, font, color,
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format, etc.; (2) image: height, width, resolution, size, format, etc.; (3) video: title, color, resolution,
size, codec etc.; (4) sound: frequency, size, resolution, and format (Figure 9).

Context
Is-a
( DocumentType >4 Qantextbocumeng '(Docun'\entmn‘le)
Is-a Is-a ‘ Is-a Is-a
<_ Vid-EO \‘ ( Text ) Ima ) ( i :
i __/ \‘_ : _.j ) ge ) & Audio )

) - T— ; L4
VideoSize ) ( Format ) ( ImageSize ‘\I ( Frequency )
<_ J Xe P . . L )

Figure 9. Document context sub-ontology.

4.1.2. Context Constraint Ontology

A context constraint is defined through the terms context parameters and context expression,
which is further categorized by simple expression and/or composite expression, thus forming
a multi-level context ontology as shown in Figure 10.

e  Context_property: Each context category has specific context properties. For example, the
device-related context is a collection of parameters (memory size, CPU power, bandwidth, battery
lifecycle, etc.). Some context parameters may use semantically-related terms, e.g., CPU power,
CPU speed.

o  Context_expression: denotes an expression that consists of the context parameter, logic operator
and logic value. For instance: glucose level = “very low’.

e  Context_constraint: consists of simple or composite context expression. For example, a context
constraint can be IF glucose level ="very high’ and Time= ‘Before Dinner” and Location="Any’ Then
Situation= Diabet_Type_1_Situation.

(/ ConstraintID b ( ConstraintDomain D { DetectedRule )

%

> S T
[ ConstraintName )v fruasmni:erom“bs\
Context
—_——
ContextParameterLogicValue ) SituationRule
«  IsChecked \
= /
Is-a Is-a
ExpressionComposedOF e o w e N
@mextmgicoperat& —<contensimplekule /H - - . <Context00lmlexﬂule/l

ContextParametreName

I-a Is-a
Context Property *
UserConstraint ServiceConstraint

sa| L-a

(: /—‘ﬁ Is-a
{  UserRequirements UserPreferences )

s-a
e ServiceRequirment
Is-a
tlasPreferdLanguage ol MediaPreferences J

= Is-2
ModalityPreferences | ——
Cy

Figure 10. Context constraint sub-ontology.
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4.1.3. Service Ontology

Nowadays, environments are getting smarter in order to reply to user requests anytime and
anywhere according to his or her location; interaction between users seeks to get better services from
providers. Service could be either smart or interactive. Any smart service can be used in a local way or
using the cloud, which allows them to handle the data storage that users need to run their applications.
Interactive services are unimodal and multimodal interactions. A service can be executed in various
forms with various quality of experience and quality of service. Each user expects his or her own QoS
when using a service. To ensure the QoS level, the service has its specific mobile device constraints
(size of memory, CPU speed and battery lifetime). We can find also three services types: Smart Service,
Interactive Service and Adaptation Service (Figure 11).

ServicelD ) UriService
ServiceAvailable

ServiceCategory )< & Service »  ServiceName

1

SupportedPlateform * ServiceVersion

s-a s-a

InteractiveService AdaptationService

NonInteractiveService

[
o

Is-a ‘ s-a
7@nmteractiveEnvironerlmtServictD InteractiveHomeService ‘ fT-ur- codi vice

S

Is-a -
[ NonInteractiveHomeService ) T = InteractiveMediaService

Is-a -
( NonInteractiveMediaService ) == InteractiveTransportService

S-a Is-a
<I‘bn1nteractive1‘fansport5ervice> — IntercativeHealthService

it

S-a
C NonlIntercativeHealthService )

Figure 11. Service context sub-ontology.

4.1.4. Context Property Sub-Ontology

Some context parameters can use semantically-related terms, such as processor speed. Each
parameter is described by the ContextPropertyLogicValue class to which is assigned a range of qualitative
values (Context Min Value, Context Max Value); these values make it possible subsequently to determine
the quantitative values (see Figure 12).

Context
PropertyLogicValue

A4

ContextLogicValues

\ Context
ContextProperty / ’( Propzlr‘t;lhma

SensoredBy
{ ContextSmartObject >

Figure 12. Context property sub-ontology.

4.1.5. Situation Ontology

This part represents the possible situations that we can define for each context. For instance,
the home temperature context can have three situations: normal, cold, hot and very high situations.
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We call these situations Contextual Situations since they depend on contextual information. This class
contains two subclasses: External-Situation class and Internal-Situation class. The first one represents
situations that are related to the user’s environment and user’s devices, such as home temperature
situations and battery situations. The Internal-Situation class represents situations that are related to
a specific domain, such as the person’s health state, like blood sugar situations and blood pressure
situations. Each situation has data type properties (see Figure 13), such as situation type, max value and
a min value, that are defined by the developer and by the domain expert; in our work, the physician.
An example of the situation rule is as follows.

g BT s 4 AlarmSituation ) - - '
( AnyLocation D < CarLocation ) <Hon1eLDcation)‘ ( Ccosituation )4 .
% - = —_ 5 E
- < TemperatureSituation )+

LocationsituatiorD » s

( EnvironementSituation )

Situation T Q InteractionSituation > -( VoiceInteraction )

v C ActivitySituation > ’C DrivingSituation )

< TimeSituation > ‘:
: ( HealthSituation > <High5peedsil:uation s
( EveryTine 72 " HighLevelGucose > .

Situation

4( WeightSituation ><

Figure 13. Situation sub-ontology.

4.2. Dynamic Situation Searching

There are several possible ways to identify a situation [16-19], and a proper identifying generic
technique still has to be defined. Computing similarities is also quite difficult when integrating
heterogeneous user profiles. Several services composing a situation are generally connected
semantically. Our similarity measure extends the properties of Sim defined in [19]. It is formalized
as follows:

a ay! w;xsima(Q;, Sj)

atb (ayiq wi) + (bz?:l wu+i)

where “a” is the set of common concepts of Qi (current situation of user) and Sj (profile constraint) for the
same domain and “b” is the set of concepts of Qi and not existing in Sj. sima is the atomic similarity
between each context concept of situation Q, S. It is defined as a function that maps two concepts to the
interval [0, 1]. First of all, local events have to be detected and local situations identified. If no events
are detected, it should be detected whether events are in nearby mobile devices by knowing their exact
situations and re-deploying distributed interactive services. The proposed algorithm (Algorithm 1)
aims at matching the current situation with each constraint defined in the user’s profile. It takes a list
of current situation’s concepts as input in order to calculate the atomic similarity sim, of each pair of
concepts (of situation and constraint). If the match is not a Fail, it returns the overall score Sim of each
constraints and appends the advertisement to the result set. Finally, the result set is returned in ranked
way. In so doing, we select the higher matching measure.

Sim(Q,S) = 1)
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Algorithm 1: Situation Matching and Dynamic Service Selection

Input: Profile [], profile Status[],two contexts C; and C,/C1S and C; Q // set of profiles and profile
status
Output: Overall score Sim (Q,S) // best semantically
equivalent services

Matched_Relation « ¢ // EXACT, SUBSUMES, NEAREST-NEIGHBOUR,
FAIL

MatchedService_List < ¢ // a set of services that meet the user’s context
preferences

1. Matching preferences with local services and get each constraint similarity value defined in [1]:
MatchedService_List = MatchedService_List U Syocar
2. Matching preferences with nearby services and get each constraint an overall similarity in [1]:
MatchedService_List = MatchedService_List U Searsy;
3. Selection of quality equivalent semantic services defined in [11].
4. Generation of reconfiguration file with k-best services.

5. Save new reconfiguration file in Kalimucho Server.

4.3. Context Provisioning

In order to be successful, a context-aware multimodal mobile application must have a full visibility
of the person’s context, including what, when and how to monitor, collect and analyze context data.
In the case of changes according to the user context (e.g., less available memory, less processor power,
change of user location), or the environment context (e.g., less bandwidth), or the user preferences,
the ASSACR component will be provisioned by a set of contexts metadata in order to dynamically:

e  Provision the next substituted service of the list of services offering the same service functionalities,
which require less available resources and sorting the QoS of available services.

e Add new services into the list of found services. The new service is matched from the new
provisioned changes in the profile constraint (e.g., the user context).

We consider each sub-context profile and its constraints. Solving a single user constraint in
a low service space (local, neighbors) is easier and less time consuming. Therefore, we can start
services discovering the optimum cost and good provisioning services chain by a combination of
reconfiguration operations: create/update/migrate/remove from some context attributes changes
with a single performance and approach the global optimum service reconfiguration chain.

Our approach divides the all of user context changes into several phases (Algorithm 2). One more
preference (expressed as an Event-Condition-Action rule) is considered in each phase until the global
reconfiguration chain is provisioned and generated. First, a set of services is discovered and
matched with a certain concerned context conditions on some changing context adaptively, called
Single-Increment-Context-Evolution. Secondly, we investigate the better quality services obtained from
Step 1, and services from provisioning context attributes changes (low bandwidth, battery life time,
etc.) are joined together in Step 2 to form an initial configuration, for which there are multi-concerned
context constraints.

For an efficient and better provisioning and good management of the self-management adaptation
process, we have used the “Poisson event-based” simulation model to predict context changes (i.e.,
mobility of users, usage resources), then we have provided the global system’s behavior that requires
adaptation and overcoming the rising complexity of the context-aware system.

Our process predicts minimum adaptive cost in low adaptation time, to result in the best
configuration, such that the system quality is maximized subject to device resource constraints and
user preference constraints. Firstly, the platform will be able to restrict the scope of the search into the
range of configurations, which differ from the current configuration only by the service at the origin of
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the reconfiguration event. However, when this approach does not give any solution, we look for a new
configuration to use, starting by switching from a new relay or by moving a service to a suitable device
at run-time. The ASSACR generates a provisioned configuration model. When the reconfiguration is
triggered, we start-up the provisioned saved reconfiguration.

Algorithm 2: Incremental Context Changes Prediction

Input: Predict user context changes
Output: Generates provisioned Services reconfiguration file
1. Setp =1; where p is the phase number; find a provisioned quality services list with regard
to the first concerned context attribute change.
2. Setp =p + 1. The next phase starts.
3. Generate a fittest quality services list with regard to the p-th concerned context attribute
change and joined with the p — -1 concerned context attributes.
4. If remained context attributes changes, go to 2.
5. Generation of provisioned reconfiguration file.

4.4. Context Reasoning

Context reasoning should take into consideration each user preference by virtue of giving him or
her the best service according to the current location, environment constraints, schedule, etc. We have
classified our rules into three categories; Situation Rules, Smart Service Rules and Constraints Rules.
Situation Rules are used to infer situations from contextual information. Some of situations trigger
appropriate services that must be provided to the user. However, other situations, like automatic
gesture modality detection, can be used for proposing to assure the continuity of the service. Table 2
illustrates examples of the rules.

Table 2. Examples of the rules.

EVERY TIME
IF User Has Biosensor Data AND
Situation Rules Glucose Level > Min Value AND
Glucose Level < Max Value
THEN Person HAS Situation “DiabetTypel”
EVERY TIME
IF Service IS Health-Care AND
Service Has Type “Service Type” AND
User HAS Situation Situation AND
Services Rules Situation Has Type “Situation Type” WHERE
“SituationType” IS EQUAL TO “Service Type”
THEN
Situation Trigger Service Service WHERE
Service isProvided To User
EVERY TIME
IF Service IS Health-Care AND
Service is Deployed On Device “D1” AND
User HAS Situation Situation AND
Situation Is Detected By Detection_Function AND
Situation Depends On Device “D2” AND
Detection_Function Has Modality “Modality Type”
THEN
Situation Migrate Service Service WHERE
Service is Deployed On Device “D2”

Smart Services Rules

5. Potentials Scenarios and Validation

This section describes the implementation details of our Kali-Smart context-aware platform,
potential usage scenarios and experimentation results.



Future Internet 2016, 8, 48 17 of 26

5.1. Implementation of Kali-Smart

Firstly, based on OWL languages, we have implemented our ontology model using the Protégé
tool. Protégé [20] is an open-source platform that provides a growing user community with a suite
of tools to construct domain models and knowledge-based applications with ontologies. In addition,
it implements a rich set of knowledge-modeling structures and actions that supports the creation,
visualization and manipulation of OWL ontologies (see Figure 14).

Fie Edt Prosct QWL Reasoning Code Tools DioPortal Window  Colaborstion  Help

OEE +BE mg ¢ FEE g <@protégé

| @ Metadata(Ontology14304036%4.0wl) | () OWLClsses | WM Properties | 4 ndividuals | = Forms | — SWAL Ruks
= B i (Instance of owECiass) EsET
R e t For Class: |ntp: ontologies, com/Ontology1 430403694, i [ ferred View
it ey v e@ P el O L) it
owl Thing Property L |_tong |
v @ contst £3 rafe:comment =
» O ContextActiviy
» @ CortextDocument
» @ ContextEnvironnement 7]
> O ContextHost
» @ Cortextinteraction o L ] ® M Properties and Restrictions
> @ contextaos M Mertiorent (il SocialFrofis) =
b ContextSmertObject M ProfieName  (single string)
¥ @ ContextUser () 2ge  (single int)
@ CloudProfi [ CortextHasEvent  (multinle Evert)
9 IndividusProfil [ Cortext perty  (mulinle Contestc ropettiss)
b SocialProfile [ Engageain - (mutiple Contetactivty) [
b O ContextCurrertProperties [ Follows  (muliple Contetiser)
@ ContextProperty [ HasSituation
@ ContestPropertyLogicaliue [ HeathStetus ~ (single string) =
> ® Conteutshustiorfue T EDE!
» @ Evert
© Farance dea [ suporcusses | & @ 3 52 @
O Broperties ContestLiser
v @ service
b O fdsptetionService
b @ rteractveService
» O MonirteractiveServics
p O swrakrity
b temporatErity
‘- - B RA e B B s ) Logic View @) Properties View

Figure 14. Implementation of our ontology.

SWRL as a rule-based context inference language is used to infer situations that are related to the
user’s environment and user’s devices, such as home temperature situations and battery situations.
Each situation has data type properties (see Figure 15), such as situation type, max value and a min
value, that are defined by the developer and by the domain expert; in our work, the physician.
For example, the High Blood Sugar Type 1 situation is a blood sugar situation that can have “High
Blood Sugar Type 1” as a type, 1.45 as the min value and 2.5 as the max value.

Individual_Profile(?p) * ContextHasSituationProperty(?p , ?property) * HealthSituationProperty(?property) *
SmartObjectAtUser(?s, ?p) " GlucoseSesnor(?s) ”~ MeasuredValue(?s,?v) * ContextProperty(?cp) *
ContextPropertyName(?cp, ?np) ~ swrlbzequal(?np, “Glucose”) » ContextLogicValues(?cp, ?clv) *
ContextMinValue (?clv, ?min) * swrlb:graterThanorEqual (?v, ?min) *

ContextMaxValue(?clv, ?max) * swrlb:lessThanorEqual (?v, ?max) * ContextLogicValue(?clv, ?logicvalue) *
MeasuredAtTime(?s, ?time) #~ MeasuredAtDate(?s, ?date) * IsLocatedAt(?s, ?place)

2  Glucose Situation (?property, ?logicvalue)

Figure 15. SWRL (A Semantic Web Rule Language) rules for the situation analysis.

A mobile user equipped with his or her smartphone enters into the smart environment.
The smartphone automatically connects to Kali-Smart, which will allow it to authenticate (a), to view
my space (b) or to create an account (c). The user has indicated that he or she wants to detect diabetes
type 1 and to detect abnormal situations in a given location (detection fire in home) (Figure 16). He or
she can follow semantically his or her health status and/or detect abnormal situations in a given
location and/or edit and/or update his or her profile.
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Figure 16. Screenshots of the Kali-Smart platform (a) authentication, (b) my space, (c) new account.

5.2. Real-Life Scenarios

We aim at demonstrating that our proposed Context Monitor/Context Reasoner/Service
Controller and Ontology-Rule-based architecture has the ability to infer situations and determine
services that must be provided to the user according to his or her current situations (at home, working,
on the car, etc.) and other environmental factors, such as the current available devices and services.

User A is a diabetic person and needs to monitor his or her health. He or she uses an intelligent
environment, which includes smart devices, sensors (glucose meter, weight scale, video camera) and
services. This intelligent environment specifies an ambient system that allows him or her to live safely
and to identify urgent situations. For example, the situation of “diabetic coma or too high temperature”
is deduced by referencing the average glucose level and the temperature level in the profile. To make
better informed choices, to help User A manage his or her situations in a more practical way by User B
(e.g., doctor) (see Figure 17), User A needs to check his or her blood sugar level. He or she uses
a bio-sensor that connects to his or her smart phone via Bluetooth technology. According to his or her
blood sugar level, the system will execute the appropriate service. If his or her blood sugar level is out
of the normal range determined by his or her doctor, there will be three possible situations (see Table 3).
When “User A” takes a shower, he or she activates the faucet, and the “Adjusting water Temperature”
service will be executed automatically in order to adjust the water temperature. When “User A” has
breakfast, he or she reads his or her personal emails, and so, the email app is deployed and launched,
whereas the previous “Adjusting water Temperature” service is removed silently. As he or she enters
his or her car, the GPS is automatically connected to the phone; the mail app is automatically enhanced
to integrate the vocal reading email functionality, whereas a traffic guide is launched and indicates the
best way to go to work. He or she preferred to translate text to speech (see Table 4). As he or she is
a bit late, an audio conference is dynamically deployed in order to ensure his or her participation in
a scheduled conference that he or she has to attend. When entering the office, the audio conference is
migrated to the desktop PC, and the video functionality is added to continue the discussion. In his
or her smart office environment, when the system detects abnormal situations representing too high
temperature and too low humidity, the “Fire Station Call” service is automatically triggered, and the
service notifies the emergency status to the nearby fire station (Table 5).
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Table 3. Constraints specified by the doctor.

Location Situation Constraint Description
Hioh Blood Suear Every time IF blood sugar level is high THEN adjust insulin dose and
3 3 activate diabetes guide
Any Danger Blood Sugar  Every time IF blood sugar level is danger THEN activate emergency call

Low Blood Sugar Every time IF blood sugar level is low THEN activate diabetes guide

Table 4. Constraints specified by the developer.

Location Situation Constraint Description
Low battery level Every time IF battery level is low THEN migrate service
An High battery level Every time IF battery level is High THEN replace service
Y Schedule Time IF activity scheduled time is come THEN activate service
Schedule Time IF activity scheduled time is out THEN remove service

Table 5. Constraints specified by the user.

Location Situation Constraint Description

Car Driving situation ~ Every time IF driving speed is high THEN activate text to speech

Shower situation IF morning time AND bath room faucet is activated AND
Home Temperature level is high THEN adjust water temperature

Drink situation IF morning time AND breakfast is detected THEN activate email

Every time IF Temperature level is high AND CO level is Low

Office Work situation THEN call emergency

User A in a Smart home User A in a Smart Car

P I,

/ : Services
\/’ g\ Bio-Sey e ugu
\ 0-Sensors /// B
o fr
L,/ 4 Smart Devices
Smart Tablet @
SmartHome|
O: User A wants to monitor his health @©: User A wants the best way to go a work
User A in a Smart Car User A in a Smart Office

n
Services
1 ‘ [-
g

Smart Tablet %

©. User A wants to continue follows traffic O: User A ensures his participation in a

guide under low battery scheduled conference

Figure 17. Potential scenarios.
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5.2.1. Scenario I: User A in Home Using Smartphone (or Smart TV or Smart Watch)

A first simple scenario is made of a User A, which is at home using a Samsung smartphone. User A
can use our platform to monitor his or her health in a more practical way. He or she uses an intelligent
environment (smart home), which includes smart devices, sensors (glucose meter, weight scale, video
camera) and services. As proposed in our architecture, the principal role of the Context Monitor is to
supervise User A in order to detect abnormal situations. The Context Monitor collects and preprocesses
context information from the smart sensors and stores it in a database. Then, it represents and reasons
about this context using our ontology and Context Reasoner in order to deduce the current situations
that are reported to the Service Controller. The latter is responsible for providing the appropriate service
to the user according to the inferred situations. In fact, as illustrated in Figure 18: (1) contextual
information is collected from the smart home by the Context Collector, and it is stored in a database;
this means that the information simulated via the prototype interfaces is stored automatically in
a database; (2) this information is pre-processed by the Context Pre-processor and (3) converted into
a triple pattern in OWL format and inserted in our ontology by the Context Translator; then, (4) the
Context Reasoner uses the Situation Inference Engine, which is based on JESS, which executes the
Situation Rules presented in Table 2 (translated in SWRL by Constraint Translator) and infers the current
situations. These situations are transmitted to the Service Controller.

Step 1 : [ContextMonitor/Context Collector]

@% ContextListener ZEeemmmmd ContextCollector - DB

Id_Sensor Name_Sensor Measured_Value Time Date Location_Sensor
) 1 Temperature_Sensor 38 °c 11:05:00 15/04/2016 At_User
{ [ 36.175085, . |
& - GPS_Sensor 5.405760 11:05:00 15/04/2016 At_SmartPhone
Glucose l 3 Glucose_Sensor 2.45g/ 11:05:01 15/04/2016 At_User
Sensor

Step 2: [Context-Pre Processor]

A4

@ Context Pre-Processor
Glucos e _Measured _Value €[0.15g/1—-7.15g/1] Glucose_ Measured _Valuec[0.15g /1 —7.15g/1]

Incorrect Measured Value Correct Measured Value

Step 3 : [Translation of information in OWL format ]
| I | | |

Level 1 . Level 2 Level 3 . Level 4 Leveli Level n

i~

Qualitative | .. I | i i Quantitative

Step 4 : [Identification of situations]

Location

2 Diabet
= ‘ — Situation

Any

Figure 18. Ontology /rule-based architecture simulation.
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Once User A is connected and clicks “My Space”, the Kali-smart platform sends the initial actions
configuration file to the Kalimucho Server, launching automatically the GPS location service. The script
bellow is generated by the reconfiguration generator after scanning the environment with the help
of Kalimucho in order to know the available devices and to orchestrate the best way to deploy the
components (Figure 19).

T S—
Smart TV
ASSACR (i ) (i ) w1 ) () Kalimucho Server
I Router
® | =
Base of knowledge Registery Database
(owL) of services
'/ - - 3 Y
Smart Watch i | = 4 | Port USB
|- —— Sensor
4-“_.‘
< - Arduino
Smartphone
PC CreateComponent Service_Location_SendGPS_Coordiantes  application.sendGPSLocation.SendGPSLocation
Smartphone CreateComponent  Service_Location_ViewGPS application.viewGPSLocation.ViewLocation
SmartTV CreateComponent  Service_Location_ViewGPS application.viewGPSLocation. LocationInformations
SmartWatch CreateComponent  Service_Location_ViewGPS application.viewGPSLocation. LocationNotification
PC CreateComponent Service_Health SendGlucose application.sendGlucose.SendGlucose
PC CreateComponent Service_Health_SendWeight application.sendWeight.SendWeight
Smartphone CreateComponent Service_Health_ViewGlucose applications.ViewGlucose.ViewGlucose
Smartphone CreateComponent Service_Health_ViewWeight applications. ViewWeight. ViewWeight

SmartWatch  CreateComponent Service_Health ViewGlucose applications. HealthNotif. GlucoseNotif
SmartWatch  CreateComponent Service_Health ViewWeight applications, HealthNotif, WeightNotif
SmartTV CreateComponent Service_Health_ViewGlucose applications. HealthNotif. GlucoseInformations

SmartTV CreateComponent Service_Health_ViewWeight applications. HealthNotif. WeightInformations

Figure 19. Available devices in a smart home and the initial script generation.

Once a user location is identified (e.g., smart home, smart car, smart office), the Action Reasoner
receives a notification that triggers the search for appropriate services according to the identified
user location. The script bellow is generated by the reconfiguration generator after scanning the
environment with the help of Kalimucho. Our Prediction Reasoner deploys interactive multimodal
services in a smart TV using the voice modality and in a smart watch using the gesture modality.

Once an abnormal situation is identified, the ASSACR is responsible for discovering available
services around the user location. This is done thanks to the SNMP protocol and the middleware
Kalimucho server side offering such a service; the ASSACR uploads different available services’
profiles and starts semantic service matching that fulfills the user context and preferences according
to Equation (1) (Section 4.2). User A is looking for a quality multimedia health service with low cost
with implicit constraints: the screen resolution of the smartphone is limited to = 400 x 600, which is
less than the document video. Now, studying both local and remote service results and taking into
consideration the user preferences, the degree of the similarity is always high if the set of context



Future Internet 2016, 8, 48 22 of 26

attributes suggested by the health service and requested by User A is great, no matter the number of
attributes provided by the service, but not asked by the client. Three available health services with
different modalities with different multimedia contents across User A’s location are as depicted in
Figure 20. We used [18] for classifying the relevant interactive services that have a potential benefit.
It takes into account the usage domain (the list of devices that the user can access or control in a certain
situation or context) to illustrate the multimodality aspect and finds the appropriate device. Table 6
shows the evaluation results, meaning that the service orchestration “Adjusting Insulin Service (User E)
+ Display Guidel Video (User E)” is selected as the best orchestration service. This selection is based
on the high score compared to other paths because the preference desired by User B is satisfied by
two neighbor users (User C and User E), but User E is top classified because of the available laptop
resources. The ASSACR plugs in the “Adjusting Insulin Service Client and Display Guidel Video (User E)”
and invokes the service.

g R Display Guidel Image B
” el | R ¥ Service Name Path Service  Score
= . Py
A7 4 * r Send Service Description o Display Guidel_Video = R3-R1-UserE A
5]
# o UserC : . ).
A7 il / G Display Guidel Image = R3-R2-UserC B
5 & 192.168.1.42 [} Adjusting Insulin Dose = R3-R1-User E G

® dol © .
2o @ @ 0 0 :
a -] ® 4 R2 B&adcast Discovery serviﬁer {/r/ogte/s »j.

User D S o s e e e o i B T .
192.168.1.44 — AESCR Kalimucho Server
¢ User A Ri Broadcast R3 192168121  192168.1.20
192.168.140 Send Service Description X
@ Bmadoast\
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Figure 20. Semantic service discovery and different service composition paths.

Table 6. Evaluations results [11].

Services Composition Paths Score

Adjusting Insulin Service (User E) + Display Guidel Video (User E) 0.83
Adjusting Insulin Service (User E) + Display Guidel Image (User A) 0.62

In order to support the needs of a dynamically changing context, ASSACR generates
reconfiguration files (Reconfig_C_E, Reconfig_E_C) with two semantic equivalent services paths, but
with different QoS in order to easily add or remove services at run-time.

5.2.2. Scenario II: User A in a Car using a Car Tablet

A second scenario when a User A uses a car, he or she can use a car tablet for a larger view.
User B cannot read his or her personal emails in a car. ASSACR has SNMP attached as the discovery
protocol and GPS as the client service. The latter reinitiates the adaptation process, infers the actions of
discovering that the available text to speech services are supported by the user location: update Text
email service with Text to Speech Encoder/Decoder service. After finding the adequate adaptation services
from the cloud and after their selection and integration, the user can follow the email service while
using a car. When a user asks for the traffic guide, the ASSACR discovers two map types: a black and
white map and a colored map. The ASSACR deploys the second one because of the available resources.
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5.2.3. Scenario III: Low Battery Level

In a third scenario, for instance when a current service delivers a high density color map,
a notification was sent to the ASSACR that there is not enough available energy to continue displaying
such an image. In this case, ASSACR migrates the service to the cloud.

5.3. Performance Comparison and Discussion

To test the feasibility of our ASSACR approach, we have to test the performance of our
centralized /distributed semantic event detection algorithm and service semantic prediction algorithm
on a laptop running Windows 7 with 6 GB of RAM and a i7-2630QM quadruple core-processor (2 GHz).

We have considered almost 80 users with different constraints (different number of conditions).
Each constraint is translated as an event-condition-action rule. We have measured the computation
time of the distributed/centralized semantic event detection mechanism. As shown in Figure 21,
the centralized event detection gets alarmingly slow when the ontology grows in user profile instances
and in the number of constraints. The difference between the centralized event detection and our
centralized/distributed semantic-based dynamic event detection is the larger time amount being
consuming in the centralized event detection. While checking the event, we have noticed that the
more the users there are, the greater the time that is consumed; we improved the execution time by
applying our algorithm, which performs each event detection separately; thus, we reduce size of the
rules, thereby reducing the time it takes.

4000
3500
3000
2500

2000 . —o— Centralized event detection

1500 / #= Our method

1000

Computation Time (ms)

500

0
5 10 20 40 80
Number of constraints

Figure 21. The comparison of the computation time between our distributed event detection and the
centralized /distributed event detection in terms of the number of constraints.

To evaluate the matching accuracy, we compare the probability of the high quality service
matching precision with/without the prediction strategy. The repository of services increases from 10
to 100. The system is modeled as a Poisson-process, and each mobile device’s CPU speed is initialized
with a random value in the range of [100, 800] and reduced automatically by a random value in the
range of [0, 5]. We gathered results consisting of services in the Kalimucho server and the number of
services selected from the Kalimucho server and deployed locally and/or in nearby devices. As we
can see in Figure 22, in the majority of the cases, the selection frequency of the predicted services
was higher than the probability of their selection without the prediction strategy. For example, with
a repository size of 50, the probability of its selection was about 95% using our prediction strategy.
Any modifications to those complex user contexts may require less checking time, thus increasing the
flexibility of the user applications.
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Figure 22. Services matching precision with/without the prediction strategy.

5.4. Advantages and Limitations of Kali-Smart Platform

The proposed platform is able to predict the person’s context changes by using the Poisson

distribution. It tries to provide the user appropriate services at the right time, in the right place and

with the right manner that satisfies all of their requirements. The requirement of the user always varies
every day in real life. Thus, the architecture must be dynamic and flexible. These last aspects are the
principle advantages of our approach.

Flexibility: our platform allows a user to describe his or her requirements in the file profile.
Therefore, it facilitates modification. Our platform can add, remove or modify easily and quickly
certain services in the user environment in a transparent and uniform way according to the user
needs and contextual usage. Hence, the user can execute a service corresponding to any context
and any device. The introduction of the distributed action mechanism introduces much flexibility
and many opportunities for further extensions regarding how context entities should behave.
Semantic intelligence and autonomic optimization: the proposed platform is a complete solution
that minimizes the response time of the situation matching under the criteria’s priority (location,
time, category), which facilitates inference in the ontology and maximizes redundancy relays and
switching mobile services.

Interactive service experience: our platform uses semantic technologies and the concept of
multi-device context data representation to facilitate seamless and interactive media services in
a common contextual mobile environments.

The drawbacks of our context middleware, Kali-Smart, are:

High flexibility: the proposed platform depends on users’ constraints and the service repository.
If the user requires constraints with any solved services, he or she cannot obtain the content
More dynamicity: our platform needs to dynamically change the executing environment the same
way as other context-aware mobile applications.

Scalability: our architecture lacks several aspects (timing, scalability, etc.) related to the usage in
realistic smart environments.

6. Conclusions

An ideal future where our applications know what we need before we even have to ask is

coming. The opportunity is becoming possible to provide more smart and pervasive multimodal

services in a smart environment. These services allow users to live safely and inexpensively in their
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own smart environments. The complexity of pervasive systems in general and ubiquitous-health
systems in particular is steadily increasing. In these systems, there is a growing variety of mobile
computing devices, which are highly connective and can be used for different tasks, in particular
for dynamically-changing environments. Those systems must be able to detect context information
over time, which comes from different and heterogeneous entities, deduce new situations from this
information and then adapt their behavior automatically according to the deduced situations.

In this paper, we have proposed our context platform, Kali-Smart. The main objective of this
platform is the collection of contextual data that are captured directly by sensors. It supports distributed
action mechanisms with an incremental context change prediction strategy, as well as automatically
adapting data contents to users. It also provides its clients three types of Context Reasoners (Situation
Reasoner, Action Reasoner and Prediction Reasoner) programmable to handle more complex client
constraints. Moreover, Kali-Smart is supported by a generic and flexible API; it uses an ontology-based
model for building a wide amount of applications in various domains. This API hides the complexity
and heterogeneity of contextual smart devices in a ubiquitous environment.

In this type of environment, due to the mobility and the limited resources of mobile devices (e.g.,
battery lifetime), it is difficult to provide the appropriate services at the right time, in the right place
and in the right manner. Consequently, we cannot disregard the importance of how the adaptive
environments will be able to reason semantically about context information and adapt their behavior
according to the dynamic changes of this context. Instead of provisioning context changes in advance,
Kali-Smart offers a dynamic searching service that allows its clients to use the current context services
available in a requested location.

Finally, our proposal is based on the combination of the Kalimucho middleware [1], mobile
computing and the Internet of Things with ontologies and rule-based approaches. This combination
permits one to get most of their benefits for realizing a new autonomic adaptation approach for
pervasive systems in general and pervasive healthcare systems in particular. Our approach allows:
(1) supervising the system, detecting useful contextual information, reasoning about this information
and adapting the behavior of the system according to the current context by providing the appropriate
service to the user; (2) a distributed/centralized context monitor and semantic event detection
in order to manage relevant information that could be important for the context regardless of its
source; (3) a centralized semantic context reasoner and an incremental context prediction process
making decisions that will be handled by the main host (e.g., computer, server, etc.); this choice is
meant to prevent the redundancies of adaptation decisions; (4) the novelty and originality of our
approach compared to previous related works by implementing a distributed action mechanism with
multimodality aspects that will give the application the flexibility and dynamicity needed to run
through the user’s smart environment, which, in our knowledge, has not been proposed yet in this
tield; and (5) maximize redundancy relays and switching mobile services. Compared to current related
works, our method improves the matching accuracy greatly by considering the whole meaning of the
context conditions while dramatically decreasing the time cost due to the centralized / distributed event
detection. In future works, we intend to extend the context model with new concepts and to evaluate
our architecture in more complex case study scenarios. Moreover, we will develop our mechanisms for
the dynamic components’ reconfiguration, including the migration of context middleware from local
mobile devices to the cloud.
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