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Abstract: In recent years, smart home technologies have started to be widely used, bringing a great
deal of convenience to people’s daily lives. At the same time, privacy issues have become particularly
prominent. Traditional encryption methods can no longer meet the needs of privacy protection in
smart home applications, since attacks can be launched even without the need for access to the
cipher. Rather, attacks can be successfully realized through analyzing the frequency of radio signals,
as well as the timestamp series, so that the daily activities of the residents in the smart home can
be learnt. Such types of attacks can achieve a very high success rate, making them a great threat to
users’ privacy. In this paper, we propose an adaptive method based on sample data analysis and
supervised learning (SDASL), to hide the patterns of daily routines of residents that would adapt to
dynamically changing network loads. Compared to some existing solutions, our proposed method
exhibits advantages such as low energy consumption, low latency, strong adaptability, and effective
privacy protection.
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1. Introduction

The most profound technologies are those that eventually disappear. They weave themselves
into the fabric of every day life, until they become indistinguishable. Wireless sensors are becoming
ubiquitous in smart home applications and residential environments. Smart home applications
integrate multiple Internet of Things (IoT) devices and services that store, process, and exchange data.
Micro-controllers can be used to analyze the status of the sensors for identifying events or the activities
of residents. They then respond to these events and activities by controlling certain mechanisms that
are built within the home. A simple example of such a smart behavior is to turn on the lights when
a person enters a room [1]. This can be realized by triggering an infrared sensor when the person
enters the room, and the micro-controller can combine the activity and the brightness of the room,
to determine whether the lights should be turned on.

There will be a multitude of devices in a wireless sensor network (WSN) around residential
environments. These monitoring devices can be classified into three categories: sensors, physiological
devices, and multimedia devices. Sensors are used to measure the environmental parameters.
Physiological devices monitor health conditions and vital signs. Multimedia devices capture
audiovisual information and provide an interface between the system and the user [2].

A sensor in a residence is a simple autonomous host device that can sense a phenomenon, convert
signals into data, process the data, and then transmit it to a sink node for further analysis [3]. However,
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the societal concerns of smart home technology evolution, in relation to the privacy and security of
the citizen, appear to be at an embryonic stage [4]. Although smart home technologies can bring
a great deal of convenience to residents, it is also possible that people's daily behaviors in such an
environment would become exposed to attackers, who can use the smart home in a malicious way.
Therefore, the issue of privacy protection in the smart home environment has become one of the most
important challenges.

In the smart home scenario, almost all of the sensor nodes only transmit information when a
related event is detected, which is called event-triggered transmission. A global adversary has the
ability to monitor the traffic of the entire sensor network, and thus, can immediately detect the origin
and time of event-triggered transmissions. Although encryption algorithms can be used to protect
data in the transmission, the emergence of new types of attack methods can make such traditional
approaches invalid. Such attacks only need access to the timestamp and fingerprint data of each
radio message, and in a wireless environment, the fingerprint is a set of features of a radio frequency
waveform that are unique to a particular transmitter. Thus, the primary attacks that we are concerned
with here are the Fingerprint And Timing-based Snooping (FATS) attacks [5], which have been shown
to be very effective in inferring the Activity of Daily Livings (ADLs) of the residents.

The most simple and effective way of resisting FATS attacks is to inject fake messages into
the transmission sequence. There have been extensive studies on the protection of the privacy of
residents in a smart home environment, by taking into consideration the limitations of communication
bandwidth, battery energy, and computing power. Most solutions proposed so far are based on
a fixed frequency or probabilistic model, which make it hard to identify the real messages in the
sequence of messages, even if the attacker can access the global information. These solutions have a
major drawback, however, i.e., the reporting of a real event could be delayed until the next scheduled
transmission. The delay of sensed data can cause degradation of the Quality of Service (QoS) in many
applications, especially in those with intelligent sensing, where sensor data need to be obtained in real
time in order to make decisions. To address this problem of delay, Park et al. proposed a method based
on behavioral semantics [6]. However, this method would depend on the accuracy of the prediction,
meaning that, if the prediction of the next message was not accurate, the added fake messages would
not be enough to disturb the statistical analysis, and the ADLs of the residents would still be exposed.
In this paper, we propose a method to protect against FATS attacks. The method is based on sample
data analysis and supervised learning, which can adapt to network loads, as well as to the common
living habits derived from the real data.

The remainder of this paper is organized as follows. In Section 2, we describe the FATS attack
model and introduce some existing solutions. In Section 3, we make some assumptions about the
network environment and the adversary, and describe the requirements of the privacy protection
method. In Section 4, we describe our method in detail. In Section 5, we compare our method to some
existing methods, to demonstrate the advantages of our method. Finally, in Section 6, we conclude
this paper and also describe our future work. At the end of the paper, we list all of the acronyms used
throughout this paper as the appendix.

2. Related Work

In this section, we will first introduce the FATS attack model and then briefly describe some
of the existing solutions for resisting FATS attacks. We will also analyze the deficiencies of the
existing solutions.

2.1. The FATS Attack Model

The FATS attack model focuses on collecting the fingerprints and timestamps to gain access to
the behavior of the residents, even if the sensor data is protected by using a sufficiently secure and
reliable encryption method. The attack model is shown in Figure 1 and the four tiers of attacks are
described below:
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Figure 1. Four tiers in the FATS (Fingerprint And Timing-based Snooping) attack model.

Tier-0: General Activity Detection. The adversary can only detect very general activities, such as
home occupancy or sleeping.

Tier-1: Sensor Clustering. It assumes that a particular sensor that is triggered during a timestamp
will be very close in space to infer other sensors in the same room. In this tier, the number of rooms
and people in the home can be predicted.

Tier-2: Room Classification. The main goal in this tier is to identify the features of the rooms via
an analysis of the previous cluster in Tier-1. At this tier, the attacker can ascertain the layout of the
house and can predict the residents in the rooms. The privacy of the residents can be infiltrated by
the attacker.

Tier-3: Sensor Classification. In this tier, the goal is to identify the activities in the home, such as
cooking, showering, and so on. The attacker can calculate a feature vector for each sensor from the
answers in Tier-2 and can then classify each sensor by using Linear Discriminant Analysis (LDA).

Through analyzing the above tiers, residents' behavior can be exposed. First, a feature vector of
every temporal activity cluster in every device can be calculated. Then, by importing the vector to
the LDA classifier that was trained for other homes, the hand-labeled activity labels can be used to
distinguish real activities. This approach can recognize many daily activities, including showering,
washing, grooming, cooking, etc. [4].

2.2. Methods to Resist the FATS Attack

In the ConstRate (sending messages in constant rate) model, all of the sensor nodes in the network
maintain the same frequency when sending messages, whether or not actual events happen. When
a real event occurs, it has to wait until the next transmission. Therefore, the model can effectively
resist the static analysis by the attacker with a global listening ability. This model also has a congenital
deficiency, i.e., the average delay is half of the transmission interval and it is difficult to determine the
transmission interval. If the transmission rate is low, the delay will be very high; whereas, if the rate is
high, the delay will decline, but the number of fake messages will increase significantly, resulting in an
increased energy consumption.

Yang et al. proposed a probability-based model called the FitProbRate model, that aims at
reducing the latency of a fixed frequency transmission [7]. The main idea is that every sensor in the
network sends messages with an interval that follows the exponential distribution. When a node
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detects a real event, the algorithm needs to identify a minimum interval to obey the exponential
distribution, and then waits to send the real event. Following this, all adjacent intervals will follow the
same distribution, making the attacker unable to determine the real messages from the transmission
sequence. This model can reduce the delay of transmission in some situations, e.g., when the time
interval is relatively average and the sending interval is slightly longer. If the time interval is not
uniform and is frequently triggered with small intervals, the delay will become high.

Park et al. proposed a behavioral semantics model to generate a small amount of fake data, to
protect the activity that will happen in the near future [7]. Firstly, the model predicts the activity from
a long-term history and then presents the sensor nodes with the forecast of the activity sequence. If an
attacker listens to a sequence in order to monitor the sensors, the attacker can only predict misbehavior.
This model adds fake messages to disturb the FATS attack in Tier-3 and privacy protection depends
on the accuracy of the prediction of future behaviors. Therefore, if the prediction is not accurate, the
added fake messages will not make much difference. Generally, the reliability of this scheme is lower
than the ConstRate and FitProbRate models.

2.3. Summary of the Related Work

2.3.1. The intervals of the Send Sequence

In the ConstRate and FitProbRate models, the interval between the fake messages and the real
messages is subject to the same distribution. The purpose of adding fake messages is to prevent the
attacker from distinguishing between real and fake messages. If an attacker is not able to recognize
the real messages from the message sequence sent by the sensor node, the purpose of adding noise is
successfully achieved. Consequently, assuming that an adversary monitors the network over multiple
time intervals, in which some intervals contain real event transmissions and some do not, if the
adversary is unable to distinguish between the intervals with significant confidence, the real event will
be hidden [8]. If the sensor nodes have a sufficient randomness to send fake and real messages, it makes
it less likely that the adversary will be able to recognize the fake data from the transmission sequence,
resulting in the analysis of the wrong ADL, and thus, the protection of the privacy of the residents.

2.3.2. The Traffic of the Whole Network

To reduce the delay of data transmission, the transmission interval should be reduced, resulting
in a high traffic load, as well as a significant increase in the probability of collision. As Figure 2 shows,
in an actual sensor network, the closer it gets to the sink node, the larger the amount of data that needs
to be forwarded. If all of the sensor nodes send fake messages following the same model, the nodes
that are closest to the sink node will have to assume a load which is too heavy to forward messages.
In our method, a sensor node will adapt to its own network status when sending fake messages, i.e.,
a node will add a lower number of fake messages when the forwarding load appears to be heavy. Such
an approach would result in the three types of nodes consuming energy at a more balanced level,
prolonging the life of the network in comparison to other models.
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Figure 2. Traffic status of the sensors.

2.3.3. The Particularity of Smart Home Environment

In the smart home environment, when people go to sleep or go out to work, there are very few
real events triggered during the corresponding time slots. It seems that there is no need to add fake
messages during such periods, due to few regular activities in the smart home. Accordingly, the ideal
situation should be that the sensor nodes only send fake messages when the residents are present,
with some daily activities taking place. Thus, the number of fake messages can be reduced. However,
the adversary can learn the routines of individual residents through analyzing the sending patterns of
the sensor nodes. Following the ideas of k-anonymity, we will thoroughly analyze the data to obtain
the routines of the public, so that message sending will be carried out in such a way that it would be
very difficult for the attacker to detect the routines of individual residents.

3. Assumptions and Requirements

In this section, we describe the network model and some assumptions about the adversary in
SDASL, as well as the requirements of privacy protection that will guide the design of our privacy
protection method.

3.1. The Network Model

Similar to other WSNs [9], nodes in smart home consist of the sink node (only one sink node in
the sensor network) and sensor nodes N = {Nj, Np, N3, Ns ... N, }. As shown in Figure 3, the smart
home provider is a reliable service provider who can collect and analyze data from many homes.
The sink node has a high enough computing power to take on complicated operations. The sensor
node is the smallest unit in the WSN, and has a limited computing power and limited battery capacity.
Sensor nodes can apply encryption algorithms to encrypt collected data [10], before sending it to the
sink node. We assume that the encryption algorithms used are safe enough and that the attacker
cannot acquire the original data through analyzing the cipher texts. We also assume that the sink node
is actively powered, while being equipped with tamper-resistant hardware [11]. Consequently, it is
reasonable to assume that the adversary cannot compromise the sink node.
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Figure 3. The framework of a smart home.

We assume that the dataset collected at the sink nodeis D = {X,y} and X = {Xy, X, X3---, X },
where X; refers to the set of sensor data from sensor node N;. A datum of X; is denoted as
Xl-(] ) — {x1,x2,x3,x4}, in which x; is the sensor data, x; is the traffic status, x3 is the timestamp
of transmitting the sensor data, and x; is the flag to indicate whether the message is real or fake. Label

y in D can only be a binary value {0,1}. The minimum unit of the collected datasets is {X]@, y0) },

which means that the i sensor data comes from sensor node N; with label y),

3.2. The Adversary Model

The global adversarial model used in this paper is similar to the one that is considered as external,
passive, and global [12,13]. In contrast to the passive adversary, an external adversary cannot control
any nodes in the WSN. Instead, it can only monitor, eavesdrop, and analyze the communication in
the network, via channel snooping. After obtaining the transmission status, the global adversary can
identify the behavior of people in the smart home by applying static analysis, using a method such as
the FATS Model.

3.3. Requirements of Privacy Protection

The particularity and sensitivity of the smart home makes it important to consider the privacy,
energy efficiency, and latency of the sensor network in the design of privacy protection methods.

3.3.1. Privacy

The WSN in the smart home environment collects sensitive data about people living in the
environment. A good privacy protection model should be robust to resist such attacks as FATS, as well
as statistical analysis that can acquire private activities. The main purpose is that, even if an attacker
can listen to a global message sequence along with the time of transmission, it is still not possible for
the attacker to identify fake messages from the transmission sequence, i.e., the added fake messages
would prevent the attacker from obtaining the desired results.

3.3.2. Energy Efficiency

It is not considered a good privacy protection scheme if the implementation of the scheme would
reduce the lifetime of the entire WSN. A good protection scheme should keep the overhead as low as
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possible, to extend the life of the WSN as much as possible. However, adding fake messages can incur
extra energy consumption. In our method, we take the average load of the traffic into consideration.
When the traffic load is high, the algorithm reduces the number and frequency of the fake messages
accordingly. Packet loss and collision are also reduced as a result.

3.3.3. Low Latency

As the aging of the population becomes a serious issue, the smart home would make a great
contribution to improving the quality of life of the elderly [14]. In such applications, it is necessary to
trigger events in a timely manner, to immediately send the sensed data to the sink node, to determine or
predict the abnormal situation (especially physical health status) of the elderly, and to take appropriate
actions. If the latency was too long, it would take a lot of time for the sensed data to be received,
lowering the efficiency of the timely treatment of elderly people. A good privacy protection model
should keep the latency within the normal range of acceptance, allowing the sink node to make timely
decisions, in order to meet the requirements of the applications.

4. The Proposed Model

In this section, we introduce our adaptive method, which is based on supervised learning.
The proposed method consists of three separate algorithms. Algorithm 1 is designed for sample data
analysis. The smart home provider uses the algorithm to analyze the sample dataset generated in real
smart home scenarios. Through the analysis, we can use the frequency distribution of the RF radio
(FDR) to simulate the distribution of fake messages, ensuring that the frequency rate is similar to that
in the sample datasets. Algorithm 2 is designed for supervised learning. Firstly, we analyze the load
and time characteristics of the collected sensor data and label the results of Algorithm 1 accordingly.
Then, we use supervised learning to generate the parameters of the prediction model. Finally, the sink
node sends the parameters to all of the sensor nodes. Algorithm 3 is designed to allow the sensor
nodes to update the parameters and to send fake messages. In the rest of this section, we will describe
the three algorithms in detail.

4.1. Sample Data Analysis

In the smart home environment, the likely categories of privacy protection include scenarios of
the user’s going to work, coming back home, or going to sleep, etc. If fake data messages are only sent
when the user is at home, to protect the user's behavior, then the behavior during the time at work,
sleep, and other privacy-related periods, can still be leaked. We therefore design an algorithm that
produces a transmission sequence which resembles that of a large amount of real data, to achieve better
privacy protection. The adversary can only attain a general pattern of the people through monitoring
the frequency of radio signals, thus protecting the privacy of individual residents. Consequently,
we use FDR to describe the send frequency of the sensor network, which consists of one or more
elements in the form [(start time, end time), average frequency].

Taking into account the different habits among people in different regions, the provider should
include sample data from different regions in the analysis, and the procedure is shown in Figure 4.
Firstly, we should count the number, as well as the time of message sending per minute, for which
the answer is denoted as F = {(t1, f1), (t2, f2), (t1, f3) - . ., (tn, fu) }. Then, we will use formula (1) to
standardize f, for which the answer is denoted as F*' = {(t1, f{), (t2, f3), ..., (tn, f)) }. Secondly,
we use the K-means clustering algorithm to cluster the elements in F/, producing a group of periods
over the 24-hour interval. Finally, we calculate the average frequency of sending in each of the periods
and update the average frequency of sending, as well as the period p to the FDR. After the analysis, we
will ascertain the FDR that will be sent to the smart home devices in every family.

! _ fi — min(F)
fi = max(F) — min(F)

)
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Figure 4. Analysis of sample datasets.

4.2. Supervised Learning

The supervised learning process is composed of three steps: collecting data, labeling collected
data, and executing the learning algorithm and updating the parameters in the sensor nodes. All of the
sensor nodes send fake messages in accordance with the initial time window, and the sink node labels
the collected data in accordance with the FDR, as well as the traffic status. The learning algorithm will
train the labeled data from different sensor nodes and the sink node will hand out the parameters to
the sensor nodes.

4.2.1. Data Collection

Each sensor node works in accordance with Algorithm 1 of Figure 5 to generate information and
decides whether or not to send fake messages. At the beginning of the algorithm, all of the sensor
nodes in the WSN will send fake messages using a fixed time window. After training the learning
algorithm, the prediction model will be plugged with a new 9, as shown in Figure 5. Each sensor node
needs two variables to input into the prediction model, in order to determine whether or not to send
fake data. The two variables are the traffic status and time, represented by x; and x,, respectively.
Traffic status is calculated using Formula (2), where ft represents the number of messages forwarded
and st represents the number of messages sent within the time window.

_ ft+st o nowTimeStamp — dateStamp

st 2= 60 * 60 * 24

X1 2)

To normalize the time, we map the current timestamp in the range [0,24], which is represented
using Xxp. In xp, the nowTimeStamp denotes the current timestamp and the dateStamp denotes the
starting time of the day. These parameters are used as inputs for the prediction model. The prediction
model consists of a series of operations, along with a hypothesis function. If the result of the prediction
model is not smaller than 0.5, a fake massage should be sent after a random time delay. If the result is
smaller than 0.5, the algorithm ascertain whether a fake message has been sent during the previous K
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iterations. If so, the time window will be doubled. Once real data is sent, the original time window
will be resumed.

Check for updates of 0

No
Acquire the Status Plug new B to the
Information Prediction Model
Inti=0
1=+l <——Smaller than 0.5 Prediction Model

Bigger than or equal to 0.5
i

Wait for a Random
Interval
No
Yes Send the fake
\L message
Double the Time
Window

‘ A Waiting for Next Time

Window

Figure 5. Sensor node determines whether or not to send fake messages.

4.2.2. Sensor Data Labeling

The sink node would classify received data into two categories: fake data and real data, which are
marked using a flag. The main purpose of labeling is to mark the fake data with label 1, meaning that
fake messages should be sent, and to use label 0 otherwise. The basis of the classification is the FDR
and the traffic status. Firstly, we label fake messages with 0 during the period of sending messages
sparsely, and with 1 during the period of sending messages at a higher rate. After labeling the fake
messages, supervised learning will take place.

4.2.3. Learning and Parameter Updating

Supervised learning is one type of learning method, in which a model learns from the training
data and then predicts new instances of an event. It results in unlabeled data to be labeled through
previous experience and then applies the labeled data to the learning algorithm. After training,
the parameters are generated to update the prediction model. Song et al. presented a solution for
supervised learning [15] and our algorithm has been inspired by this solution.

Algorithm 2 is shown in Figure 6. The algorithm inputs the datasets of sensor data and the FDR.
The learning algorithm will deal with all of the data and calculate 0 for each sensor node, respectively.
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Figure 6. Supervised learning running in the sink node.

We use the logistic function as the hypothesis function, as expressed in Formula (3), where
0 = [09,61,02-, Bw]T. In the formula, hg(x) is a w + 1 dimensional parameter vector that we are
learning from the training set, w is the number of features for the training, and 6 is the initial value
for logistics regression. The learning algorithm and the hypothesis function can realize the goal of

logistics regression.
1

ho(x) = 1+exp (—0Tx)

®)

The main purpose of the learning algorithm is to find 6, to accurately classify the training data
into two categories. When the cost function in Formula (4) reaches the global minimum, 0 is the
optimal solution of the learning algorithm. In the formula, m is the amount of training data. In the
proposed SDASL method, every sensor node has its own training dataset, and thus, each sensor node
has its own parameters.

jo) = >y -logho () + (1 — y'9) log (1 o (x))] 4)

The gradient descent algorithm is used here to obtain an appropriate 6 for the hypothesis function
which is described in Formula (5), in which « indicates the length of the gradient descent. Because J(6)
is a convex function, we can be sure of finding the local optimal value, which is also the global optimum.

d
0;:=0; — “8791-](9) ®)
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5. Evaluation

In this section, we first describe the method and the setup of the experiment, and then present the
results of the experiment in terms of privacy protection, delay, and energy consumption, in comparison
to the ConstRate and the FitProbRate models.

5.1. Experiment Setup

We used the public dataset related to accurate activity recognition in a home setting [16] in the
experiment. We also downloaded several datasets from WSU CASAS (Center for Advanced Studies in
Adaptive Systems) as the sample datasets, to calculate the FDR for supervised learning in Algorithm 2.

The experiment was carried out in a macOS environment and a PHP language was used to process
the original datasets, that are in the formats of txt or dat. To use the datasets conveniently, we used
PHP to convert the datasets into a uniform format and stored the results in MySQL. The details of
the datasets are listed in Table 1, which includes the sensor number, trigger time, sensor status, and
real event. For example, M17 was triggered at 12:49:52 and the event is wash_hands begin. M17 was
triggered again at 12:50:42 and the event is wash_hands end.

Table 1. Examples of the datasets.

ID Sensor Number Trigger Time Sensor Status Real Event
1 M17 2008-02-27 12:49:52 ON Wash_hands begin
2 Mié6 2008-02-27 12:49:54 ON -
3 AD1-B 2008-02-27 12:50:01 0.302934 -
4 M17 2008-02-27 12:50:42 OFF Wash_hands end
5 M19 2008-02-27 12:51:01 ON Cook begin
6 T10 2008-02-27 13:07:14. 26.5°C -

In evaluating the effectiveness of privacy protection, we propose using ACA, the average
clustering accuracy. This is because, at Tier-1, the FATS attack would try to cluster the sensor data,
which plays a critical role in the attack. Should a sensor node be clustered into the wrong group,
the predicted ADL would be inaccurate [17], resulting in an ACA which falls within the range [0, 1].
The closer ACA gets to 1, the closer the clustering results will be to equaling the number of rooms and
the distribution of the sensor nodes. Conversely, when the clustering result is inconsistent with the
actual sensor distribution in the rooms, the ADL will be adequately protected.

We also propose using FVR, which is the result of the total number of fake messages divided
by the total number of real messages. Since it is hard to compare the three models under different
conditions, we can use FVR to unify the main influencing factors. We compared the delay, energy
consumption, and effectiveness of protection by the three models, through changing the FVR.

To compare the energy consumption between the three models, we compared the FVR under
the condition that the same level of privacy protection is provided. Because all of the three models
take a noise-based approach, the more noise in the WSN, the higher the energy consumption [18].
When considering the energy consumed by running the algorithm, it is generally recognized that
energy consumption by wireless communication is much higher than the energy consumption by
computation. It has been found that 3,000 instructions are needed for a sensor node to transmit 1 bit
of data over a distance of 100 meters [19]. Therefore, we can ignore the energy consumption of the
algorithm in our experiment.

In the evaluation of our model, the sample datasets were analyzed to derive the FDR and the
time window. Then, through a number of iterations in supervised learning that would update 6,
the transmission of real and fake data was collected by the sink node. Finally, we measured the FATS
attack in Tier-1 to calculate the ACA.
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5.2. Experiment Results

The results of the FVR are shown in Figure 7a. At the beginning, as the supervised learning is not
performing, the FVR can achieve its maximum value, which is 25. As time goes by, the FVR gradually
declines and eventually levels out at around 13. Figure 7b shows the results of ACA. As time goes
by, the ACA decreases gradually, from 0.8 to 0.4, and then waves around 0.3. In the beginning, with
the default parameters, the learning algorithm results in very poor privacy protection. Seven days
later, the ACA arrives at a stably low level, indicating that good privacy protection has been achieved.
As time goes by, the ACA gets lower, along with a continuous decrease in FVR thanks to the execution
of the learning algorithm from the sink node and the sending algorithm from the sensor node.

~+- SDASL -+~ SDASL
FVR ACA
25 0.8
204
0.6
154
0.4
104
0.2
54
0 Day 0 Day
2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12
(a) (b)

Figure 7. Relationship between FVR, ACA, and time in the SDASL model; (a) Description of the change
of the FVR; (b) Description of the change of ACA.

Figure 8 shows that, with an increase in the FVR, the latencies of the ConstRate and the FitProbRate
models gradually decrease. Since, in our method, real data is sent out without any delay, the latency is
caused by the multi-hop forwarding time, which can be ignored, in contrast to the other two models.
Figure 8 also provides the latency of a sensor node during a period of one day, which shows that the
period from (0,6) to (9,17) has a lower latency due to a sparse transmission rate, and the period from
(7,9) to (17,24) has a higher latency due to a dense transmission rate. This result indicates that the delay
in the FitProbRate model is affected by the density of transmission, and as the transmission rate of the
real event goes up, the delay will increase.

-4~ ConstRate Model -@- FitProbRate Model —#- SDASL -O- FitProbRate Model
Latency Latency
1,000 4 180

800 150
120

600+
90

400+
60

200- .

0 g FVR 0 Hour
3 6 9 12 15 18 21 24 27 30 0 8 13 19 20 22
(a (b)

Figure 8. Comparison of latency; (a) Description of the change of the Latency which with the change of
the FVR; (b) Description of the change of Latency of FitProbRate Model which with the change of the
hours in a day.
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Figure 9 shows that, with an increase in FVR, the ACA gradually decreases. While in the ConstRate
model, the ACA remains at a low level, it is affected by FVR in our model and in the FitProbRate model.
When FVR increases, ACA declines. As in the FitProbRate model, if real events happen frequently, the
overall transmission will become dense. Whereas, if real events happen sparsely, the sequence will
become synchronized. Therefore, the adversary can infer the routine of the residents by analyzing
the density of the transmission sequence. Accordingly, when the sequence is dense, people may be at
home and pursuing activities. When the sequence is sparse, people may be asleep or at work. In our
model and in the ConstRate model, this problem does not occur.

-A- ConstRate Model -@- FitProbRate Model —#- SDASL
ACA

0.8
0.6
0.4

0.2

0 " " " " ; T T - FVR
3 6 9 12 15 18 21 24 27

Figure 9. Comparison of ACA.

Figure 10 shows that with the increase in ACA, the FVR in all three models gradually decreases.
Without considering the delay, the ConstRate model is the most energy-efficient model out of the
three models. In the smart home, however, the delay must be controlled within an appropriate range.
Compared to the FitProbRate and the SDASL models, for each ACA, the FVR in SDASL is much
lower than that in FitProbRate, meaning that, under the same level of privacy protection, FitProbRate
will incur 50% more noise data than SDASL. Since energy consumption mainly occurs during data
transmission, SDASL will result in a 40% greater energy saving than FitProbRate, when the ACA is 0.2.

@B ConstRate Model @B FitProbRate Model @8 SDASL
FVR

30+
25+
20+

15+

10

) Il

0 . . , ll . ACA
0.2 0.4 0.6 0.8

Figure 10. Comparison of energy consumption.
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In summary, among the three models, ConstRate can provide the best privacy protection with
an average latency and the longest delay. FitProbRate can reduce the delay, but a resident’s routine
may be revealed and the computation load in the sensor node would increase. Our SDASL model can
overcome the shortcomings of the FitProbRate model, while reducing the latency.

6. Conclusions

In this paper, we proposed a new method to resist FATS attacks. Our method incorporates
supervised learning to improve privacy protection, while analyzing sample data to provide the basis
for data labeling. Compared to the ConstRate and the FitProbRate models, the experimental results
clearly demonstrate the advantages of our SDASL model in terms of adaptiveness, low latency, and
low power consumption, making it a better solution for smart home applications.

Following the approach in the proposed SDASL model, the collected data will be cached in the
center of the smart home. When someone requests to access the data, the control module will decide
whether or not to authorize the access. It may be true that the leakage of some insignificant information
would not lead to the leakage of privacy. However, the attacker can still perform some analysis on
such information, that could eventually lead to the leakage of privacy. In our future research, therefore,
we will develop ways of resisting this type of attack, in order to improve privacy protection through
access control.
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Appendix A

To help readers understand the acronyms clearly, we provide the following Table A1 to list all of
the acronyms used throughout this paper.

Table Al. List of Acronyms and Explanations.

The Acronym Explanation
ACA Average Clustering Accuracy
ADLs Activity of Daily Livings
ConstRate Model that sends fake messages in constant rate
FDR Frequency Distribution of RF radio
FATS Fingerprint and Timing-based Snooping

Model that is based on probability and looks for fit time interval to

FitProbRate
send fake messages
FVR FVR is calculated by dividing the number of fake messages by the
number of real messages
ToT Internet of Things
QoS Quality of Service
SDASL Model that is based on sample data analysis and supervised learning
WSN Wireless Sensor Network
WSU CASCA Washington State University Center for Advanced Studies in

Adaptive Systems
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