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Abstract: Increasing costs of diagnostic healthcare have necessitated the development of hardware
independent non-invasive Point of Care (POC) systems. Although anemia prevalence rates in
global populations vary between 10% and 60% in various demographic groups, smart monitoring
systems have not yet been developed for screening and tracking anemia-like pallor. In this work,
we present two cloud platform-hosted POC applications that are directed towards smart monitoring
of anemia-like pallor through eye and tongue pallor site images. The applications consist of
a front-end graphical user interface (GUI) module and two different back-end image processing
and machine learning modules. Both applications are hosted on a browser accessible tomcat
server ported to an Azure Virtual Machine (VM). We observe that the first application spatially
segments regions of interest from pallor site images with higher pallor classification accuracy and
relatively longer processing times when compared to the lesser accurate yet faster second application.
Also, both applications achieve 65–98% accuracy in separating normal images from images with pallor
or abnormalities. The optimized front-end module is significantly light-weight with a run-through
time ratio of 10−5 with respect to the back-end modules. Thus, the proposed applications are portable
and hardware independent, allowing for their use in pallor monitoring and screening tasks.

Keywords: point of care; azure; diagnostics; screening; classification

1. Introduction

Point of Care (POC) testing applications enable medical diagnostic applications to be provided
at the patient end for resourceful treatment and follow-up care. Additionally, m-health applications
supported by mobile devices have become increasingly popular over the past decade to promote
“telemedicine” systems, where the patient and medical care provider are not collocated in the same
geographical location [1]. With the 4–6% annually increasing costs of healthcare in USA [2], the need
for POC and m-health technologies for faster diagnostic purposes have become necessary. In this
work two different approaches towards providing patient-end POC diagnostic screening functionality
through cloud-hosted applications are presented. Also, the time complexity analysis and diagnostic
accuracy of a MATLAB based back-end versus a Java based back-end are compared, and an optimal
approach towards the design of a lightweight front-end is highlighted. The design of POC testing
applications is limited by constraints such as: ease of use, speed, data integrity, reliability and
repeatability. Here, the reliability and repeatability of the applications are dependent on the back-end
processing system specifications that in turn are dictated by user preferences between speed versus
accuracy of screening. Thus, Microsoft Azure cloud based services can be used as viable resources to
provide device independent web-service calls while maintaining data security and privacy [3]; all the
necessary components for successful hosting of a medical based diagnostics system.

In our prior pilot study [4], we analyzed color-planes and gradient-based features for their
discriminating capabilities towards facial pallor site images. We had observed that hierarchical
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classification for pallor severity, using boosted decision trees and decision forest, was the most
successful strategy for regional-feature-based automated pallor detection. In this work, we perform
additional analysis of pallor specific features in dedicated pallor site images by assessing the activated
feature maps (AFMs) from trained convolutional neural network (CNN) models [5,6]. Our analysis
of AFMs indicate that pallor specific regions of interest are inline with domain knowledge that
blood vessel densities in the conjunctiva region of eyes and inner tongue regions are most indicative
of anemia-like pallor. Additionally, in this work, we combine the image-processing/classification
modules with front-end image collection and processing modules that are hosted on the Microsoft
Azure cloud-based platform for designing complete web-based smart health monitoring applications.

At present, computer aided diagnostics (CAD) and POC applications are aimed at providing
quick “expert” diagnostics for screening and resourcefulness of treatment and care-delivery protocols.
Some well-known CAD systems include screening systems for diabetic retinopathy [7], hypertensive
risk [8] and pathology detected using digital chest radiographs [9]. However, no screening system has
been developed for anemia-related risk assessment till date. This work is aimed at utilizing facial pallor
site images with varying severities, such as close-up images from eyes and tongue for anemia-like
medical screening applications as shown in Figure 1. It is noteworthy that the pallor-specific features
under analysis in this work are patient demographics independent, motivated by domain knowledge
and focused on regions signifying the flushed appearance of underlying blood vessels as opposed to
skin-based pallor detections.

(a)

(b)

Figure 1. Examples of (a) eye (b) tongue pallor site images with varying severities.

This paper makes three key contributions. First, it presents the flow for front-end and back-end
communications towards the design of non-invasive medical POC testing applications. The proposed
applications are ideal for uploading patient images, such as facial pallor site images, and storing them
in the cloud while invoking a back-end system that processes the uploaded images and detects the
presence of anemia-like pallor. The novel front-end design is optimized for developmental environment
and deployment capabilities while ensuring fast and back-end independent end-to-end-communication
system using hardware-independent resources. Such pallor-screening applications have not yet
been designed. Second, region and color-plane specific features that are motivated and evaluated
with domain knowledge are analyzed for pallor site images corresponding to the eyes and tongue.
We observe that region-specific features to the conjunctiva and inner tongue are crucial for screening
normal from abnormal images, irrespective of the variations in imaging conditions and patient
demographics as shown in Figure 2. For the images under analysis, as shown in Figure 2, the images
are pre-processed for normalization of image lighting conditions using histogram equalization and
contrast enhancement modules followed by image padding for normalized eye/tongue region sizes.
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Additionally, the region-based features identified as most relevant for the pallor detection task are:
blood vessel density in gradient images from conjunctiva of the eye, and color/gradient-based
texture from inner and outer tongue regions, respectively. Third, two back-end models and hosting
architectures have been presented for the processing and classification of medical images for
anemia-like pallor directly using user-submitted images. Both models achieve accuracies in the range
of 65–98% for separating normal from abnormal pallor site images with high classification recall rates
in the range 80–100%. Thus, the proposed cloud-based application has low false negative rates and is
favorable for fast automated pallor screening tasks.

Figure 2. Examples of variations in patient demographics and imaging conditions across pallor site
data in the data set under analysis.

The organization of this paper is as follows. In Section 2, existing studies on anemia and
related prior works on facial and image segmentation, classification and cloud-based applications
are presented. In Section 3, the overall system architectures, front end and back-end methods are
presented. In Section 4, the experimental results of the proposed methods are presented. Conclusions
and discussions regarding the performances of the proposed image-based pallor classification methods
are presented in Section 5.

2. Related Work

Anemia-like pallor is a manifestation of the insufficient capacity of oxygen-carrying red blood
cells in the body [10]. Although iron deficiency is the primary cause for anemia, other nutritional
deficiencies for folate, vitamin B12 and vitamin A, chronic inflammations, parasitic infections and
genetic disorders have been found to impact hemoglobin contents in humans [10]. While the onset
of anemia can be sudden or chronic, hemoglobin concentrations in individuals have been found to
fall below the 95th percentile of healthy reference populations due to several reasons such as: blood
loss, excessive blood cell destruction, or reduced production of hemoglobin [11]. Prolonged and
uncontrolled anemia have been observed to lead to manifestations of fatigue, low immunity, insomnia
and dementia [12]. Given such situations, the primary objective for diagnosing and monitoring severity
of anemia is aimed at preventive treatment and protocol guidance for specialists.

Present-day protocols for diagnosis and treatment of anemia include invasive blood draws at
pathology labs followed by a complete blood count (CBC) test. This method of invasive diagnostic
testing deteriorates the quality-of-life for patients, especially those who need regular monitoring,
such as pregnant women and home-bound patients. Several studies evaluating the accuracy of the
diagnosis of anemia in physical examinations performed by physicians, medical students and residents,
showed no significant difference among examiners, but also showed that the exam was not accurate
when anemia is mild to moderate [13]. At present, several anatomical sites are evaluated and the
observations are combined in a physical examination to estimate pallor and to maximize the accuracy
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of the test [13]. Pallor of the conjunctiva (under eye vessels) has been found to be most accurate in
the case of beta thalassemia detection with good sensitivity and specificity, regardless of age and
gender [14]. This work is aimed to detecting patient pallor caused by anemia-like pathologies from
certain focused facial pallor sites, to identify discriminating features for pallor classification tasks
without relying on invasive blood draws altogether.

One of the primary challenges regarding automated assessment of facial pallor site images
involves automated segmentation for facial regions of interest (ROIs) and feature learning for
classification tasks. Although facial detection and recognition tasks have been well researched since
1960s [15], automated facial recognition tasks continue to face challenges related to the lack of
generalizability owing to gender, ethnicity, age and facial occlusions. Among recent noteworthy
efforts, the work in [16] demonstrates the usefulness of luminance and hue-based color planes over
red-green-blue (RGB) color planes for skin color identification tasks under non-uniform illumination
conditions. Another work in [17] uses fuzzy entropy-based approach for representation of skin-tone
colors towards facial detection tasks. Although anemia-like pallor may manifest as pallor of skin color,
the primary indicator for pallor is pale/less-flushed blood vessel surfaces. In this work, we analyze
skin-independent bio-marker regions for anemia-like pallor using gradient and color-plane based
features to indicate the density of flushed blood vessel surfaces. Here, the choice of features for pallor
classification is motivated by methods with low time-complexity for feature extraction, which are useful
for the development of a fast pallor screening applications. Thus, texture-based features for skin-related
segmentation tasks with high computational time complexities such as histogram of oriented gradients
(HOG), co-occurrence matrix and Gabor wavelet-based features [18] are not analyzed here.

Recent years have witnessed a significant increase in the development of bio-medical image
classification algorithms for medical screening applications [7,19,20]. Most existing algorithms are
driven by the ease of implementation and end-to-end speed while ensuring low false negative rates for
screening applications. The goals of such bio-medical image classification algorithms are: separation of
normal patients from abnormal ones [7], and patient prioritization for follow-up treatment. One such
method in [7] applies 2-step hierarchical classification to classify images with varying severities of
diabetic retinopathy using region-based features extracted from retinal fundus images. Other methods
in [19,20] utilize color and region-based features from fundus images to detect retinal blood vessels.
Novelty of this work lies in the utilization of directed facial site image containing blood vessel surfaces
for medical image classification, and for identification of features that are most relevant towards
detection of anemia-like pallor.

Over the past few years, m-health and POC technologies have been the focal point of clinical and
medical research technologies. In one of the prominent works [21], the importance and significance of
low-time complexity web based application development was analyzed. This survey indicated that
high time complexities of web-based applications negatively affected the functionalities of business
models, thereby leading to 53–84% reduction in project efficiencies and up to 63% increase in project
budgets. Thus, low-complexity and hardware independent web applications were found to be key for
sustainable business and research project models. In this work, we implement web-based applications
that are hosted using the hardware independent cloud-computing platform of Microsoft Azure
that promotes medical content delivery, ease of implementation and low-time complexity for high
resourcefulness of the POC testing applications.

The work in [22] highlighted the general benefits of cloud-hosted applications. Users were able to
access applications globally with a simple browser and internet connection, reducing costs significantly,
as infrastructure was provided by a third party and did need not be physically invoked for occasional
intensive computing tasks. Here, benefits were observed in application maintenance, system updation
and overall performance speed. Also, since cloud platforms offer performance diagnostics, automated
functionality scaling, depending on network traffic, was available [23]. However, the work in [22] failed
to provide experimental data collected from performance testing of different application infrastructures
using the cloud, as is the case in our work.
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Another work in [24] described the scalability of cloud-based applications. This work presented
a survey consisting of a front-end load balances to route and balance user requests to web applications
deployed on web servers in virtual machine instances in the cloud. Our work furthers the cloud-based
application hosting state-of-the-art described in [24] by utilizing the cloud-based Microsoft Azure
resources. Thus, with growing volumes of could-based service calls, more resources can be allocated
by the Microsoft Azure platforms, thereby reducing costs of resource allocation to match the necessity.

3. System Architecture Overview

The overall system architecture and the design of the front-end and back-end models (M1, M2)
are described as follows.

3.1. Architecture 1: Virtual Machine (VM) Hosting With MATLAB Back-End

The POC application hosted using architecture 1 consists of a Java front-end and a MATLAB
back-end (model M1). Its use relies on user access to an instance of MATLAB to run the application
back-end for pallor screening results. When the application URL is accessed from a browser, as seen in
Figure 3, the front-end is launched on a tomcat server which is ported to the Azure VM being accessed
and includes an existing installation of MATLAB and all back-end algorithm components pre-loaded
to the workspace. This allows for user-hardware independent processing since local user machines do
not need a MATLAB installation. Users are able to use the front-end interface to upload their images to
the VM and begin image processing by running MATLAB scripts with PowerShell. Upon completion,
results are collected by the front-end to be displayed on the graphical user interface (GUI).All materials
related to the uploading, processing, and results produced are saved on the VM disk, providing us
with a temporary location in the cloud for data handling.

Figure 3. Architecture 1 flow diagram; GUI: graphical user interface.

3.2. Architecture 2: Virtual Machine (VM) Hosting with Java Back-end

The POC application hosted using architecture 2 consists of a Java front and back-end (model M2)
located within one package, and requires no external processing environment outside of the tomcat
server and Java runtime environment. The application is hosted in an Azure VM, as described in
Section 3.1. When the URL is accessed from a browser, as seen in Figure 4, the web application is
launched and run using a tomcat server framework. From here, users can use the front-end GUI to
upload their images and then run a Java servlet to begin processing.
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Figure 4. Architecture 2 flow diagram.

3.3. Application Front-End Design

The two platforms presented in this work use the same front-end system. When the application
URL is accessed, as shown in Figure 5, the front-end is launched and a GUI appears, shown in Figure 6a.
It offers users the ability to navigate through the application in selecting the pallor site they wish to
screen, as well as uploading an image to be stored in a back-end directory to then be processed for
pallor classification.

Figure 5. The proposed functionality flows between the application front and back-ends.

The image upload is executed through the front-end’s processor, a Java servlet, which is invoked
through a series of HTML style buttons located on the GUI. The GUI itself is made up of Java
servlet pages (JSP), which allow users to control the servlet and execute all front-end commands.
Once an image is selected and uploaded, users are notified and a JSP page requesting action to launch
the back-end appears, as seen in Figure 6c. When the “begin anemia test” button is selected, it runs
the back-end specific to the POC application on the user-uploaded image/images while a loading
spinner appears, as seen in Figure 6d. The back-end prepares the processing and classification results
as a text embedded filtered image, as seen in Figure 6e, which is then pulled onto a final results JSP
page displayed back to GUI.
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(a) (b) (c)

(d) (e)

Figure 6. Sample webpages.(a) GUI welcome page; (b) User uploading tongue image; (c) User invoking
back-end from webpage button; (d) Web page displaying spinner as back-end runs silently; (e) Final
results displayed back to GUI.

3.3.1. Integrated Development Environment (IDE): Eclipse

The front-end is developed within the Eclipse IDE’s Mars edition as a dynamic web project (DWP).
Additionally, the Java enterprise edition (JEE) extension, a web development based plug-in,
is integrated into Eclipse as it offers the tools and framework needed to support and supplement the
design of this front-end project. JEE allows for the use of HTML, JavaScript, and CSS programing
languages which went into the construction of the GUI, as well as the use of servlets for processing
requests and responses.

3.3.2. Java Libraries

A major component of the front-end’s Java servlet, is the set of APIs offered by the Apache Commons
File Upload Java library. The file upload import allows for the parsing of web form HTTP requests
through form-based file uploading in HTML, the primary language of the GUI’s Java server
pages (JSPs). When an HTTP request is submitted using a POST method with a content type of
“multipart/form-data”, the servlet is called and begins parsing the request. It locates the image selected
by the user and creates an arbitrary storing directory relative to the back-ends location. This process
is invoked by the user. Finally, the use of jPowerShell, a simple Java application interface (API) to
interact with the PowerShell console on the VM, allows for one-click remote processing with the
application back-end.

3.3.3. Web Application Archive (WAR) Deployment

A web application archive file, or WAR file, is a type of JAR file used to distribute a collection
of JavaServer Pages, Java servlets, Java classes, XML files, tag libraries, static web pages (HTML and
related files) and other resources that together constitute a web application. In architecture 1,
the front-end is exported as an Eclipse Java DWP to a WAR file, which is then deployed to the
tomcat server that is configured and ported to the same VM that hosts an installation of MATLAB.
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In architecture 2, however, since both front and back-end components exist within the same Java
package, the entire project is deployed within a single WAR file to the tomcat server located on the
Azure VM.

3.3.4. End-to-End Communication

In architecture 1, communication between the front-end and back-end components occurs through
the use of PowerShell on the VM. A command is run, executing a batch file that opens an instance
of MATLAB and runs a script containing the appropriate back-end algorithm. In architecture 2,
communicating the front and back-end components is more direct. An HTML button located on the
GUI calls the appropriate tongue or eye class in Java, through the use of a servlet, and immediately
begins processing the uploaded image.

3.4. Back-End Methodology

Studies till date with patients having iron-deficiency anemia have demonstrated that anemia-like
pallor requires manual assessment of the following pallor-sites [25]: the conjunctiva, tongue, nail-bed,
palm and skin-color. In our prior work [4], a preliminary assessment of pallor site images for automated
severity classification was presented. Each input pallor site image (I) is in ‘jpg’ format, with the
three color planes, red, green and blue [Ired, Igreen, Iblue], respectively. For evaluation purposes, a set of
27 eye images and 56 tongue images are collected from public domain sources and manually annotated
for subjective pallor indices. These images are representative of variable patient demographics and
variable imaging conditions, fields of view. Each pallor site image has dimensions ranging from
[155 × 240] to [960 × 1280] pixels per color plane, and the subjective severity grades are as follows:
grade 0: normal patients, grade 1: patients with anemia-like pathologies, grade 2: patients with
pathologies/abnormalities that are not manifestations of anemia. The eye and tongue data sets are
analyzed separately using 5-fold and 3-fold cross-validation [26], respectively.

Since the pallor site images are obtained from uncontrolled imaging conditions, it is imperative to
ensure intensity equalization and similar sizes of the ROIs. Each image is resized to [250 × 250 × 3] RGB
color planes followed by histogram equalization of each color plane in range (0, 255), pixel
normalization in range [0, 1] and color plane contrast normalization [27]. Next, for model M1, the
green plane image is low-pass filtered using an averaging filter, thereby resulting in image Ilp, in
Equation (1). The size of 2-D averaging filter is empirically determined from training data sets as
[3 × 3] for eye images and [5 × 5] for tongue images, respectively. Then, the high-pass filtered image
(Ihp) is thresholded to detect a binary image (Iτ1 ) containing significant edge regions with area greater
than 20 pixels. A convex hull can then be fitted around the regions in Iτ1 , resulting in a mask (g) for
the pallor sites. To ensure similarly sized pallor masks, the fraction of the total number of pixels in the
mask ‘g’ are utilized. If this fraction exceeds a certain threshold, as in Equation (2), it would imply
that the pallor region of interest is not well centered, thereby the image would need to be padded
around the edges, as in Equation (3). The thresholds [τ1, τ2] are empirically determined as [0.2, 0.3],
respectively, from the training data sets. An example of eye pallor site image that is padded for
pre-processing is shown in Figure 7.

Ihp = Igreen − Ilp, Iτ1 = Ihp > τ1.
g← ConvHull(Iτ1).

(1)

If,
∑i ∑j g(i, j)

#pixels in Igreen
> τ2, (2)

I ← PaddedImage(I). (3)

Based on the variabilities introduced by the data sets, two data models (M1, M2) are analyzed for
pallor severity index classification tasks. These 3-step data models are shown in Figure 8 and described
as follows. The first model (M1) detects specific spatial ROIs, indicative of patient pallor, followed by
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extraction of pixel intensity features corresponding to color plane and gradient images within the ROIs.
Next, the features extracted from test images are utilized for pallor grade classification.

(a) (b) (c) (d) (e)

Figure 7. Steps for pallor-site image pre-processing; (a) original image; (b) Ihp; (c) Iτ1 ; (d) mask g;
(e) padded image.

Figure 8. The proposed models for pallor severity classification.

The second model (M2) is designed to detect the most significant color plane and gradient
image for pallor classification purposes. Color plane transformations are applied to each pallor-site
image, generating 12 image color planes: red, green, blue, hue, saturation, intensity (from RGB
to HSV transformation), lightness, a-plane, b-plane (from RGB to Lab transformation), luminance,
2 chrominance planes (from RGB to Ycbcr transformation). Next, the first order gradient filtered
image in horizontal and vertical directions extracted from each color image plane (IG) is superimposed
on the color image plane itself, thereby resulting in 12 additional images. Finally, each color image
plane is Frangi-filtered [20] to extract the second order edges (IF) and superimposed on the image
itself, generating 12 additional images per pallor site image. Using this process, 36 color and edge
enhanced images are extrapolated per pallor site image. Further explanation for the back-end model
steps are as follows.

3.4.1. Image Segmentation

The first step for model M1 involves spatial segmentation of the pallor site image into various ROIs
that demonstrate the skin-independent flushed appearance of blood vessel surfaces. For the tongue
images, the inner and outer tongue ROIs are separated first using the pre-processed green plane image
with mask ‘g’ [4] followed by watershed transformation, resulting in image W with sub-regions R.
Next, the outer edge of the tongue is detected in image E using ‘Sobel’ filter in Equation (4). Here, the ‘◦’
operation denotes pixel-level multiplication for masking purposes. The sub-regions in R that intersect
with the outer tongue edge regions represent the outer regions in the tongue (Router in Equation (5)).
The remaining regions in R, after removing the Router regions, represent the inner tongue regions
(Rinner) in Equation (6). The masked images corresponding to the segmented inner and outer tongue
regions are ginner, gouter, respectively. Similarly, the sclera and conjunctiva regions are segmented into
masks gsclera, gconj, respectively, for the eye pallor site images.
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E← edge(Igreen ◦ g, ‘Sobel′), R ⊂W. (4)

Router = R ∩ E. (5)

Rinner = g− Router. (6)

3.4.2. Color Planes and Gradient Feature Extraction

For model M1, 54 features are extracted per image using pixel intensity-features from color and
gradient transformed images from the various segmented sub-regions in each image. These features
are defined in Table 1. For model M2, all pixels in each of the 36 color and edge-enhanced
image planes are used for classification. Thus, in M2, each image sample plane is represented by
[250 × 250 = 62,500] pixels.The 54 region-based features in Table 1 are motivated by bio-medical
screening applications [7,19,20] with the following properties: low time-complexity using region-based
features, and the capability of first and second order gradient filters for detecting underlying blood
vessel densities [20] required for pallor classification.

Table 1. Pixel-intensity Feature Extraction for model M1.

Feature # Features Meaning

Pallor Site: Eye

Color Planes in gconj (6 × 3) = 18 Max, mean, variance of pixels in red, green, blue,
hue, saturation, intensity color planes.

Gradient intensity in
IG
green for Rconj 5 Max, min, mean, variance and intensity of pixels.

Frangi-filtered intensity in
IF
green for Rconj

4 Max, mean, variance and intensity of pixels.

Color Planes in gsclera (6 × 3) = 18 Max, mean, variance of pixels in red, green, blue,
hue, saturation, intensity color planes.

Gradient intensity in
IG
green for Rsclera 5 Max, min, mean, variance and intensity of pixels.

Frangi-filtered intensity in
IF
green for Rsclera

4 Max, mean, variance and intensity of pixels.

Pallor Site: Tongue

Color Planes in gouter (6 × 3) = 18 Max, mean, variance of pixels in red, green, blue,
hue, saturation, intensity color planes.

Gradient intensity in
IG
green for Router 5 Max, min, mean, variance and intensity of pixels.

Frangi-filtered intensity in
IF
green for Router 4 Max, mean, variance and intensity of pixels.

Color Planes in ginner (6 × 3) = 18 Max, mean, variance of pixels in red, green, blue,
hue, saturation, intensity color planes.

Gradient intensity in
IG
green for Rinner 5 Max, min, mean, variance and intensity of pixels.

Frangi-filtered intensity in
IF
green for Rinner

4 Max, mean, variance and intensity of pixels.

3.4.3. Classification

The final step in data the models M1 and M2 is classification. For analytical purposes two
categories of classifiers are analyzed that vary in their computational and parametrization complexities.
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The first category represents non-linear multi-class classifiers with low computational complexity, such
as, k-nearest neighbors (kNN) [26]. Compared to our prior work in [4], the kNN classifiers are preferred
due to their ease in implementation and generalizability across pallor site images when compared to
decision trees data models [26]. The second classifier category involves involves parametrization of
several hidden layers in a CNN model using the training data set. These classification data models are
described below.

1. kNN : The training data set is used to populate the feature space, followed by identification of ‘k’
nearest neighbors to each test sample, and identification of the majority class label [26]. In the
training phase, the optimal value of ‘k’ that minimizes validation error is searched in the range
[3:25], in steps of 2. For model M1, corresponding to each image I, 54 region-based features are
extracted, which represent the feature space, followed by determination of pallor class label for
each test image. Due to low computational complexity of this classifier, the final M1, M2 models
are deployed for pallor classification using the kNN classifier.

2. CNN: This category of classifiers, with high computational complexity, is motivated by the prior
works in [5,6]. Here, each input image is subjected to several hidden layers of feature learning
to generate an output vector of probability scores, for each image to belong to an output class
label. For this analysis, we implement CNN architecture with the following 7 hidden layers:
convolutional (C)-subsampling (S)-activation (A)-convolutional (C)-subsampling (S)-activation
(A)-neural network (NN). Each C-layer convolves the input image with a set of kernels/filters,
the S-layer performs pixel pooling, A-layer performs pixel scaling in the range [−1, 1] and the
final NN-layer implements classification using 200 hidden neurons. Dropout was performed
with probability of 0.5. Kernels for the low-dimensional M1 model were selected as [3 × 3 × 3],
while for the M2 model they were [7 × 7 × 10], per convolutional layer. Pooling was performed
with [2× 2] and stride 2. The kernels/filters per hidden layer were randomly initialized, followed
by error back-propagation from the training samples, finally resulting in trained activated
feature maps (AFMs). For each test image, the CNN output corresponds to the output class
with maximum probability score assigned by the NN-layer. Due to lack of data samples for CNN
parameter tuning, the trained AFMs from the hidden layers are analyzed for qualitative feature
learning, and to assess the significance of color planes and ROIs towards pallor classification.

4. Experiments and Results

4.1. Processing Speed Analysis

The processing times of the front-end and back-end components, including both eye and tongue
pallor site algorithms, are tested on a scale of 10,000 runs. The testing took place on an Azure hosted
Windows VM with 7 GB RAM and a 2.20 GHz processor. The training/test images include tongue and
eye pallor site images of sizes 5.21 KB and 159 KB, respectively.

4.1.1. Front-End Upload Time

This test is designed by placing the entire Java upload servlet into a loop, which runs 10,000 times
upon one call. To determine the upload processing times, a nano second based Java timer command
is placed at the beginning and end of algorithm, providing time stamps in the console indicative of
a start and finish times. The difference of these stamps represents the total run-through time of the
front-end image upload process.

4.1.2. Back-end M1 Model Processing Time

This analysis is designed by placing time-stamps at the beginning and end of the M1 model with
kNN classifier. The processing takes place within a MATLAB silent command window, which runs
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both the eye and tongue algorithms. This test includes the full opening and closing of MATLAB in
singular instances to most accurately mimic the users’ experience.

4.1.3. Back-end M2 Model Processing Time

This analysis is designed similarly to the front-end experiment. The same nano second based Java
timer command is placed at the beginning and end of the M2 model with kNN classifier, providing
time stamps in the console indicative of a start and finish times. The difference of these stamps,
represents the total run-through time of the back-end process.

Our goal with this experiment is to observe the impact of the front-end processing time on the
overall and back-end processing times. If t represents the overall application runtime, t f represents
the front-end run time and tb represents the back-end run-times, respectively in Equations (7) and (8).
Thus, for a lightweight front-end, t f << tb =>

t f
tb
<< 1 must hold.

t = t f + tb, (7)

=>
t
tb

=
t f

tb
+ 1. (8)

The statistical analysis of the front and back-end processing times and their dependencies are
shown in Table 2. We observe that the front-end processing time has median and standard deviations
in milliseconds of 0.022 and 4.7× 10−4, respectively. For the back-end processing times, model M1 and
M2 exhibit variations due to the pre-processing and software-related time-dependencies. Both models
(M1, M2) are implemented using the kNN classifier for hierarchical classification of normal, anemic
and abnormal images.

Further assessment of back-end model (M1, M2) time-complexities demonstrates that the kNN
classifier has run-time complexity of O(n[d + k]) [28], where ‘k’ is the optimal nearest neighbor
parameter, ‘d’ is the data dimensionality and ‘n’ is the number of images, respectively. Thus, for model
M2, the time complexity is O(n[62, 500 + k]), since d = 62, 500 pixels, and k << 62, 500. However, for
model M1, the methodological step for separable averaging filter incurs complexity of O(2m× dn) [29]
per image, where ‘m’ is the length of averaging filter. Thus, for the low-pass filtering step, the time
complexity incurred is m = 3 =>O(6 ×62, 500n) for eye images, and m = 5 =>O(10 × 62,500n) for
tongue images, respectively. The next steps in model M1 involve subtraction of low-pass filtered image
from original image, image thresholding and regional intensity-based feature extraction, which incur
approximately linear time complexity per image, or O(dn). Finally, the classification step for model
M1 incurs complexity of O(n[54 + k]). Here, we observe that time-complexity of M1 is greater than
6 and 10 times of M2 for eye and tongue image data sets, respectively. Also, for eye images, ‘k = 3’
and for tongue images, ‘k = [5, 15]’ are found optimal and these variations in time complexities can be
observed in Table 2. Further, Table 2 demonstrates that both of our conditions, Equations (7) and (8),
hold, with front-end run times significantly smaller than that of both back-end, indicating that our
front-end is light-weight as well as independent of back-end performances.

Table 2. Statistical Analysis of Front-end and Back-end Time Complexities. Mean (Std. dev.) of
run-through times are represented in seconds, respectively.

Time Eye, M1 Eye, M2 Tongue, M1 Tongue, M2

tb (s) 8.72 (7.6 × 10−2) 1.26 (0.33) 31.49 (0.44) 2.71 (0.57)

Time Complexity O(6 × 62,500n) + O(dn) + O(n[54 + k]) O(n[62, 500 + k]) O(10 × 62,500n) + O(dn) + O(n[54 + k]) O(n[62, 500 + k])
[ f ilter], [threshold, f eatures], [classi f ication] [classi f ication] [ f ilter],[threshold, f eatures],[classi f ication] [classi f ication]

t (s) 8.74 (7.6 × 10−2) 1.30 (0.33) 31.51 (0.04) 3.94 (0.52)

t
tb

1.002 (5.9 × 10−5) 1.02 (0.003) 1.00 (1.7 × 10−5) 1.08 (0.0014)

t f

tb
0.002 (5.9 × 10−5) 0.017 (0.003) 0.006 (1.7 × 10−5) 0.01 (0.0014)
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4.2. Color and Gradient-Based Feature Learning

For our analysis, the 36 color and gradient planes estimated using model M2 are analyzed for
multi-class classification performances using the kNN and CNN classification models, respectively.
Thus, for the eye data set with 27 images, [36× 27 = 972 images] and for the tongue data set with
56 images, [36× 56 = 2016 images] are subjected to classification. Next, the rate of correct classification
for each color and gradient plane image is analyzed to identify the most discriminating planes.
We observe that for the eye data set, the 12 color and gradient plane images extracted after
Frangi-filtering are optimal and result in consistently high classification accuracies in the range
[50–56%]. Also, Frangi-superimposed hue (IF

hue) and saturation (IF
sat) color planes result in the maximum

classification accuracy. It is noteworthy that covariance/correlation analysis of the 54 features, extracted
using model M1, with the output class labels, also demonstrate that Frangi-filtered features [20] and
hue, saturation, intensity planes [16,17] have the highest correlation indices.

Next, the trained CNN kernels/AFMs for IF
hue and IF

sat color plane images can be analyzed for
qualitative assessment of pallor site separability. For the eye pallor site images corresponding to
class 0, 1 and 2 shown in Figure 1a, with the top 20 significant AFMs corresponding to the IF

hue and
IF
sat color planes are shown in Figure 9. We observe that deeper layers of the CNN model do not

demonstrate significant spatial differences when compared to the initial layers in the data model.
Hence the top 20 significant AFMs are selected from the initial CNN layers that demonstrate qualitative
variations. We observe that normal images (class 0) have a highly flushed and distinct conjunctiva
due to significant blood flow in the vessels. Anemic images (class 1) have less flushed conjunctiva
and sclera while abnormal images (class 2) have the most flushed sclera regions. Thus, the AFMs
demonstrate distinct separability between the eye pallor site images.

(a) (b)

(c) (d)

Figure 9. AFMs corresponding to eye pallor site images; (a) First 10 AFMs corresponding to IF
hue;

(b) 11th to 20th AFM corresponding to IF
hue; (c) First 10 AFMs corresponding to IF

sat; (d) 11th to 20th
AFM corresponding to IF

sat.



Future Internet 2017, 9, 39 14 of 18

For the tongue data set, 8 color planes extrapolated by gradient filtering and superposition on
the red, green, blue, lightness and a,b planes (from Lab transformation), luminance and chrominance
planes (Ycb transformation) are found to have the maximum classification accuracies in the range
[62–65%]. Here, the lightness (IG

L ) and a-plane (IG
a ) are found to have the highest classification

accuracies. Further, the top 20 significant AFMs from the trained CNN models for the IG
L color planes

are qualitatively analyzed for data separability. For the tongue images in Figure 1b, the corresponding
AFMs for the IG

L are shown Figure 10, respectively. Here, we observe that for normal images (class 0),
the inner tongue region is more flushed than the outer tongue regions. Images with anemia (class 1)
have homogeneously flushed full tongue regions, while abnormal images (class 2) have structural
variabilities in the inner segments of the tongue. Besides, covariance/correlation analysis of the model
M1 features with the output class labels demonstrate that gradient-filtered features have the highest
correlation indices. Thus, the importance of skin-independent ROIs for pallor classification tasks is
qualitatively demonstrated by the CNN model AFMs with unmasked images.

(a) (b)

Figure 10. AFMs corresponding to tongue pallor site images; (a) First 10 AFMs corresponding to IG
L ;

(b) 11th to 20th AFM corresponding to IG
L .

4.3. Classification Performance Analysis

Once the optimal intensity-based features and color-plane images are learned from model M1
and M2, respectively, the next step is classification of the pallor site images. Motivated by prior
works [7], we perform 2-step hierarchical classification, such as separation of class 0 vs. 1,2, followed
by separation of class 1 vs. 2 images. Thus, for screening purposes, hierarchical classification effectively
separates normal from abnormal patients. The 2-steps of binary hierarchical classification performances
are analyzed in terms of the precision (PR), recall (RE), accuracy (Acc) and area under the receiver
operating characteristic curves (AUC). The classification performance of models M1 and M2 on the
eye images are shown in Table 3. Here, we observe that the M1 model implemented with the kNN
classifier has the best image classification performances (high AUC).

Table 3. Pallor classification Models on Eye Images. Best classification performances are in bold.

Model M1, kNN M2, kNN M1, CNN M2, CNN

Task 0/1,2 1/2 0/1,2 1/2 0/1,2 1/2 1/0,2 0/2

PR 0.85 0.57 0.87 0.61 0.74 0.50 0.51 0.94
RE 0.99 0.84 0.97 0.80 1.00 0.80 0.03 0.19
Acc 0.86 0.67 0.87 0.53 0.74 0.5 0.41 0.56

AUC 0.75 0.675 0.5 0.5 0.68 0.4 0.57 0.57
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The classification performance of models M1 and M2 on the tongue images are shown in Table 4.
Here, we observe that the M1 model with kNN has best separability of class 0/1,2 while model M2
with kNN has best separability of class 1 vs. 2.

Table 4. Pallor classification Models on Tongue Images. Best classification performances are in bold.

Model M1, kNN M2, kNN M1, CNN M2, CNN

Task 0/1,2 1/2 0/1,2 1/2 1/0,2 0/2 2/0,1 0/1

PR 0.982 0.51 0.69 0.9 0.95 0.66 0.71 0.68
RE 1.00 0.53 0.9 0.98 1.00 1.00 0.55 0.69
Acc 0.982 0.61 0.65 0.88 0.95 0.66 0.54 0.57

AUC 0.83 0.574 0.57 0.51 0.83 0.5 0.65 0.5

The optimal partitioning for hierarchical classification is selected based on the highest average
classification performance. We observe that hierarchical classification partitioning presented in
Tables 3 and 4 have lesser false negative rates (higher average RE) than other comparable partitions and
multi-class class classifications. A version of the trained Azure-hosted M2 model is at available for testing
and public usage. (https://sites.google.com/a/uw.edu/src/automated-pallor-detection-project).

5. Conclusions and Discussion

The proposed work presents a novel hardware independent application that is optimized in
design for fast end-to-end-communication using computationally less-intensive region-based features
and generalizable data models for image-based pallor classification. We perform quantitative and
qualitative assessment of eye and tongue pallor site images with varying pallor severities to design two
application models with a shared front-end that can be incorporated for personalized pallor detection
and pallor screening tasks, respectively. We perform three categories of experiments on the pallor site
images that are acquired from the public domain. The first experiment demonstrates that proposed
application font-end has significantly lesser computational time complexity (order of 10−5) when
compared to the back-end processing times. The second experiment detects the most discriminating
color and gradient plane-transformed images that are significant for classification of image-based
pallor. This experiment qualitatively demonstrates that Frangi-filtered hue and saturation color planes
and first-order gradient filtered luminance channel planes are most significant for pallor classification
using eye and tongue images, respectively. In the third quantitative experiment, we observe that pallor
classification, using the two proposed data models, results in 86% screening accuracy for eye images
while color-transformations and gradient filtering leads to 98% screening accuracy for tongue images.
Thus, the proposed applications are capable of severity screening for anemia using facial pallor site
images in under 20 seconds of computation time per image.

Three significant conclusions can be drawn from our analysis. First, for the eye pallor site
images, model M1 that involves spatial segmentation of each image followed by intensity-based
feature extraction and classification is the best model for separating normal images from abnormal
ones (class 0 vs. 1,2). For the tongue data set, however, model M2 that involves color and gradient
transformations followed by classification is better for overall anemia screening tasks. Second, the
CNN model over-fits to predict the class label with maximum number of class labels. For instance, in
the eye data set with model M1, CNN, classification of class 0 vs. 1,2 achieves RE = 1 due to the class
samples = [6, 12] for the binary classification task. Thus, all test samples are classified as class 1 or 2 by
the CNN data model, or over-prediction. Also, for the tongue data set with model M1, CNN, all test
samples are classified to the majority class labels, thereby resulting in RE = 1. On the other hand, kNN
is more resilient to sample class imbalance. Third, the eye pallor site images are better for anemia-like
pallor screening when compared to the tongue pallor site images since the combined AUC under the
hierarchical classification tasks is greater for the eye pallor site classification tasks. This observation is
in line with the clinical analysis for beta thalassemia in [14].

https://sites.google.com/a/uw.edu/src/automated-pallor-detection-project
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With the two proposed hardware-independent non-invasive medical diagnostics screening
platforms, users will be able to dictate their use based on preferences for speed versus accuracy
in screening results. The application with M1 back-end, which provides more accurate pallor screening
at slower processing speeds due to ROI segmentation requirements, is optimal for longitudinal
assessment of personalized pallor. However, the application with the M2 back-end, which provides
slightly less accurate results at faster processing speeds, becomes preferable for large-scale screening
applications. Future works can be directed towards extracting pallor-specific bio-markers from patient
skin-color based features. To counteract the variations in patient demographics, the image processing
modules that need to be developed include normalized feature extractors with color, structural
and artifact equalization modules as shown in Figure 11. The functionalities of these modules may
be directed towards spatial transformations against variations in image illumination, camera pixel
resolutions, and facial piercings. Such skin-based pallor classification will necessitate texture-based
feature detection modules with higher time complexities followed by combination of pallor-specific
bio-markers that are independent of patient ethnicity, gender and age-based variations.

Figure 11. Examples of challenges in automated patient skin-color based image segmentation and
analysis algorithms that can be analyzed in future works.
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