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Abstract: Image fusion is widely used in different areas and can integrate complementary and
relevant information of source images captured by multiple sensors into a unitary synthetic image.
Medical image fusion, as an important image fusion application, can extract the details of multiple
images from different imaging modalities and combine them into an image that contains complete
and non-redundant information for increasing the accuracy of medical diagnosis and assessment.
The quality of the fused image directly affects medical diagnosis and assessment. However, existing
solutions have some drawbacks in contrast, sharpness, brightness, blur and details. This paper
proposes an integrated dictionary-learning and entropy-based medical image-fusion framework that
consists of three steps. First, the input image information is decomposed into low-frequency and
high-frequency components by using a Gaussian filter. Second, low-frequency components are fused
by weighted average algorithm and high-frequency components are fused by the dictionary-learning
based algorithm. In the dictionary-learning process of high-frequency components, an entropy-based
algorithm is used for informative blocks selection. Third, the fused low-frequency and high-frequency
components are combined to obtain the final fusion results. The results and analyses of comparative
experiments demonstrate that the proposed medical image fusion framework has better performance
than existing solutions.
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1. Introduction

High-quality images are often required in application. A high-quality image can help people to
increase the accuracy and efficiency of image processing. Image fusion techniques are used to combine
multiple images from the same senor modality or different sensor modalities for enhancing visibility.
Following the development of cloud computing, cloud environment provides more and more strong
computation capacity to process various images [1–3].

Imaging technologies are widely used in disease diagnosis, analysis and historical documentation.
Image fusion has also aroused research interest in the field of medicine. Medical image fusion is
used to fuse multiple images from the same imaging modality or combine information from multiple
modalities, such as magnetic resonance image (MRI) [4], computed tomography (CT) [5], positron
emission tomography (PET) [6], and single photon emission computed tomography (SPECT) [7].

The fused medical image can reflect medical issues through images of human body, organs and
cells. The fused image provides a great diversity of features for medical analysis and diagnosis.
Although lots of medical image fusion techniques are available, the quality of fused medical image can
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still be improved. The unsatisfied fused medical image may affect the interpretation and diagnosis of
medical conditions.

A large number of image fusion methods have been proposed for image fusion. Spatial-domain
fusion and transform-domain fusion are two typical approaches. Spatial-domain based methods
directly choose clear pixels, blocks or regions from source images to compose a fused image
without doing any transformation. In general, spatial-domain methods may lead to blurring edges,
contrast decrease, and reduction of sharpness [8,9]. Transform-domain based methods decompose
source images into coefficients and transform basis first. Then the coefficients are fused by fusion rules.
Finally, the fused coefficients and transform basis are inversely transformed to obtain a fused image.
It is difficult to select an optimal transform basis without a priori knowledge.

Sparse-representation-based methods are introduced to transform-domain fusion methods
to recover a visually appealing reconstruction of the original signal. Sparse-representation based
methods can adaptively transform input images without priori knowledge by using trained basis.
Based on the adaptively learning feature, images and signals can be described and reconstructed
efficiently. Sparse-representation is widely applied to image denoising [10], image deblurring [11],
image inpainting [12], super-resolution [13], and image fusion [14,15].

The following three classical sparse-representation based methods improve the learning efficiency
of original sparse coding problems. The K-means generalized singular value decomposition
(K-SVD) algorithm, as a representative dictionary learning method, focuses on efficiently learning
an over-complete dictionary to maximize the image reconstruction power [16,17]. Lee solved
the optimization function to speed up the sparse coding algorithm [18]. Based on stochastic
approximations, an online dictionary learning method was proposed by Mairal to process the large
size dataset efficiently [19–21].

Yang and Li [15] first applied the sparse-representation theory to an image fusion field. A joint
sparse-representation image fusion method was proposed by Zhang and Fu [22]. Although the
image fusion method had lower complexity than K-SVD, it still required a substantial amount of
computations. Kim and Han [23] proposed a joint-clustering based dictionary construction method
for image fusion that used K-means clustering to group the image patches before dictionary learning.
However, it is difficult to get the cluster centers accurately for K-means clustering.

The spatial domain-based methods cannot handle the issues of blurring edges, contrast decrease,
and reduction of sharpness well. The transform domain-based methods depend on priori knowledge,
but priori knowledge is difficult to obtain. The current solutions more or less have some drawbacks in
image fusion, such blur, noise and so on [23,24]. Medical diagnosis has high requirements regarding
the quality of the fused image. Even a small flaw may cause serious error in medical diagnosis. So it is
important to enhance the quality of fused medical images.

This paper proposes a novel integrated medical image fusion framework. The framework has
two parts to do medical image fusion. The source image is discriminated as low-frequency and
high-frequency components, and they are fused separately. Two fused images are merged to obtain
the final image.

There are many ways to discriminate the source image. Multi-scale transform (MST) is usually
used to do the classification. MST can decompose source image, and use the corresponding image
fusion algorithm to fuse the decomposed image components. However, the MST computation cost is
much higher than other methods. MST takes about 5–10 s to process a 256 × 256 image on a 2.3 GHZ
CPU machine. However, Gaussian filter only takes less than one second to process the same size
image. Gaussian filter can successfully decompose image components into high-low frequency image
components. At the same time, the image noises are classified as high-frequency image components in
the decomposition. This can help in the image denosing during the sparse-representation based fusion
of high-frequency image components. Comparing with Gaussian filter, MST is not able to process
the image denoising. Gaussian filter does image decomposition in spatial-domain. The results
of Gaussian filter are low-frequency components that are the non-detailed parts of the image.
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The high-frequency components, which are the detailed parts of the image, are obtained by deducting
the low-frequency components from source image. The weighted average method decreases the
contrast and sharpness of image details, and blurs edges, but it processes the non-detailed image
information well. Sparse representation has high performance in representing the details of image,
so it is used in high-frequency components.

L2-norm can be independently applied over the data mismatch and the regularization terms. It is
robust against the noise and outliers and also has good preserving edges (non-smooth optimization).
L2-norm can obtain the high precision of image fusion in low-frequency components. So an L2-norm
based weighted average method is implemented to low-frequency components fusion. This method
calculates the L2-norm of corresponding high frequency components as weight for weighted average
components fusion. The fusion performance in non-detailed information, such as blurring edges,
contrast and sharpness can be enhanced.

An online dictionary-learning based method is implemented to improve detailed information
fusion performance. For ensuring the group sparsity as well as the local structure of atoms in
group, the sparse representation method is used to represent the form of clusters and construct
a dictionary. According to the current research achievements, dictionary-learning based image
fusion approaches with a well-constructed dictionary can have great performance in showing details
of sourcem. MST-based dictionary-learning method may cause the spatial inconsistency in some
smooth area of the fused image by directly using trained dictionary and “Max-L1” fusion scheme
[27]. Comparing with other types of images, medical image has its own special features. Usually the
margins of medical image are in black and contain limited information. However, those marginal
image patches affect the accuracy of dictionary learning. So these image patches are removed and only
the remaining informative image patches are used for dictionary learning.

The proposed framework has four steps:

• Step 1 is a denoising process. Each input source image is smoothed by Gaussian filter that is
robust to noise. Gaussian filter decomposes detailed information and noises from low-frequency
image components. It ensures that high-frequency image components only contain detailed
information and noises. It can adjust the sparse coefficients in sparse representation to achieve
the image denoising. So sparse-representation based image fusion of high-frequency components
can complete image denoising and fusion.

• Step 2 is a decomposition process of low-frequency and high-frequency components.
The high-frequency components of each source image can be obtained, by subtracting the
low-frequency components of original input source image. The low-frequency components
only contain the source image information without details, and the high-frequency components
include the detailed information of source image and noises.

• Step 3 is an image fusion process. L2-norm based weighted average method and
an online dictionary-learning algorithm are applied to low-frequency and high-frequency
components respectively.

• Step 4 is an integration process. The integrated image is obtained by merging the fused images of
low-frequency and high-frequency components together.

The contributions of this paper are as follows:

1. The low-frequency and high-frequency components of source image are discriminated by
Gaussian filter and processed separately.

2. An information-entropy based approach is used to select the informative image blocks for
dictionary learning. An online dictionary-learning based image fusion algorithm is applied
to fuse high frequency components of source image.

3. An L2-norm based weighted average method is used to fuse low frequency components of
source image.
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This paper is structured as follows: Section 2 discusses the related works of image fusion methods;
Section 3 presents the proposed framework; Section 4 simulates the proposed solutions and analyzes
experimental results; and Section 5 concludes this paper.

2. Related Works

2.1. Image Fusion

In many image-processing scenarios, high spatial and high spectral information are required
in a single image. Due to observational constraints, current instruments cannot obtain complete
information. The image fusion technique is proposed to combine all relevant or complementary
information from two or more source images into a single image [27]. The fused image has more
information that any of the source images.

Spatial-domain fusion methods directly analyze source images to choose clear pixels, blocks or
regions to compose the fused image. Energy of Laplacian and spatial frequency are two typical methods
to measure the clarity of pixels or regions. Based on the image clarity measurement, those pixels or
regions with higher clarity are selected to construct the fused image. Misalignment and incorrect
location of focused objects constrain the performance of spatial-domain fusion methods. For decreasing
the constraints, averaging and max pixel schemes perform on a single pixel to generate a fused image.
However, the contrast and edge intensity of the fused image may decrease.

Weighted average method, independent component analysis (ICA) [28], principal component
analysis (PCA) [29], and brovey transform [30] are typical spatial-domain fusion methods.
Spatial-domain fusion methods do spatial distortions by using localized spatial features, such as
spatial gradient, spatial frequency and information entropy. However, the spatial features cannot
fully reflect the image information, so spatial-domain fusion methods cannot obtain fused images in
good quality.

To improve the performance of a fused image, scientists have proposed block-based and
region-based algorithms. Tang proposed an image fusion method in discrete cosine transform domain,
that divided a source image into 8 by 8 pixel blocks first and then employed a contrast measure
to merge the divided blocks [31]. Li proposed a scheme to divide image into blocks and chose the
blocks by comparing their spatial frequencies (SF); the fused results are produced by consistency
verification [32]. An averaging or max pixel scheme is performed on the single pixel to generate fused
image. Although block-based algorithms improve the fusion performance in expressing details of a
fused image, the sharpness of the fused image may still be undesirable. Block-based algorithms may
cause a block effect, when they are applied to spatial-domain based methods.

Transform-domain fusion methods first transfer source images into frequency domain and
then fuse the corresponding coefficients. Many different mathematical transforms are proposed
to enhance the performance of the image fusion. Multi-scale transform (MST) algorithms, as a
conventional transformation approach, are used to decompose the source images. Wavelet transform
basis, shearlet basis, curvelet basis, dual tree complex wavelet transform basis, non-subsampled
contourlet transform (NSCT) basis are usually used for MST-based methods. Without a priori
knowledge, it is difficult to select an optimal transform basis. Transform-domain based methods
cannot give a general solution to fit all source images. The context of source image is closely related
to the performance of transform-domain methods. Pyramid and wavelet transforms are used for
multi-resolution image fusion [33]. Combination of complex contourlet transform with wavelet can
obtain robust image fusion [34]. Transform-based methods can be applied to liver diagnosis [35],
prediction of multifactorial diseases [36], parametric classification [36], and multi-modality image
fusion [37,38].
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2.2. Sparse Representation and Dictionary Learning

In signal processing, sparse representation is an extremely powerful way to acquire, represent and
compress high-dimensional signals. According to the sparse representation theory, an image can be
sufficiently reconstructed as a linear combination of the fewest possible atoms or transform bases
in an over-complete dictionary [23]. The number of atoms in an over-complete dictionary is more
than the dimension of signal, and can be used to represent more flexible and meaningful information.
For instance, an image can be represented using fixed bases (i.e., Fourier, Wavelet), or concatenations
of such bases. Sparse representation provides efficient compression and denoising estimators with
simple diagonal operators to address the signal’s natural sparsity [39]. The discrimination power of the
discriminative methods with the reconstruction property and the sparsity of the sparse representation
is combined [40].

A fixed dictionary can be easily obtained, but it depends on the data type. However, it is difficult to
select a good adaptive over-complete dictionary for sparse representation-based image reconstruction
and fusion techniques. DCT basis and wavelet basis are often used to form an over-complete dictionary
that does not rely on input images.

For dictionary-based image restoration, it is important to build a bridge between sparse
representation and dictionary learning. Aharon [16] proposed an adaptive dictionary learning method
called K-SVD that is related to the alternate minimization strategy MOD [41]. The dictionary is learned
with the extracted patches either from globally or adaptively trained dictionary by applying SVD
operations. The non-zero coefficients of the matrix are updated in dictionary update step at the same
time. Comparing with the fixed dictionary based methods, K-SVD usually shows a better performance
in image reconstruction.

However, it takes high computational costs to do the iterative K-SVD learning processing,
especially with the large number of training images. So the dimension of dictionary is constrained.
For a certain type of source images, image fusion can also have good performance based on the fixed
dictionary. Rubinstein [42] proposed a sparse K-SVD method to learn a sparse dictionary as a type
of dictionary between fixed and trained dictionary. Each atom of the leaned sparse dictionary can be
represented over a prespecified base dictionary.

Based on the signal sparse representation theory, Yang [43] proposed a novel image fusion scheme
that conducted the sparse representation on overlapping patches instead of the whole image by using
a small size of dictionary. As the key technique of the proposed solution, the simultaneous orthogonal
matching pursuit technique sparsely decomposed different source images into the same subset of
dictionary bases. Most of multi-focus image fusion solutions are subject to one or more of image
fusion quality degradations, such as blocking artifacts, contrast decrease, sharpness reduction and
so on. Nejati [44] utilized a dictionary learned from local patches of source images to do multi-focus
image fusion in spatial domain. The corresponding pooled features were extracted by pooling sparse
representations of relative sharpness pixels together, according to the learned dictionary. The pooled
features are correlated with sparse representations of source images to get the corresponding pixel
level score for the decision map of fusion. Markov Random Field (MRF) optimization regularized the
decision map.

Clustering of nonlocal patches is introduced to dictionary learning method. A centralized sparse
representation (CSR) framework is proposed by Dong that integrates local dictionary learning and
nonlocal structure clustering [45]. PCA is used to learn an orthogonal dictionary for each cluster of
input patches. All patches are sparsely encoded, and the decomposition coefficients of each cluster are
close to a per-cluster mean representation.

Since a small local dictionary as a subset of the global dictionary can be used to describe patch
images, Chatterjee [46] proposed a clustering-based denoising method with locally learned dictionaries.
A dictionary is iteratively trained by obtaining principal components of each cluster that reflect
representative local features of source image.
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Mairal [19] proposed an online dictionary learning method based on stochastic approximations to
minimize the expectation with respect to the unknown probability distribution of input data. It uses
a stochastic version of the majori-zation-minimization principle to do the calculation [47]. A quadratic
surrogate of the expected cost is sequentially built and minimized at every iteration.

Stochastic gradient descent algorithm, as an effective way of dictionary learning, was proposed
by Olshausen and Field in 1996 [39]. It described gradient steps with a fixed step size computed on
mini-batches of the training set and rescaled heuristic gradient to prevent the norm of the columns to
grow out of bounds by taking the implicit constraint into account. However, it is actually difficult to
choose the suitable step sizes in a data-independent manner.

One classical approach of dictionary learning is the alternate minimization scheme optimizes
dictionary learning process [41,48]. It alternates two minimization steps: one with respect to dictionary
D with the fixed sparse code A, and one with respect to A with fixed D. Although it is not as fast as
a well-tuned stochastic gradient descent algorithm in practice, it is parameter-free.

Learning a compact and representative dictionary is very important for sparse representation.
Qiu [49] adopted the rule of maximization of mutual information to learn a compact and discriminative
dictionary for action attributes. Siyahjani [50] learned a context aware dictionary to improve the
recognition and localization of multiple objects in images. Other methods improve the dictionary
performance by separating the particularity and commonality [51] and adding discrimination
constraints [52,53]. Most of these methods consider the discrimination between classes, while seldom
involving relationships between samples or the local information in the data space.

2.3. Medical Image Fusion

Medical image fusion involves specific imaging modality, clinical problem, doctors and patients.
There are three major focused areas of medical image fusion.

• Imaging Modalities: It involves identification, improvement and development of image modalities
for medical image fusion [54];

• Fusion Algorithms: It develops different algorithms for image fusion [55];
• Organs: It analyzes and diagnoses human organs in assessments of conditions [56].

2.4. CT and MRI Images Fusion

CT and MRI are important techniques. Due to the differences of the imaging principle,
they generally contain complementary and occasionally inconsistent information. Although CT
image affords dense structures like bones and implants without introduction of distortion or loss of
information, it cannot detect physiological changes. In contrast, an MRI image can support normal
and pathological soft tissues information, but it cannot sustain bones information. As supplementary
effects of CT and MRI, multi-modality medical image fusion based on compressive sensing can be
competent to support accurate clinical requirements that are not apparent in separate source images.

2.5. MRI and PET Image Fusion

MRI-PET (Positron Emission Computed Tomography) is a novel imaging modality that combines
anatomic and metabolic data acquisition. MRI image can give the clear soft-tissue image and PET
image can construct a three-dimensional image of tracer concentration within the body. The advantage
of MRI-PET fusion is registration of the two modalities. It can not only largely replace PET-only
scanners in clinical routine, but also expand considerably the clinical and research roles.

2.6. MRI and SPECT Image Fusion

MRI-SPECT (Single-Photon Emission Computed Tomography) is a multi-modalities medical
image fusion method that combines structural and functional information from source images. MR as
a structural imaging method is used in neuro-image diagnosis. As morphologic changes are used
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to interpret MR images, MR images usually have low accuracy and poor discrimination in showing
diseases. As a functional imaging method, SPECT can reflect metabolic changes. However, without
structural information, it is difficult to understand metabolic changes. For improving the utilization of
SPECT images in medical diagnosis, structural information needs to link to corresponding metabolic
changes.

3. Proposed Framework

The framework is shown in Figure 1, where I1 to Ik represent the input source image 1 to k.

�

Figure 1. The Proposed Image Fusion Framework.

Ih1 to Ihk and Il1 to Ilk are high-frequency and low-frequency components of image 1 to k,
respectively. zh1 to zhk are the sparse coefficients of Ih1 to Ihk. The sparse coefficients zh1 to zhk are from
Ih1 to Ihk by sparse coding with a constructed dictionary D. I f

h and I f
l are the fused high-frequency and

low-frequency components respectively. As shown in Figure 1, the framework consists of three steps.
In the first step, input source images are smoothed by the Gaussian filter. These Gaussian smoothed
source images are recognized as low-frequency components Iln(n ∈ 1, 2...k) of input source images.
Then the high-frequency components Ihn(n ∈ 1, 2...k), can be got by subtracting the low-frequency
components Iln(n ∈ 1, 2...k) of original input source image In(n ∈ 1, 2...k). In the second step,
the low-frequency components are fused by an L2-norm based weighted average method. For the
high-frequency components, it uses a K-SVD algorithm to build the dictionary. Before the dictionary
learning process, an information-entropy based approach is conducted for selecting the informative
image blocks. These informative image blocks are used for dictionary learning, that can make the
trained dictionary more informative. With the constructed dictionary, high-frequency components are
sparse coded to a few sparse coefficients by orthogonal matching pursuit (OMP) algorithm. The sparse
coefficients fused by “Max-L1” coefficient fusion rule. In the last step, the fused low-frequency and
high-frequency components merged to the fused image I f .

If the high-low image components are not decomposed, “Max-L1” used for fusing sparse
coefficients may select the wrong coefficients and cause an error in the fused image [24].
The decomposition of high-low image components was used by Liu in image fusion. Source images
were decomposed into high-low frequency image components, when he did sparse-representation
based image fusion [27].

3.1. Gaussian-Filter Based Decomposition

Gaussian filter (also known as Gaussian smoothing) is an effective method that is widely used
in image processing to reduce image noise and reduce detail. Gaussian smoothing is often used
as a pre-processing stage in computer vision algorithms in order to enhance image structures in
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different scale-space representation [57–59]. Gaussian filter is a low pass filter that has good effect of
reducing the image’s high-frequency components. So Gaussian filter is widely used in image fusion
for decomposing source images into low-frequency and high-frequency components.

The proposed fusion method processes high-frequency and low-frequency components of source
images separately. Then the fused results of high-frequency and low-frequency components are merged.
The low-frequency components contain structural information, and contour information to constitute
the base of an image. The high-frequency components give the details of an image. The high-frequency
components are added upon the low-frequency components to refine the image. It is important to
decompose high-frequency and low-frequency components of source images accurately and completely.
The accuracy and completeness of decomposition directly affects the fusion result. Only accurate
and complete image decomposition can ensure the fused image contains more detailed information.
Gaussian filter can decompose the detailed information and noises of source image into high-frequency
components [60]. The sparse-representation based solution not only denoises, but also enhances the
detailed information of fused image.

In this paper, a two-dimension Gaussian function is used for smooth. The Gaussian function is
shown in Equation (1).

G(x, y) =
1

2πσ2 e−(x2+y2)/2σ2 , (1)

where x is the distance from the origin in the horizontal axis, y is the distance from the origin in
the vertical axis, and σ is the standard deviation of the Gaussian distribution. σ is variable, that can
effect how much does it smooth the picture. The standard deviation σ of Gaussian filter ranges from
2 to 4 depending on the size and type of source images (e.g., σ = 3 is usually for over 256 ×256 size
image). When applied in a smooth image, it produces a surface whose contours are concentric circles
with a Gaussian distribution from the center point. Values from this distribution are used to build
a convolution matrix which is applied to the original image. Each pixel’s new value is set to a weighted
average of that pixel’s neighborhood [61]. When the Gaussian filter algorithm is implemented as
a low-pass filter to smooth the input source image, low-frequency component Il of the input source
image can be got. Then high-frequency component can be got by Equation (2).

Ih = I− Il , (2)

where I is the input source image and Ih is the high-frequency component. After high-frequency and
low-frequency components of the source image are received, different fusion scheme is implemented
to them, respectively.

If it does not do the decomposition first, it may misselect the sparse coefficient, and even cause
the accuracy of fused result [27]. Source images shown in Figure 2 are used in the comparison of
non-decomposition and decomposition. Figure 3a,b show the results of non-decomposition and
decomposition respectively. The same pixels marked in blue frame are selected from each result to
do the detailed comparison. The result of non-decomposition is blur, but decomposition obtains the
clear result.
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Figure 2. The Source Image Pair of Non-decomposition and Decomposition, (a) is the CT source image;
and (b) is the MRI source image.

Figure 3. Detailed Comparison of Non-decomposition and Decomposition, (a) is the fused result of
non-decomposition; and (b) is the fused result of decomposition.

3.2. High-Frequency Components Fusion

3.2.1. Solution Discussion

The traditional dictionary learning methods use the pixel value to select informative image block.
According to the common pixel format, the pixel as the byte image is stored as an 8-bit integer giving
a range of possible values from 0 to 255. Zero and 255 are taken to be black and white respectively.
Values in between 0 and 255 make up the different shades of gray. Two hundred and fifty five is usually
used as a basis to evaluate the pixel value. So the pixel selection may not be accurate. For instance, one
pixel and its neighboring pixels may have significant differences. One pixel is bright, but its neighbors
are dark. No matter whether a bright or dark pixel is selected, both informative image block selection
and the accuracy of learned dictionary are affected.

The gradient-based patch selection approach uses the eigenvalue of edge information to represent
source images. Gradient ridges describe positions and shapes of singular structures. Since the local
image structure is far more complicated than the parametric representation, it is difficult to model
the gradient distribution with a few parameters. Due to the incorrect gradient estimation and no
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gradient constraint, the reconstructed images are usually over-sharped, suffer from false artifacts,
or have a blurring effect.

There is a large set of source image blocks. For dictionary learning, it is difficult to select distinctive
image blocks for dictionary construction. The entropy-based patch selection approach evaluates the
gray-level probability of each image block, and identifies and selects the most informative image
blocks based on the entropy rank (or threshold). Each image block is regarded as relative image
information. The entropy calculation process does not depend on a single basis. The pixel numbers
of each gray-level image block decide the entropy of each image block. Based on the criterion, the
informative image blocks, as a small proportion of source image blocks, are selected.

3.2.2. Dictionary Construction

Dictionary is an important factor in sparse representation. Training a redundant dictionary
with small failure rate is a common solution for sparse representation [62–64]. However, redundant
components of a trained dictionary can cause adverse effects in the accuracy of sparse coding. A certain
proportion of redundant elements in the trained dictionary is got from the non-informative blocks in
the learning process. As the number of non-informative blocks in medical images is large, using only
the informative blocks for learning process can make the trained dictionary productive. To retain the
informative blocks and reduce the blocks with limited information, a novel entropy-based informative
dictionary construction approach is proposed. The proposed dictionary construction consists of two
parts, (1) the informative blocks selection and (2) dictionary learning.

The block-selection approach is based on information entropy, and can be implemented for both
gray-level images and color images. Color images are converted to gray-level images for entropy
calculation. Supposing input images have w gray-levels, and they are split to n image blocks with s× s
pixels, the steps of the selection approach can be demonstrated as follows.

Step 1. Acquiring histogram counts vector hk, k ∈ (1, 2...n) of each image blocks Ik, k ∈ (1, 2...n)
by count the pixel numbers of each gray-level. Using hk, k ∈ (1, 2...n) and the image blocks size s× s,
the gray-levels probability of image block k can be calculated by Equation (3).

Pk = hk/(s× s) (3)

Step 2. Calculating the entropy of each image block use gray-levels probability Pk of each image
block k. The entropy calculating process is shown in Algorithm 1.

Algorithm 1 Image Block Entropy Calculation.

Input:
Gray-levels probability Pk, k ∈ 1, 2...w,

Output:
Entropy ES of image block, where S = s× s

1: E0 = 0
2: for i = 1 to S do do
3: Compute the entropy of number ith pixel in image block

hi = −∑i Pi log Pi
4: Ei ← Ei−1 + hi
5: end for

Step 3. Reducing the image blocks with low information entropy. In this step, a threshold Th
is set for the informative image blocks selection. For a image block, if ES > Th, this image block is
remained for dictionary learning. On the contrary, if ES < Th this image block is reduced.

When the informative image blocks are selected, the K-SVD algorithm can be implemented for
dictionary learning. The dictionary learning results with all image blocks and only the informative
image blocks are shown in Figure 1.
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3.2.3. Sparse Coding and Coefficients Fusion

When the dictionary D is trained, OMP algorithm is implemented for sparse coding. Supposing
input images are split to k image blocks, each image block bi, i ∈ (1, 2...k) is coded by OMP
algorithm with the input dictionary D. Each image block bi, i ∈ (1, 2...k) is coded to sparse coefficients
zi, i ∈ (1, 2...k). Then the coefficients is fused by “Max-L1” fusion rule. The fusion rule is demonstrated
in Equation (4).

z f =
k

∑
i=1

zk ⊗Ok, where

{
Ok = 1, max(‖z1‖1, ‖z2‖1..., ‖zk‖1) = ‖zi‖1

Ok = 0, otherwise
(4)

where the zk is the sparse coefficients corresponding to each image patches. z f is the fused vector, ‖•‖1
is the L1 norm. “Max-L1” is a fusion algorithm of sparse coefficient that has been widely used in many
references [43,65]. This algorithm does the sparse representation of the source image first, then picks
the sparse coefficients with large L1 norm as the transformation coefficients, and finally inverts the
transformation coefficients to obtain the fused image.

The fused coefficient vectors are restored back to image by Equation (5).

I f
h = DZ f (5)

where the Z f = {z f
1 , z f

2 ..., z f
n}, are fused vectors corresponding to the source image patches and D is

the dictionary trained by the proposed method.

3.3. Low-Frequency Components Fusion

3.3.1. L2-Norm Based Fusion

The weighted average is used to fuse low-frequency components. It assumes that k input
images can be split to k low-frequency components Ili, i ∈ (1, 2...k) and k high-frequency components
Ihi, i ∈ (1, 2...k). It calculates the “L2-norm” Wi = ‖Ihi‖2, i ∈ (1, 2...k) of high-frequency components to
estimate the percentage of corresponding low-frequency components.

L2-norm as a Euclidean norm is used to measure a vector difference as a standard quantity.

D =‖ x1 − x2 ‖2=
√

∑
i
(x1i − x2i)2 (6)

It tries to fine the sparsest solution of the underdetermined linear system that has fewest non-zero
entries. The minimization of L2-norm was used to calculate the weights of high-frequency components
for the fusion of low-frequency components by Kim [23] and Liu [66]. The L2-norm minimization is
formulated by

min ‖ x ‖2, subject to Ax = b (7)

It assumes the constraint matrix A has full rank. So this underdertermined system has infinite
solutions. The lowest L2-norm is one of the best solutions from infinite solutions. For reducing
computation costs, Lagrange multipliers are introduced to L2-norm.

L(x) =‖ x ‖2
2 +λT(Ax− b) (8)

where λ is the introduced Lagrange multipliers. It takes derivative of this equation equal to zero to
find a optimal solution and get

x̂opt = −
1
2

ATλ (9)
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Then it substitutes this solution into the constraint to get

Ax̂opt = −
1
2

AATλ = b (10)

λ = −2(AAT)−1b (11)

Finally, it gets

x̂opt = AT(AAT)−1b = A+b (12)

So it can instantly calculate an optimal solution of L2-norm problem by using the above
Equations (7)–(12). Equation (7) is the basic optimization of L2-norm. According to Equation (7),
the calculation processes of weighted average of high-frequency components are deduced as
Equation (8)–(12).

The calculated corresponding weighted average Wi of each high frequency component is used
to fuse low frequency components of source images. The fused low-frequency components can be
obtained by

I f
l = ( ∑

i=1,2...k
Wi · Ili)/( ∑

i=1,2...k
Wi) (13)

3.3.2. Solution Discussion

High-frequency components correspond to edges in an image. High-frequency components
change rapidly, so that an edge is characterized by a sharp change in intensity values. Low-frequency
components in an image correspond to smooth regions that represent global information about the
shape, such as general orientation and proportions. Low-frequency components change gradually and
slowly. The slow change feature would be reflected in the presence of large number of smooth regions.
Sharp images have a great proportion of high-frequency components. Oppositely, blurry images have
a low proportion of high-frequency components. High-frequency components have been strongly
affected, but low-frequency components are unaffected by the blur. According to source images, most
of image information is sharp and only a small portion is blurred. The low-frequency components
in the small portion, as non-sparse information, are important for image fusion. The appropriate
smoothing operation can reduce shape details to delineate the object accurately. It is important to set
the threshold for the smoothing operation. The low threshold causes low contrast edges. A variety of
new edge points of dubious significance are introduced. The high threshold looses low contrast edges
as broken edges.

L1-norm and L2-norm are usually used to transform image signals. L2-norm is more stable than
L1-norm. A small perturbation of data points can change the regression line of L1-norm a lot, even its
direction. However, L2-norm still maintains the shape of original regression line and only makes
a small change in parabolic curve. This means that all future predictions of L1-norm are affected much
more seriously than L2-norm predictions.

L1-norm has the built-in feature selection property and tends to produces sparse coefficients.
L2-norm does not have this property. For L2-norm, it does not matter whether the source image
information can be represented in sparse coefficients.

L2-norm based regularizer produces non-sparse coefficients. The quality of features is one of the
most important properties that directly influences the performance of classification. Good-quality
features generally enable samples in the same class to stay relatively closer to each other and thus make
it easier to generate a discriminative collaborative representation with non-sparse coefficients [67].
Generally speaking, non-sparse representation is more promising than sparse representation in
classification. It is robust against noisy and redundant feature sets [67].
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Furthermore, L2-norm has analytical solutions, and there is always one solution for the certain
data set. L2-norm solutions can be obtained by efficient calculation. Due to the sparsity properties, the
L1-norm can use sparse algorithms to obtain the solutions. L1-norm is not efficient to solve non-sparse
cases. L1-norm may have multiple solutions. So L1-norm is not efficient to obtain solutions as L2-norm.

3.4. Fused Components Merging

According to fusion rules, the fused high-frequency and low-frequency components are combined
to form the final fused image.

I f = I f
h + I f

l (14)

3.5. Comparison of Learned Dictionary

Figure 4a,b show the details of a learned dictionary using traditional and proposed method
respectively. The traditional method does not eliminate the non-useful information from source image
before doing the dictionary-learning process. In image fusion, the size of the learned dictionary is
usually set to 256 or 512. So the learned dictionary by traditional method shown in Figure 4a has too
many stochastic blocks marked in red frame. Parts of stochastic blocks marked in the green frame are
too dark.

�

Figure 4. Details Comparison of Learned Dictionary, (a) shows the details of a learned dictionary using
traditional method; and (b) shows the details of a learned dictionary using proposed method.

Compared with the traditional method, the proposed solution obtains a better learned dictionary
shown in Figure 4b. The proposed solution classifies the source image information into low-frequency
and high-frequency components. The image information that contains low-entropy information is
eliminated from the dictionary-learning process. In the learned dictionary, the number of stochastic
blocks decreases. The majority of the learned dictionary consisted of dominant orientation blocks.
Those dominant orientation blocks contain more detailed information of the medical image, such as
edge details, edge direction and so on, that can increase the accuracy of medical image fusion.

4. Experiments and Analysis

4.1. Experimental Setup

To further test the efficiency of the proposed framework, nine groups of multi-modality images are
conducted for testing. These multi-modality image groups include CT-MRI, MRI-PET, and MRI-SPECT
image fusion. All the source images have the size of 256 × 256 pixels and can be obtained at two
public websites [68,69]. Figure 5a–i are the source image pairs for CT-MRI, MRI-PET, and MRI-SPECT
image fusion experiments, respectively. Only one comparative experiment of each image fusion type
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is chosen to present in detail, including fused images and objective evaluations. For other comparative
experiments, it only shows the average objective evaluations of CT-MRI, MRI-PET, and MRI-SPECT
image fusion, respectively. In this paper, the quality of the proposed framework is compared with
other existing methods, including BSD (Block-based Spatial Domain) [70], DWT [71], DT-CWT [72],
CS-DCT [73], KSVD-OMP [74], Yang’s multi-focus image fusion and restoration solution (MFR) [15],
Zhang’s sparse representation-based image fusion solution with dictionary learning (SRDL) [22], Kim’s
joint patch clustering-based image fusion solution (JPC) [23] and Liu’s multi-scale transform and
sparse representation-based image fusion solution (MST-SR) [27]. SRDL, JPC, and MST-SR used the
similar frameworks as our proposed solution respectively to obtain good fusion performance. Based
on their solutions, our proposed solution improves in the representation of detailed information,
and furtherly enhances the performance of the fused image. The objective evaluation of the fused
image includes the AG (Average Gradient) [75], Edge-Intensity (EI) [76], Edge Retention QAB/F [77],
Mutual Information (MI) [78], and Visual Information Fidelity (VIF) [79]. In this paper, the size of the
learned dictionary is set to 128, and the size of the image patch is set to 8 × 8. It adjusts the step size
of sliding window by allowing at least 75% of the 8 × 8 size patch image as overlapped region in all
comparative experiments (i.e., 2-pixel in each vertical and horizontal direction). The error tolerance for
all sparse representation-based methods is set to ε = 0.15. All the experiments are implemented using
Matlab 2014a and Visual studio 2013 community on an Intel(R) Core(TM) i7-4720HQ CPU @ 2.60 GHz
Laptop with 12.00 GB RAM.

�

Figure 5. Nine Image Fusion Comparative Experiments, (a)–(c) are CT-MRI source image pairs; (d)–(f)
are MRI-PET source image pairs; and (g)–(i) are MRI-SPECT source image pairs.

4.2. Image Quality Comparison

To show the efficiency of proposed method, the quality comparison of fused medical images is
demonstrated. The proposed method and other five existing methods are implemented in CT-MRI,
MRI-PET, and MRI-SPECT medical image fusion. The qualities of fused images are compared based
on visual effect and following five objective evaluations.

• AG computes the average gradients of each pixel in fused image, that shows the obvious degree
of objects in the image. When AG gets larger, the difference between object and background
increases [75].

• EI measures the strength of image local changes [76]. A higher EI value implies the fused image
contains more intensive edges.

• QAB/F edge strength represents the edge information associated with the fused image and visually
supported by human visual system [77]. A higher value of QAB/F value implies fused image
contains better edge information.
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• MI computes the information transformed from source images to fused images. When MI gets
larger, the fused image gets more information from source images [78].

• VIF is a novel full-reference image quality metric [79]. VIF quantifies the information shared
between the test and reference images based on the Natural Scene Statistics (NSS) theory and
Human Visual System (HVS) model.

According to existing papers, objective evaluation metrics are always used to evaluate the
performance of the fused image objectively [15,22,23]. Doctors actually use image information to
diagnose the disease. The high-quality fused images are helpful for doctors to make the accurate
diagnosis. The above five objective evaluation metrics (AG, EI, QAB/F, MI, VIF) used in this paper are
the internationally common methods to evaluate the performance of medical image fusion [80–82].

4.2.1. CT-MRI Image Fusion Comparative Experiments

The ’brain’ images are a pair of CT and MRI images shown in Figure 6a,b respectively. CT image
shows the bone information and MRI image shows soft issues. BSD (Block-based Spatial Domain),
DWT, DT-CWT, CS-DCT, KSVD-OMP, MFR, SRDL, JPC, MST-SR, and the proposed method (IDLE)
are employed to merge CT and MRI images into a clear one with bone and soft issues information
respectively. The corresponding fusion results are shown in Figure 6c–l respectively.

As BSD is a spatial-domain method, it is easy to figure out block effects in fused image (c).
Fused image (d) has good performance in details of high-frequency components, but details of
low-frequency components are darker than source images. The contrast and sharpness of the fused
image (d) are good. Image (e) fused by DT-CWT has low contrast and sharpness. CS-DCT keeps details
of CT and MRI images in the fused image (f), but the contrast and sharpness are low. The fused image
(g) of KSVD has good overall performance, but the sharpness of details is not sufficient. MFR keeps the
details of source images in the fused image (h). The details in the Fused image (i) of SRDL have low
contrast and sharpness. The fused image (j) of JPC shows good detailed information. MST-SR causes
the details of low-frequency components to be darker than the source images in the fused image (k).
The fused image (l) of proposed IDLE not only contains complete details, but also has good contrast
and sharpness.

Then it compares the details of each fused image. Red and blue frame in image (a) and (b)
show the important details of bone and soft issues. Block effect affects the corresponding details in
fused image (c). In fused image (d), the bone part is too bright and the soft issue part is too dark.
The corresponding details of fused image (e) are blurred. This is not good for medical diagnosis (e).
The contrast and sharpness of fused image (f) are low. The fused image (f) also has some blurs.
The fused image (g) has good brightness, but the contrast is low. Details of source images are shown in
the fused image (h) clearly. In the fused image (i), the details of bone part are blurred. The fused image
(j) shows clear and complete detailed information. The soft issue part is too dark in the fused image
(k). The proposed IDLE generates a fused image (l) that contains complete and clear details and also
has good contrast and sharpness.

Table 1 shows the objective evaluations. Compared with the rest of image fusion methods,
the proposed IDLE gets the largest value in QAB/F, MI, and VIF. BSD gets the largest value in AG and
EI, but it has block effects in the fused image. So the proposed IDLE has the best overall performance
in CT and MRI ’brain’ image fusion among all 10 methods, according to the quality of fused image,
contrast, sharpness and objective evaluations.
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�

Figure 6. CT-MRI Image Fusion Comparative Experiments, (a) is the CT source image; (b) is the MRI
source image; and (c)–(l) are the fused images of BSD, DWT, DT-CWT, CS-DCT, KSVD-OMP, MFR,
SRDL, JPC, MST-SR, and the proposed IDLE respectively.

Table 1. Objective Evaluations of CT-MRI Image Fusion Comparative Experiments.

AG EI QAB/F MI VIF

BSD 7.1738 76.9148 0.6595 2.1021 0.4021
DWT 6.1569 56.8719 0.6284 1.3327 0.2952
DT-CWT 4.2628 46.2560 0.5097 1.2463 0.2632
CS-DCT 3.5918 38.7132 0.5063 2.0268 0.3046
KSVD-OMP 4.2109 46.0699 0.7762 2.5085 0.3493
MFR 6.0671 62.1495 0.7442 2.7284 0.3691
SRDL 4.6062 53.2307 0.7238 2.6084 0.3417
JPC 6.1482 64.5306 0.7264 2.5146 0.3908
MST-SR 4.4807 49.1622 0.6843 2.4708 0.3261
Proposed IDLE 6.1330 65.6209 0.8428 3.0158 0.4097

* The highest result of each objective metric is marked in
bold-face.

4.2.2. MRI-PET Image Fusion Comparative Experiments

The ’brain’ images are a pair of MRI and PET images shown in Figure 7a,b respectively.
The MRI image shows the image of brain slices that contain clear information of soft tissues. The PET
image also shows the image of brain slices that produces a 3D image of functional processes in human
body. BSD, DWT, DT-CWT, CS, KSVD-OMP, MFR, SRDL, JPC, MST-SR, and the proposed IDLE are
employed to merge MRI and PET images into a clear image with soft tissues and functional processes
information. The corresponding fusion results are shown in Figure 7c–l respectively.
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Figure 7. MRI-PET Image Fusion Comparative Experiments, (a) is the MRI source image; (b) is the
PET source image; and (c)–(l) are the fused images of BSD, DWT, DT-CWT, CS-DCT, KSVD-OMP, MFR,
SRDL, JPC, MST-SR, and the proposed IDLE respectively.

Similar to SPECT, the results of BSD and DWT have the issue of chromatic dispersion, and this
may cause misdiagnosis. So BSD and DWT are not recommended to fuse MRI and PET images.
The fused images of DT-CWT and KSVD-OMP have high quality, and both contrast and sharpness are
also good. However, the detailed parts of these fused images have low brightness, compared with the
proposed IDLE. MFR, SRDL, and JPC show a good performance in fusing source images. The fused
image (k) of MST-SR is brighter than the source image. The fused image (l) of proposed IDLE has high
quality in details, contrast, sharpness, and brightness.

Table 2 shows the objective evaluations. Compared with the rest of the image fusion methods, the
proposed IDLE gets the largest value in QAB/F, MI, and VIF. DWT gets the largest value in AG and
EI, but it has chromatic dispersion issues in fused images. So the proposed IDLE has the best overall
performance in PET and MRI image fusion among all 10 methods, according to the quality of fused
image, contrast, sharpness, brightness, and objective evaluations.
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Table 2. Objective Evaluations of MRI-PET Image Fusion Comparative Experiments.

AG EI QAB/F MI VIF

BSD 6.7133 69.2493 0.3069 1.8505 0.2611
DWT 6.8695 70.8721 0.3128 1.7715 0.2447
DT-CWT 4.9488 47.1991 0.3147 1.8667 0.2954
CS-DCT 4.1109 42.9211 0.2955 1.8330 0.2694
KSVD-OMP 3.5764 36.7095 0.2840 1.7970 0.2842
MFR 4.9026 47.9372 0.3155 1.8673 0.3096
SRDL 5.0374 49.1628 0.3163 1.8571 0.3142
JPC 4.6936 47.6084 0.3184 1.8647 0.3086
MST-SR 3.7241 38.9104 0.2894 1.8163 0.2907
Proposed IDLE 4.7137 48.0413 0.3199 1.8744 0.3161

* The highest result of each objective metric is marked in
bold-face.

4.2.3. MRI-SPECT Image Fusion Comparative Experiments

The ’brain’ images are a pair of MRI and SPECT images shown in Figure 8a,b respectively.
Similarly, the MRI image also shows the image of brain slices with soft-tissue information in this
experiment. The SPECT image provides the true 3D information of brain slices that is typically
presented as cross-sectional slices through the patient, and can be freely reformatted or manipulated
as required. BSD, DWT, DT-CWT, CS-DCT, KSVD-OMP, MFR, SRDL, JPC, MST-SR, and the proposed
IDLE are employed to merge MR and SPECT images into 3D image with soft-tissue information.
The corresponding fusion results are shown in Figure 8c–l respectively.

�

Figure 8. MRI-SPECT Image Fusion Comparative Experiments, (a) is the MRI source image; (b) is the
SPECT source image; and (c)–(l) are the fused images of BSD, DWT, DT-CWT, CS-DCT, KSVD-OMP,
MFR, SRDL, JPC, MST-SR, and the proposed IDLE respectively.
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The fused image (c) obtained by BSD has serious block effects that make the details unclear.
The DWT result has a chromatic dispersion that may cause medical misdiagnosis. The fused image
of DT-CWT has good performance in contrast, sharpness and details. CS-DCT does not generate
the high-quality fused image. The details of the fused image are blurred and contain lots of noises.
Although the overall contrast of KSVD-OMP fused image is good, parts of details are blurred and
the sharpness is not good. MFR, SRDL, and JPC generate high-quality fused image respectively.
The further comparisons are shown in following objective evaluations. As for the previous two
experiments, the fused image of MST-SR is still brighter than the source image. The details of the fused
image using the proposed solution has high contrast, sharpness, and brightness.

Table 3 shows the objective evaluations. Compared with the rest of the image fusion methods,
the proposed IDLE gets the largest value in QAB/F, MI and VIF. BSD gets the largest value in AG
and EI, but the block effect seriously affects the quality of fused image. According to the objective
evaluations, the proposed IDLE has the best overall performance in MR and SPECT image fusion
among all 10 methods.

Table 3. Objective Evaluations of MRI-SPECT Image Fusion Comparative Experiments.

AG EI QAB/F MI VIF

BSD 5.8505 59.7385 0.7180 1.5139 0.2951
DWT 4.6099 57.2050 0.6397 1.3106 0.2766
DT-CWT 3.8157 37.3078 0.7079 1.6847 0.3212
CS-DCT 3.0988 31.6784 0.3601 1.4818 0.2695
KSVD-OMP 2.7215 38.1780 0.6497 1.6565 0.2898
MFR 4.5781 51.8703 0.7174 1.7067 0.3196
SRDL 4.8603 51.3517 0.7219 1.6973 0.3244
JPC 4.7361 52.5702 0.7196 1.7102 0.3227
MST-SR 3.8729 43.7209 0.6173 1.5927 0.2681
Proposed IDLE 4.7295 52.0081 0.7317 1.7192 0.3265

* The highest result of each objective metric is marked in
bold-face.

4.2.4. Average Performance of Nine Image Fusion Comparative Experiments

Table 4 shows the average objective evaluations of nine image fusion comparative experiments.
The proposed IDLE obtains the largest value in QAB/F, MI, and VIF among 10 image fusion methods.
Although BSD gets the largest value in AG and EI, the block effect seriously affects the quality of the
fused image. The average objective evaluations prove that the proposed IDLE has the best overall
performance in three types of image fusion experiments.

Table 4. Average Objective Evaluations of Nine Image Fusion Comparative Experiments.

AG EI QAB/F MI VIF

BSD 5.5369 56.6304 0.3293 1.8758 0.2837
DWT 5.4205 55.1206 0.3585 1.2852 0.2471
DT-CWT 4.4082 45.0176 0.4376 1.6371 0.2847
CS-DCT 3.6498 36.8703 0.3974 1.8496 0.2745
KSVD-OMP 3.6265 39.9752 0.5382 1.8416 0.2984
MFR 5.1247 52.1774 0.5653 2.0934 0.3204
SRDL 4.9845 5.1983 0.5537 1.9416 0.3279
JPC 5.2903 55.0743 0.6149 1.9773 0.3395
MST-SR 4.0817 44.1942 0.5142 1.9237 0.3076
Proposed IDLE 5.2374 53.9238 0.6291 2.1045 0.3426

* The highest result of each objective metric is marked in
bold-face.
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4.2.5. Extension of Proposed Solution

In order to show the potentiality of the proposed method in other applications of image fusion,
our proposed method is applied to regular multi-focus and infrared-visible image pairs. Figure 9a–c
show the fused multi-focus images, and Figure 9d–f show the fused infrared-visible images. We pick
one fused image from each fusion type to do the detailed analysis.

Ä�Å Ä�Å Ä�Å

Ä�Å Ä�Å Ä�Å
�

Figure 9. Image Fusion Results of Proposed Solution in Different Scenes, (a)–(c) are the fused
multi-focus images; and (d)–(f) are the fused infrared-visible images.

In Figure 10, (1-a) and (1-b) are the multi-focus source images. Each of them has a different
out-of-focus clock. (1-c) is the fused image by our proposed solution. Two clocks are in focus in (1-c).
Similarly, Figure 10 (2-a) and (2-b) are the infrared-visible source images. (2-a) as the visible image
only reveals the visible details of background, such as lights and the storefront. (2-b) as the infrared
image shows the people, vehicles, and other missing details in visible image (2-a). (2-c) as the fused
image contains the background and detailed information of both (2-a) and (2-b). These experiments
confirm that our proposed solution can generate the satisfactory fused image in multi-focus and
infrared-visible scene.
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Figure 10. Multi-focus and Infrared-visible Image Fusion Results of Proposed Solution, (1-a) and (1-b)
are the multi-focus source images, (1-c) is the fused image by our proposed solution, (2-a) and (2-b) are
the infrared-visible source images, and (2-c) is is the fused image by our proposed solution.

5. Conclusions

This paper proposed a framework that integrated entropy-based clustering and online dictionary
learning in a sparse representation process. Compared with traditional medical image fusion methods,
the integrated approach had two major improvements. First, it used an L2-norm based weighted
average method to fuse low-frequency components of a source image. Second, an online dictionary
learning algorithm was used to extract discriminative features from high-frequency components of
source that enhances the accuracy and efficiency of image fusion. The comparative experiments with
BSD, DWT, DT-CWT, CS-DCT, KSVD-OMP, MFR, SRDL, JPC and MST-SR demonstrated that the
proposed IDLE had a better performance than other methods in CT-MRI, MRI-PET and MRI-SPECT
image fusion. However, the proposed IDLE used Gaussian filter to eliminate the high-frequency
details of source image. A part of the high-frequency information cannot not be presented in the fused
outcome. In future research, the proposed IDLE will improve the noise filtering without damaging the
high-frequency information.
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