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Abstract: Modern irrigation systems utilize sensors and actuators, interconnected together as a single
entity. In such entities, A.I. algorithms are implemented, which are responsible for the irrigation
process. In this paper, the authors present an irrigation Open Watering System (OWS) architecture
that spatially clusters the irrigation process into autonomous irrigation sections. Authors’ OWS
implementation includes a Neuro-Fuzzy decision algorithm called FITRA, which originates from the
Greek word for seed. In this paper, the FITRA algorithm is described in detail, as are experimentation
results that indicate significant water conservations from the use of the FITRA algorithm. Furthermore,
the authors propose a new communication protocol over LoRa radio as an alternative low-energy
and long-range OWS clusters communication mechanism. The experimental scenarios confirm that
the FITRA algorithm provides more efficient irrigation on clustered areas than existing non-clustered,
time scheduled or threshold adaptive algorithms. This is due to the FITRA algorithm’s frequent
monitoring of environmental conditions, fuzzy and neural network adaptation as well as adherence
to past irrigation preferences.

Keywords: water planting systems; neural network algorithms; fuzzy algorithms; smart farming;
agriculture; soil sensor; smart irrigation; IoT

1. Introduction

Effective irrigation of agricultural land is a very significant issue, not only addressed by areas and
countries with limited water supplies. To overcome challenges such as water scarcity and seasonal
shortage, numerous irrigation systems have been designed to automate the process. Most of those
systems are composed of three distinct parts: (a) the environmental sensors component; (b) the
decision-state machine component where the control logic resides; and (c) the actuator component [1].

Modern irrigation systems with excellent performance maintain less water consumption, while
ensuring maximum crop productivity. This critical performance point is in most cases a tradeoff
between water supply and gross crop production. The determination of this optimal point is hard
to indicate since it is affected by a number of static parameters such as field elevation, slope and
cultivation as well as dynamic parameters such as micro-climate conditions, seasonal plant diseases,
soil enrichment and fertilization et al.
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The already existent sensory-based irrigations systems include IoT actuators and sensors.
The Koubachi Company (Zurich, Switzerland) offers a smart watering product that consists of a
soil sensor and a central controller. It uses a self-learning watering algorithm with statically assigned
weights [2]. Parameswaran and Sivaprasath proposed an Arduino-based smart drip irrigation system
that is continuously monitoring pH, temperature and moisture levels [3]. Kumar and Srenivasa
proposed an automation of Irrigation System based on Wi-Fi Technology and IoT [4]. Harunet al.
proposed an IoT precision irrigation system for greenhouses, which use a wireless sensor network [5].

The implementation of smart algorithms into IoT devices, equipped with environmental sensors,
has been developed, by setting aside existing time-scheduled watering algorithms and algorithms
based on static on/off thresholds. Such simple IoT algorithms could lead to the increase of production
from 25 to 30% while reducing considerably water excess [6].

The implementation of fuzzy [7,8] and neural network algorithms [9] to the irrigation process,
also known as smart irrigation algorithms, has results according to human (Artificial Intelligent,
A.I. algorithms)-driven decisions and not according to the calibration of static thresholds. However,
such smart algorithms require a network infrastructure for cloud uploads, cloud storage and
bi-directional data exchange between controllers and application services for post-processing
evaluation of sensory measurements. No matter how promising the experimental results from such
systems are, they still have significant complexity, scalability, interoperability issues, and big power
consumption, all of which constitute expensive solutions for agricultural placement and present
communication disruption problems.

By taking into consideration the irrigation plans, which are determined by the requirements
of the agricultural land and are assisted by the IoT devices for precise agriculture, new adaptive,
sensory-assisted decision algorithms and smart irrigations systems using A.I. logic have been
implemented. A smart irrigation system is defined as a system that controls field irrigation without
user interference. Smart irrigation systems are divided into two main categories: (i) the weather
sensory adaptive; and (ii) and the soil moisture-soil sensory adaptive.

In the weather-based decision processes, irrigation decisions are based on feedback taken from
a weather-monitoring system. Such a system collects data from sensors that measure the rain level,
humidity, temperature, wind and solar radiation, located in the agriculture field of interest [10].
Weather feedback irrigation systems can monitor severe weather conditions in order to avoid irrigation
in cases of extreme meteorological conditions [10]. Moreover, it should measure the rainfall and stop
the irrigation when it starts raining. Solar radiation and leaf wetness are also needed in order to
calculate the dehydration of the plants and the evapotranspiration [11].

In order to avoid the installation cost of weather stations, it is provided that some irrigation
systems collect weather data from weather websites [12]. Specifically, such systems require Internet
access through a 3G/GPRS/4G transponder. Using the LTE network the system could have access
not only to historical weather data, but to future prediction models as well. The main benefit of such
systems is that they can postpone a scheduled irrigation if though weather prediction is known that
we are going to have a rainfall. As web-based irrigation systems have continuous access to the Internet,
they can be monitored and real-time controlled through a website or a smartphone [13]. Furthermore,
alerts and notifications can be sent from the system to the end user.

Another interesting category of smart irrigation systems is soil moisture sensor-based systems.
Such systems measure the soil moisture using sensors [14] and decide whether irrigation is needed or
not. Such systems are provided by companies such as Gardena [15] or Hunter [16] and implement
static thresholds with delay transition irrigation algorithms. These systems are less accurate from the
weather-based irrigation systems even if they measure soil humidity close to the plant root delivering
plant water demands instantly. Their failure is mainly based on the implemented irrigation algorithms
used. Another disadvantage of soil moisture systems compared to the weather system is that they
cannot foresee future rainfalls or measure atmospheric conditions and provide an accurate prediction
of plant water demands.
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Experimental soil moisture systems are also presented at [6,17]. Authors at [17] suggest a new
adaptive automatic irrigation system for arable areas, called Low-power long-Range Agriculture
(LoRAgri). The LoRAgri system uses low-power long-range transceivers and gateways for data
upload. Soil sensory adaptive systems’ decisions are based on either a neural network or fuzzy
algorithm that have as input periodically collected measurements from a number of soil moisture and
temperature sensors set on the field [6].

Furthermore, a hybrid smart irrigation system that combines web-based services for weather
prediction and soil moisture sensors for direct and precise moisture measurements near the roots of
the plants is presented at [18].

In order to achieve a proper and efficient function of a smart irrigation system, a proper wireless
communication system, capable of controlling the actuators and the sensors, is required. This capability
is covered by the RFM69, IEE802.15.4 Zigbee [19,20], LoRa and LoRaWaN technologies [21]. For deciding
which wireless communication protocol is more suitable for IoT irrigation, many factors should be
examined. Some of them are: cover range, power consumption, throughput, scalability, operational
cost and security options. In terms of precision farming and irrigation, where the application areas may
be located at distant places without a power supply, both the cover range and the power consumption
are considered as critical factors. Table 1 shows the main characteristics of the wireless communication
technologies mentioned.

Table 1. Main characteristics of wireless communication technologies Measurements [22–25].

Wireless
Communication

Technology

Maximum
Coverage Range

(m)

TX Current
Consumption

(mA)
Throughput Scalability/Max Nodes

3G/4G LTE Cellular Network 260–370 1–50 Mbit/s 1155 active transmissions/site

LoRa/LoRaWaN 12,000 40 5 Kbit/s 5000–20,000 nodes (LoRaWAN)
(50 Bytes payload, 7.3 packet/hour)

RFM69 500 80 100 Kbit/s 65,536
ZigBee 100–1000 35–65 1 Mbit/s–250 Kbit/s 65,536

Bluetooth LE 50 <25 1 Mbps 7

According to Table 1, if power consumption is acritical factor, then Bluetooth LE (BLE) is the
best technology. The main drawback of BLE is its limited coverage. Next eligible choices are the
ZigBee or 802.15.4 capable devices [19,26]. IEEE 802.15.4 devices offer a cover range of 1000 m with
250 kbps throughput and current transmission consumption of about 65 mA [26]. If throughput is
not as important as both high coverage and low power consumption, the most attractive technology
is the narrowband, spread spectrum LoRa modulation or/and MAC layer LoRaWAN technology
and infrastructure [27,28]. It offers more than a 15 km cover range at 5 kbps throughput with only
40 mA current consumption at transmission. If coverage distances are more than 15 km, the only
available technology is 3G/4G technology. The main drawback of LTE technology is its excessive
power consumption. Another drawback is the monthly subscription costs, which need to be paid to
the provider.

The rest of the paper is organized as follows: In Section 2, authors analyze the proposed irrigation
system architecture. In Section 3, authors describe the proposed FITRA algorithm and the OWS
architecture network protocol over LoRa as proposed by authors, and in Section 4, the experimental
results are presented.

2. Proposed Irrigation System Architecture

Authors propose a smart irrigation system based on equipment and technologies supported by
the open source community. The system is called Open Watering System (OWS). The OWS system
was implemented by focusing on low price, low power consumption and long-range coverage for data
measurements transmission.
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The proposed OWS system includes the following parts: (i) The microcontroller processing
module (ATMega328P) that controls the sensors, the actuator that is responsible for data upload to the
AS; (ii) the system soil moisture sensors; (iii) the actuator electro valve (servo-valve), with its attached
sensors (luminosity sensor, temperature sensor and flow meter sensor); (iv) the communication
transponder module and (v) the Application Server service (AS) for measurement storage, smart
algorithm (FITRA) implementation and data visualization. OWS uses at least one soil moisture
sensor [29] and up to 8 sensors, which are controlled by a cheap MCU controller unit. The limit of
8 sensors per actuator was enforced by the microcontroller’s capacity of 8 analog ports. If more analog
ports are needed per actuator, a microcontroller with more analog ports can be used instead.

In Figures 1 and 2, two versions of the proposed OWS system are presented. Both versions use
the same set of sensors and actuator but different communication technologies. In Figure 1, the OWS
implementation that uploads data to the Application Server (AS) using a 3G transponders presented.
For the purpose of minimizing 3G excessive energy consumption, the sensory data are uploaded
periodically using a static upload period Tp followed by a receive control interval Tk. During the
upload and control intervals the data as described by the FITRA application protocol (see Section 4.3)
are sent via the 3G transponder to the Application Service (AS). Afterwards the transponder enters the
sleep mode until the next upload interval. The FITRA protocol header and payload are encapsulated
over UDP and sent to the AS.

According to Figure 1, 3G technology is an easily deployed solution (ad-hoc) and exempts the user
from maintaining a network infrastructure of its own carrying out the messages to the AS. However,
as far as the implementation of Figure 1, authors observed the following disadvantages: (i) the costto
the farmer of 3G provider services adds up; and (ii) it requires a significant amount of energy to operate
autonomously. Specifically, it requires up to 6–10 times more transmission energy than narrowband
LoRa, as shown in Table 1.

Focusing on finding a way to minimize the disadvantages of 3G OWS implementation, the OWS
solution over LoRa was implemented by the authors (see Figure 2). OWS LoRa system uses a
single-channel LoRa concentrator device called a gateway. The gateway was implemented using an
RPi microprocessor [30], which is connected to the RFM96 LoRa transponder via the USB UART [31].
The RPi microprocessor is responsible for controlling the LoRa channel data uplinks from the actuator’s
microcontroller as well as uploading the microcontroller messages to the AS via UDP using either
Ethernet or 3G/4G Internet connectivity. Due to the long-range capabilities of the LoRa technology
(see Table 1) the LoRa gateway can be installed into a location that provides both landline network
connectivity and uninterruptible power, thus diminishing 3G provider costs.
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According to Figure 2, the RPi microprocessor gateway system collects and uploads sensory data
to the AS and receives control commands from the AS, as well as irrigation decision commands. It also
controls the operation of the actuator’s microcontroller module by carrying forward the AS commands
to the actuator’s microcontroller. The RPi gateway system also controls and forwards commands to
all nearby microcontroller modules that are registered to the gateway. Proposed FITRA application
protocol and its encapsulation over Lora are described in Sections 3.2 and 3.3.

The actuator of the OWS system also includes on its hose top a digital flow meter sensor, connected
to the AtMega328 microcontroller and it is used for measuring daily water dispenses. Moreover,
the system includes a 1-wire DS18B20 temperature sensor and/or a luminosity sensor (an LDR sensor
taking out one of the soil moisture sensor analog ports or an i2c luminosity sensor such as Sparkfun
TSL2561), for identifying solar outburst intervals.

The microcontroller unit can adequately capture soil moisture, with the use of cheap analog
sensors, provided by Sparkfun (Colorado, United States). The need of proper calibration is vital for
each sensor prior to use. Each sensor is using electrodes, which can be lengthened up to 25 cm. Typical
sensor measurements range from a value of 150 (slushy soil) to value of 1023 (very dry soil). Field
clustered areas that can be adequately covered by one actuator controller and 8 sensors have been
sized up to 100–500 square meters. The analog readings of the soil moisture sensors can be used to
locally measure the volumetric water content of soil upon the perforce of manual calibration.

Soil moisture sensor depth can also be adjusted by using depth plastic regulators attached parallel
to the sensor’s electrodes. Ideally the calculated values of soil sensors deployed into a cultivated
field on the same monitoring depth are affected by the following parameters: electrode cable length
from the soil moisture sensor controller, soil depth penetration, type of cultivated plants and soil
chemical composition.

Based on the authors’ depth calibration measurements, the depth of electrodes may vary moisture
sensor measurements with a variation of ±3% per cm for a min-max depth of no greater than 10 cm.
Soil consistency is a constant parameter for the specific location of cultivated land where measurements
have been taken. Furthermore, another critical parameter that the authors took into consideration
is the sensor’s distance from the actuator. The sensors’ cable resistance over its length affects soil
moisture sensor accuracy with a sensor analog value reduction of 3–5% per m, for a multi-core 20 AWG
sensor-electrode cable length above 3 m.
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3. Irrigation Systems Algorithms

There are different types of algorithms that can be used by the farmer at the AS. All these
algorithms are mainly implemented at the microcontroller unit and they receive information about the
thresholds and metric values from the AS. A short description of existing irrigation algorithms follows:

• Least Watering Algorithm (LWA): This algorithm bases its “on” watering decision when at least a
number of two soil moisture sensors out of N sensors (N > 2), values are above a Athres threshold
value set by the farmer [2,15,16].

• Precise Time Controlled algorithm (PTC): This algorithm is an assisted algorithm either by
the farmer or an external mechanism such as meteorological predictions. The farmer/external
mechanism sets at the Application Service (AS) the precise time per month that the actuator will
be set to the “on” state as well as the time duration that it will remain at this state. This algorithm
may also use sensor measurements as feedback in order to perform adaptively, reducing daily
watering time. It is the case that the sensors indicate an excitation value above statically set
sensory thresholds PTCthres [3,10,13].

• Majority Vote Algorithm (MVA): MVA algorithm is similar to the LWA algorithm and requires
more than two sensors (a majority of sensors to approve irrigation). MVA algorithm sets the
actuator to the “on” position when the average value of the soil moisture sensors is above an
Athres threshold value. MVA Athres and lower-upper bound sensor values are set by the farmer
using the AS web interface [2,6]. For error detection, the MVA algorithm uses two boundary
values, the Upper and Lower sensor value bounds. If the sensor’s value is above or below of the
Upper and Lower values accordingly then this sensor is not taken into account by the MVA for
the actuator “on”/“off” selection process.

• Exponential Weight Moving Watering Algorithm (EWMWA):This algorithm requires at least
one soil moisture sensor and averages its sensor values based on the following equation:
Sv = a·Svc + b·Svavg, where coefficient b = 1 − a. Coefficient a is a parameter that adjusts the
current soil moisture sensor value influence on the final sensor value assessment, over the average
sensor value. Coefficient parameter a value is between 0.1 < a < 0.9 and it is set by the farmer at
the AS web interface. In case of multi-sensors, EWMWA algorithm follows the LWA algorithm
approach and sets the actuator to the “on” position when the majority of sensor values ceil
(N/2) + 1 is above Athres threshold value set by the farmer. Average sensor values are reset daily
and re-calculated at the AS, based on the previous day measurements [6,14].

• Proportional Integral Control algorithm (PIC): This is a control loop feedback process based on
an average daily water consumption metric value measured in lt or m3. The PIC algorithm does
not use feedback information from soil moisture sensors but from a flow meter sensor placed
before the actuator. In OWS architecture the PIC algorithm can be used at the flow meter placed
before the actuator for the purpose of identification and reporting of erroneous states. The PIC
algorithm uses a maximum water consumption metric Wm, set by the farmer at the AS. The PIC
algorithm will reach up to that daily water consumption. In existing implementation of the PIC
algorithm the watering time is also statically set by the farmer at the AS. When the PIC algorithm
sets the actuator to the “on” state it starts to measure water consumption using the flow meter
value Fv. When the daily Fv value is close to the Wm value or exceeds this value, then an error
metric is measured as Errori = Wv − Fv/i per daily basis. All daily Errors are added to a total
Error value: Errortotal = Σi=1

nErrori. The n + 1 day on watering flow meter value Fvn+1 shall be set
automatically as follows: Fvn+1 = K·Errorn + (K/n) Errortotal + (Errorn − Errorn−1), where K is a
statically assigned gain coefficient and n are the n days of Fv flow meter measurements [7,8,16].

Irrigation algorithms, such as PIC, leave the “on” state decision to the farmer, using statically
assigned watering intervals. These algorithms do not use external sensory feedback information and in
terms of irrigation decisions are not intelligent at all. The PIC algorithm tries to amend by calibrating
the watering interval. The LWA and MVA algorithms try to make decisions both for the watering time
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as well as the interval. Nevertheless, their decisions are not smart and therefore smooth enough and
are prone to errors when the number of sensors increases. These algorithms may easily overwater or
underwater a field.

The EWMWA algorithm is a better algorithm in terms of adaptive decision, since it takes into
account averages of past watering data. However, the decision is based on statically assigned weights
and if the decision is mainly taken from past knowledge, it may take a lot of time intervals to
compensate for an overestimation that needs immediate compensation. Daily resets of average values
are also an EWMWA drawback, since the average estimation always floats and fluctuates. Deep
knowledge and immediate adaptation is a necessity in order to make the right decisions over time.

Apart from PTC, the LWA, MVA, PIC and EWMWA algorithms turn the actuator to the “on”
position at a daily interval such as: summer at high temperatures, midday, or at a winter night at
freezing temperatures. Such picked-up watering times may dry out or freeze the watering plants.

• Fuzzy algorithms: This category includes algorithms of fuzzy decisions based on a pre-defined
set of rules and Degree of Membership calculations upon sensor values (metrics) [7,8]. Fuzzy
algorithms are fast and smart adaptive algorithms and may also include error control capabilities
similar to the PIC algorithm. Proposed by the authors, the FITRA algorithm is partly a fuzzy
algorithm and when the irrigation system is in a stable state it is transformed to a neural network
algorithm (NN) [32].

• FITRA algorithm: the FITRA algorithm is a neuro-fuzzy algorithm proposed by the authors and
presented in a following section. FITRA at first instantiates as a fuzzy algorithm. Analytical
description of the algorithm follows.

3.1. Proposed FITRA Algorithm Supporting the OWS Architecture

OWS architecture constitutes of a servo valve actuator and analog soil moisture sensors (maximum
8 sensors MCU controller A/D 10-bit chip), as shown in Figure 2. The analog sensors are connected to
the 10-bitanalog-to-digital component of the MCU (ATMega328P 8-bit microprocessor). Analog values
are mapped into 10-bit digital values that range from 0 to 1023. Based on the authors’ soil moisture
sensor calibration field tests measurements, values less than 120 denote a soil sensor that measures
water conductivity, while values greater than 1020 correspond to sensors that measure dry sand
conductivity. Sensor values above 1020 lead the authors to infer that the sensors are open-circuited or
lost ground contact. Sensor values bellow 120 are considered erroneous and such values are interpreted
as short-circuited electrodes.

The average sensor values are stored to the MCU controller EEPROM and at periodic intervals
are transmitted back to the AS with the use of a UART 3G transponder connected to the MCU SPI
bus. The FITRA system actuator is a four-state servo valve. The valve has 3/4-inch diameter and
is connected to a pressurized 5–7 bar water supply network. The valve has four placement states
(expressed in valve rotation degrees): On(0◦), off(90◦), middle(30◦) and little(60◦). In the middle state
the valve is half-open (actual hose diameter set to 1/2” inch), while in little state the valve is opened
with an actual hose diameter between 1/8”and 2/8” of an inch. The actuator state transitions are
controlled by the FITRA algorithm.

Authors propose a new adaptive algorithm for clustered irrigation systems called FITRA (named
after the Greek word for seed). FITRA high-level functionality is illustrated in Figure 3. FITRA
initializes its irrigation decisions based on a fuzzy control process. Except for the collection of
satisfactory amount of irrigation data and corresponding daily satisfaction feedback indicated by a
farmer, FITRA switches from fuzzy to a neural network (NN) irrigation process, with weights that are
back-propagated from the farmer and confirmed as an exceptional seasonal dataset.

Each one of the OWS system soil sensors, which supports the FITRA algorithm, is a uniform
analog soil moisture sensor. Calibration is required to define sensor boundary values that depend
on the type of soil in the installation area and environmental conditions. After the experimentation
part with the soil sensor for the identification of sensor–environment boundary values in temperate
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climate conditions of Epirus Greece, for fields of light slopes (<10◦), the identified sensor boundary
values were close to 130 (more than 120) for wet soil and close to 1021 (less than 1023) for dry soil.
Intermediate values are spread out uniformly. Values of more than 1021 denote an off-the-ground
open circuit sensor. While values less than 130 indicate short-circuited sensor electrodes or electrodes
immersed into water without soil contact [33].

The FITRA algorithm uses a daily-calculated metric called Sum of Daily water Activity (SDA).
The SDA metric is given by the following formula and its values are equal to the total daily irrigation
minute time (number of minutes the actuator was set to on):

SDA =
1440

∑
i=1

isv_openi
1400

(1)

where isv_openi = 1 if the vane is opened the current minute i and 0 otherwise. The isv_openi binary
value is evaluated by the actuator’s flow meter. Upon FITRA initialization, there is no knowledge
about sensor relative position from the actuator valve and that position is statically assigned to be of:
Close (C), Normal (N) or Long (L) distance from the actuator. Then FITRA algorithm enters the initial
fuzzy state. It filters the soil measurement results, calculates membership functions from results based
on a fuzzy process. When the outcome of the fuzzy process is confirmed it enters the neural network
process. Using the fuzzy process output, it calculates neural network weights based on fuzzy training
datasets. Concluding, the FITRA algorithm includes two main states: (i) the initial fuzzy state; and
(ii) the neural network (NN) state (see Figure 3). A detailed description of the algorithm follows:

FITRA Fuzzy state: Initially the FITRA algorithm makes its “on” decisions using an MVA process
with irrigation time partitioning based on two thresholds: Athres and Bthres (Athres < Bthres and
Bthres − Athres > 250), set by the farmer, or calculated as 2/3 × 1023 = 682 and 1/3 × 1023 = 341 of
the soil moisture sensors upper boundary value.If the average value of the sensors is under Athres
the actuator is set to “off”. If the average value of the sensors is above Bthres then the actuator is
set to “on”. If the sensor average value is between Athres and Bthres, a fuzzy control process takes
place of four fuzzy input states per sensor: (i) adequate moisture; (ii) normal moisture; (iii) fair
moisture; (iv) minimal moisture. There are also four fuzzy output states for the actuator: (i) “Off”:
uε [−1, −0.5); (ii) “A few drops”: uε [−0.5, 0]; (iii) “Conservative watering”: uε (0, 0.5] and (iv) “Pour”:
uε (0.5, 1]. The membership function for each one of the input states is calculated using the following
Gaussian-like bell formula:

Future Internet 2017, 9, 78  8 of 23 

 

The FITRA algorithm uses a daily-calculated metric called Sum of Daily water Activity (SDA). 
The SDA metric is given by the following formula and its values are equal to the total daily irrigation 
minute time (number of minutes the actuator was set to on):  

= _1400  (1) 

Where isv_openi = 1 if the vane is opened the current minute i and 0 otherwise. The isv_openi binary 
value is evaluated by the actuator’s flow meter. Upon FITRA initialization, there is no knowledge 
about sensor relative position from the actuator valve and that position is statically assigned to be of: 
Close (C), Normal (N) or Long (L) distance from the actuator. Then FITRA algorithm enters the initial 
fuzzy state. It filters the soil measurement results, calculates membership functions from results 
based on a fuzzy process. When the outcome of the fuzzy process is confirmed it enters the neural 
network process. Using the fuzzy process output, it calculates neural network weights based on fuzzy 
training datasets. Concluding, the FITRA algorithm includes two main states: (i) the initial fuzzy 
state; and (ii) the neural network (NN) state (see Figure 3). A detailed description of the algorithm 
follows:  

FITRA Fuzzy state: Initially the FITRA algorithm makes its “on” decisions using an MVA 
process with irrigation time partitioning based on two thresholds: Athres and Bthres (Athres < Bthres 
and Bthres−Athres>250), set by the farmer, or calculated as 2/3 × 1023 = 682 and 1/3 × 1023 = 341 of the 
soil moisture sensors upper boundary value.If the average value of the sensors is under Athres the 
actuator is set to “off”. If the average value of the sensors is above Bthres then the actuator is set to 
“on”. If the sensor average value is between Athres and Bthres, a fuzzy control process takes place of 
four fuzzy input states per sensor: (i) adequate moisture; (ii) normal moisture; (iii) fair moisture; (iv) 
minimal moisture. There are also four fuzzy output states for the actuator: (i) “Off”: uε [−1, −0.5); (ii) 
“A few drops”: uε [−0.5, 0]; (iii) “Conservative watering”: uε (0, 0.5] and (iv) “Pour”: uε (0.5, 1]. The 
membership function for each one of the input states is calculated using the following Gaussian-like 
bell formula: 

 
Figure 3. FITRA algorithm operation block diagram. 

= ( )  (2) 

where σ is the daily standard deviation of each sensor values, k = 1.4 are the four input fuzzy states 
and for each state the ck coefficient value is calculated as follows: 

Figure 3. FITRA algorithm operation block diagram.



Future Internet 2017, 9, 78 9 of 23

MFk = e−4(
x−ck

σ )
2

(2)

where σ is the daily standard deviation of each sensor values, k = 1.4 are the four input fuzzy states
and for each state the ck coefficient value is calculated as follows:

ck = Athres + (k− 1)
|Bthres− Athres|

4
(3)

Based on the inputs the fuzzy process interpolates them using Sugeno fuzzy inference for each
crisp input MF value based on the following Equation (4):

u = aMF1 + bMF2 + cMF3 + dMF4 (4)

where a = 1, b = 0.5, c = −0.5 and d = −1, are the constant weights for each one of the fuzzy inputs.
If the output value u > 1 or u < −1 then the output value is set to u = 1 or u = −1 accordingly. Because
watering decision is not dependent on only one sensor value, but on a number of N sensor values,
the aggregated output U is calculated based on Equation (5):

U =
∑N

i=1 ui

N
(5)

If the output value U is “off” then the actuator remains to the “off” state. If the output value u is
on the “on” or “a few drops” or “conservative” watering states, then from the U value Equation (5) the
“on” watering time period Tw is calculated as follows (Twmin = 1 min, Twmax = 10 min set by the farmer):

Tw =


|U|Twmin, out = f ewdrops
|U|Twmax, out = conservative
Twmin + |U|Twmax, out = pour

(6)

FITRA immediate interrupt state: This state can either be enabled or disabled at the AS and
requires a flow meter placed before the actuator. If the FITRA interrupt state is enabled then its state
decisions have higher priority than of FITRA fuzzy or FITRA neural network (NN) states. That is,
the FITRA interrupt state will interrupt the watering “on” decision and set an alert notification at the
AS in one of the following cases:

• Identification and reporting of erroneous “on” states due to actuator misuse or malfunction.
• Identification and reporting of excess daily water consumption, when water consumed exceeds a

certain high water consumption threshold Wthres.
• Identification and reporting of leaks when there is water flowing and the valve is in the “off” state.

For extreme weather condition irrigation interruption, FITRA uses the OWS temperature readings
from the microcontroller one wire DS18B20 temperature sensor. Based on the temperature readings an
ancillary fuzzy algorithm is used, called Watering Temp Control algorithm (WTC). WTC algorithm
uses five input sets (Very Low Temperatures, Low Temperatures, Medium Temperatures, Normal
Temperatures and High Temperatures) as shown in Figure 4.

Figure 4 shows the degree of membership [0, 1] of each fuzzy set over the crisp input temperature
values. Based on the degree of membership (DOM) and using linear interpolation for the temperature
value measured, the corresponding sets and the degree of membership is calculated. The maximum
DOM value criteria are the assignment criteria for a crisp input to the most significant set. The watering
decision control inference based on temperature (Watering Temp Control WTC) is performed as
presented in Table 2:
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“Little on” and “middle on” state references in Table 2 define the actuator’s servo rotation angle.
That is, if the actuator valve is a servo valve actuator, then when the irrigation decision is “on” and the
interrupt state decision is “little on”, the actuator is rotated only a few degrees towards the on actuator
position (25–30◦). If the irrigation decision is “on” and the interrupt state decision is “middle on” then
the actuator is rotated up to 70◦ towards the “on” actuator position (90◦).

Table 2. FITRA Interrupt state degree of memberships table.

Input DOM Value Valve Status

Very Low Temp (VLT) Any Off
Low Temp (LT) >0.7 Off
Low Temp (LT) ≤0.7 Little On/Off

Medium Temp (MT) Any Middle On/Off
Normal Temp (NT) Any On/Off

High Temp (HT) ≤0.7 Little On/Off
High Temp (HT) >0.7 Off

FITRA Neural Network decision state: the FITRA algorithm is capable of maintaining seasonal
data per day, per week, per month and per year at the Application Server. These data include
timestamps, sensor values and “on”/“off” actuator state values. Upon an adequate dataset recording,
the farmer can select and assign for the following months or weeks either a per month or a per week
training dataset from the Application Server database. If such a selection is performed, then a FITRA
Neural Network (NN) process is instantiated, using N sensory inputs (8 ≥ N ≥ 2), according to the
number of soil moisture sensors used. This NN process includes a three node neuron input, one hidden
layer and two node outputs. The FITRA NN process is depicted in Figure 5.

In the FITRA NN process, each one of the soil moisture sensors is classified as a member of one of
the three input neurons, based on the sensor-actuator distance set by the farmer using the Application
Service web interface. There are three distance classes: (i) the close actuator distance class; (ii) the
normal distance class; and (iii) the long distance class. The hidden layer maintains three neurons that
include the weights calculated using back-propagation from the training dataset. The final irrigation
output is taken from two output neurons. One corresponding to the “on” actuator value and one to the
“off” actuator value. The NN weights are trained using those elected by the farmer seasonal dataset
and the back-propagation method is used. Upon training, the FITRA NN follows its own watering
decision for the interval assigned, re-calculating and adjusting its weights accordingly.
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Each one of the N sensor value inputs is assigned to a specific distance level class. Each class
signifies the sensor’s distance from the actuator. The classes are the: (i) close to actuator (Close to
Controller, CC); (ii) normal to actuator (Normal to Controller, NC); and (iii) the far from actuator
(Distant from Controller, DC). The input classification is not so critical for a watering system of uniform
pressure. However, for non-uniform pressurized systems it is quite important for the classification
to be performed accurately. The classification is performed in a semi-automatic way by setting the
distance of each input from the actuator in meters (m). Then the distance is normalized based on
Equation (7):

Di = distancei/ ∑ n
i=1(distancei) (7)

The distancei metric values are measured in meters. If a sensor’s distance is the maximum distance
in the system and Di > 0.4, then that sensor belongs to the far from actuator class (DC). The Close
level Class the sensors belong to those that are in a close proximity of the vane. That is: Di ≤ 0.1.
In the normal level class all sensors are set to be at a normal level distance from the vane 0.1 < Di ≤ 0.4.
The number of sensors that belong to the normal level distance class can also be calculated as the
remaining number of sensors: NNC

sensors = 8−NDC
sensors −NCC

sensors.
In order to present the FITRA algorithm neural network (NN) process in a complete manner,

the authors assume that both N = 8 sensors are functional and send measurements to the Application
Server (AS). The steps described below are the steps performed by the FITRA neural process.
The FITRA neural process forward steps are also depicted in Figure 5. The FITRA process includes
one hidden layer and perceptions with no bias, where neural weights are calculated: Weight ai and a
P-distance indexed weight value pi.

FITRA NN Step 1: FITRA synaptic weight values ai, i = 1 . . . N are calculated using a
back-propagation process assisted by a selected watering dataset by the farmer for its satisfying
watering results. Prior to ai calculations and based to actuator distance classification process, all sensors
are classified by the system into the three classes (CC, NC, DC). According to Figure 5, U1.8 are the
values of the N = 8 sensors and aL, aN and aC are the mean u values of each one of the three classes DC,
NC and CC accordingly. These values are calculated based on Equations (8) and (9), where ath is the
fuzzy process Athres value:

ai = ui − ath∀i1.N (8)

aC = 1
j

j
∑

i=1
aii ⊆ (CC)

aN = 1
k

k
∑

i=1
aii ⊆ (NC)

aL = 1
l

l
∑

i=1
aii ⊆ (DC)

(9)

The per-sensor ai measured value classification control process sets ai values into the following
two categories:

Category 1: 0.1 < a >C|N|D≤ |ai| ≤ 4· < a >C|N|D. In this case, the ai value represents a sensor
correctly placed to a class close or far from the average value < a >C|N|D for each class accordingly.

Category 2: 0.1< a >C|N|D >|ai|, |ai| > 4· < a >C|N|D. This is an erroneous sensor value case
where the value ai is close to the threshold value Athress or too far away from the threshold value,
but the mean value of ai values in that class are not close to the threshold value. In that case sensor i
measurement is set as an erroneous measurement. The i sensor value is removed from the next round
calculation process and < a > is re-calculated for that class.
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FITRA NN Step 2: With the assumption that all sensors fall into Category 1, that is, all sensors
are correctly classified and with the use of ai values as input, the back propagation process initiates
based on the training data set. Since ai values are greater than 1, there are normalized with the mean
class aC, aN, aD values, giving a normalized ci value calculated as: ci =

ai
<a> , where 0.1≤ ci ≤ 4. For the

forward NN pass the pi values of the hidden layer perceptrons are calculated as:

pj =
3

∑
j=1

wjcj (10)

And then the results are squashed using the logistic function: p′j =
1

1+e−pj
. The same process

is repeated for the output layer neurons:


So = 1

1+e
−(∑3

j=1 p′jw′j)

Sc = 1

1+e
−(∑3

j=1 p′jw′′j )

, where So is the metric value of the

valve set to be open while Sc is the metric value of the valve set to be closed. The max (So,Sc) signifies
whether the actuator should be set to “on” or “off” position accordingly. The total error and errors for
So and Sc for the backward pass are calculated using Equation (11):{

ESo =
1
2 (So −U)2

ESC = 1
2 (SC −U)2 , Etot = ESo + ESC (11)

where U is the value taken for FITRA fuzzy process Equation (5). If Etot ≤ 0.05 then the
back-propagation calculation process terminates and the weights w, w′ and w” are used for the
forward pass neural network process.

FITRA error correction state: In FITRA NN state, another error assessment mechanism is used
on a daily basis (similar to PTC algorithm). This mechanism records the total daily watering time DTw
and compares it with the average daily watering time DavTw, as calculated from the training DavTw
dataset. If |DTw−DavTw| > 0.05, then the NN training dataset is considered to be erroneous for this
season, the NN state is abandoned and the fuzzy state is initiated for the following day. Moreover,
in such case an appropriate message is set at the AS web interface in order for the farmer to re-train
theneural network.

3.2. FITRA Communication Protocol

The FITRA communication protocol uses LoRa radio as its physical transmission medium. LoRa
is a long-range and low-power communication protocol. It was developed by SemTech (Neuchâtel,
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Switzerland) and it is the prevailing technology for IoT networks [34,35]. LoRa EU radio frequencies
are in the ISM band of 868 MHz and 433 MHz. The 868 MHz band LoRa uses seven channels [0–6] of
125 KHz bandwidth, followed by two 250 KHz special purpose channels and a RX2 channel [36,37].
The 868 MHz band is mainly used inurban areas forming the smart cities IoT grid. For agricultural
applications, the 433 MHz band can achieve better distances with less attenuation over distance.
Nevertheless, in the 433 MHz band the channels that can be used are limited to three channels:
(433.175 MHz, 433.375 MHz and 433.575 MHz). Moreover, even if the specification defines the
433 MHz LoRaWAN band use, existing devices in the market utilize only the 868 MHz band for LoRa
Mac layer and infrastructure.

The LoRa radio medium includes a higher data link protocol called LoRaWAN. LoRaWAN
protocol is standardized by the LoRa Alliance [37] and so far include three protocol transmission
classes: (i) Class A for synchronous periodic transmission with reception windows; (ii) Class B that
sets periodic reception windows set by LoRaWAN gateways; and (iii) class C that extends class A
by keeping the receiver window open until next node periodic transmission [21,28,37]. Apart from
the class-based collision avoidance mechanism, LoRaWAN also includes adaptive rate transmissions,
specific infrastructure, addressing, security provisions and management capabilities [21].

LoRaWAN addressing is based on a 64-bit unique identifierdevice and a 64-bit unique application
for the application devices identifier. It supports join requests (ABP and OTAA) to the gateway send to
the Application service backend [21,28,36]. LoRaWAN security is based on three security keys set for
the application, the network and the session. The encryption algorithm used is the AES-128 [36,37].
LoRaWAN includes a frame integrity code called MIC (Message Integrity code) similar to radio
physical layer checksum. MIC uses the AES-CMAC algorithm. It also includes frame counters at the
gateways in order to prevent frame replay attacks [37].

LoRaWAN also maintains an adaptive data rate mechanism for the control of the end nodes data
rate transmission [36,37]. The PHDR fields for LoRa physical layer data transmission and LoRaWAN
packet structure for class-A data transmissions are presented in Figure 6a.

Focusing on LoRa radio only, LoRa physical layer frame is consisted by a 1-byte 0 × 34 value
preamble (8 bytes if LoRaWAN MAC header is included), followed by PHDR and PHDR_CRC field.
PHDR contains the frame length in bytes, the coding rate CR value (1 byte) and the existence or not of
a 16-bit CRC field apart from PHDR_CRC for CR [4/5 . . . 4/8] [37]. The PHDR contents apart from
CR field (Flags) used by LoRaWAN higher protocol, maintains a 1-byte synchronization preamble,
low-level source address, destination address, message ID and flags Field (where CR value is set) [37].
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Figure 6. (a) LoRaWAN communication protocol packet structure for class A transmission over LoRa
868 MHz network [37]; (b) FITRA communication protocol packet structure for transmission over LoRa
radio 433 MHz network; (c) FITRA concentrator communication protocol ACK packet structure for
transmission over LoRa 433 MHz network.

LoRaWAN protocol strengthens LoRa radio integrity, security and scalability. However, for
non-urban areas where 433 MHz transponders adequately perform, there is no existing infrastructure
support in terms of gateways nor a full stack implementation of open source LoRaWAN over 433 MHz
radio. The 433 MHz band limited available channels are left to the amateur radio developers in order
to implement data protocols using the physical LoRa medium.

The authors suggest that the FITRA communication protocol over LoRa radio does not use the
LoRaWAN MAC layer implementation and uses only the physical layer header implemented for the
RH_RF95 devices [22,31]. The RH_RF95 LoRaRadioHead physical header is shown in Figure 6b and
includes the following fields:

• Preamble consisted of 1 octet for synchronization purposes.
• LoRa concentrator destination address (1 octet), which is the address of the LoRa gateway device.

The number of 0xFF, while 0x00 is the network broadcast address. Since the address fields are
1 octet long there is a limitation of 253 devices under single LoRa radio channel concentrator
control. For the three default channels of the 433 MHz band there can be used up to three gateways
and a total of 759 devices.

• Source address (1 octet).
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• Message ID (1 octet), used in order to differentiate different messages derived from LoRa devices.
The Message ID field is set to 0x00 for the FITRA protocol implementation and the message
differentiation was moved to the application layer FITRA protocol.

• Flags (1 octet). Flags include one ACK bit, which indicates whether it is a normal or an
acknowledgment frame, then there are 3 reserved bits for future use and the last 4 bits have the
value of 0x08 that indicate that the payload that follows is part of the FITRA application protocol.

• Frame CRC field (2 octet).

On top of the physical header the authors implemented the FITRA application protocol as shown
in Figure 6b.

The FITRA Application protocol includes the following fields:

(1) Application ID field uniquely identifies all FITRA actuator controllers, controlled by a
single-channel gateway. The purpose of the Application ID is to differentiate among controllers
that are controlled by different gateways placed on the same agricultural area of interest.
Gateways only respond to messages received from actuators with the same application ID.
Application ID can also be characterized as network ID, giving the system the capability of
maintaining up to 256 gateways on the same channel.

(2) Valve ID is a 1 octet field that uniquely identifies each actuator controller, controlled by a gateway.
With reserved values of 0x00 and 0xFF this identifier limits that number of actuators per gateway
to 253 (a limit set by the physical layer RadioHead library. See source and destination address
Figure 6a).

(3) Sequence number is a 16-bit value, incremented by the actuator controller upon successful
reception of an ACK FITRA frame. The initial sequence number is randomly generated.

(4) Valve status field indicates the current valve status. A status value of 0x00 means that the
actuator is at the “off” position and a value of 0x01 that the actuator is at the “on” position.
A value above 0x01 indicates a partly open valve. Then the value corresponds to the rotation
degrees that the valve is open (if the actuator is a servo actuator value then the rotation degree
angle increases 0.7◦/value) or the steps that the valve is open (if the actuator is a stepper one—up
to 253 steps/180◦ rotation angles). 0xFF value indicates an erroneous valve status.

(5) Sensors LEN field indicates the number of sensor values included in the frame payload. It also
indicates weather the sensor is in a disabled state. For example, a value of b00110101 indicates
that the payload shall include 4 sensor values for sensors 1, 3, 5 and 6. The other sensors are in a
disabled state either due to erroneous readings or non-existent ones.

(6) Sensor value vector field is a variable-length field, whose length is determined by Sensors LEN
field. In this vector the sensor values are placed and for each 10-bit sensor value a 2 octet value
field is used.

(7) Monitor day field is used to indicate the actuator’s monitoring day. Each system actuator is
capable of storing to its EEPROM up to 256 days of “on” valve time statistical data (1 byte long),
starting from day 0 (actuator startup day) up to day 0xFF and start over again from day 0.
If signaled by a gateway ACK frame the actuator can send the daily on valve value in minutes
for a specific day. By default, the actuator transmits only the “on” valve time value of its current
counted day. Since these values are stored to the EEPROM, in case of power outage, the actuator
controller can identify from its EEPROM the last EEPROM address that has a value different than
zero as the current count day. If all EEPROM addresses have values different than zero then the
controller zeros all EEPROM values and starts from day 0.

(8) Valve on Time field is a statistical field that indicates the minutes that the actuator was in a
position other than “off”. It is a 1 octet value meaning that the maximum daily “on” actuator
time cannot exceed 255 irrigation minutes per day (4.25 h/day). If this happens then the valve on
time field does not overflow to zero but it remains at the value of 0xFF.
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For each transmitted LoRa frame by the actuator controller using the FITRA application protocol,
an appropriate acknowledgment packet is send back through the FITRA gateway. The response ACK
packet is illustrated in Figure 6c and includes the following fields: if it is a single ACK packet, then it
includes the gateway Application ID the actuator’s valve ID, and the ACK number which is the same
as the transmitted frame sequence number that this ACK frame responds to.

Apart from acknowledging frame reception, the FITRA protocol is capable of sending commands
to the actuator. There are three types of commands that the FITRA protocol supports: (i) statistical
commands; (ii) actuator control commands and (iii) both statistical and control commands:

Statistical commands include the monitor day request field and use padding of 1 for the values
of next status and next tx interval fields. The monitor day request field pinpoints to the actuator the
day that the actuator will send on its next frame upload its valve “on” time in minutes.

Control commands may include one or more of the following fields:

(1) Valve next status field: This value corresponds to the actuator’s valve status. If the value is 0x00
then the actuator has to be set to “off” state immediately. If the value is 0x01 then the actuator
must move to the “on” state. Any other value between 0x02 and 0xFD indicates either the degrees
or steps that the actuator must set the servo or stepper valve state.

(2) Valve next transmission interval value: This value increases or decreases the actuator’s periodic
data transmission interval. In case of nodes frame collision or node frame loss, the gateway is
responsible for modifying microcontroller nodes processing module transmission periods in
order to enforce an adequate data transmission gap upon devices registered in the network.
The microcontroller node next transmission interval value is a 2 octet value and is measured
in seconds. This gives as an approximate maximum increase or decrease (∆tx) of periodic
transmission interval up to 18.2 h: Tperiod = (Tp + ∆tx) + Tk + Toff, where Tp is the statically
assigned microcontroller processing module period, Tk is the receive device time usually set to
1–2 s and Toff is the channel idle time restriction set by the ITU for the 433 MHz band. The ITU
restriction for LoRa transmissions on the 433 MHz band is of 1% duty cycle channel utilization.
This means that the same 43 3 MHz sub-band cannot be used by the same transponder again
for duration of Toff seconds: Toff = (Ttime_on_air/0.01) − Ttime_on_air. For FITRA communication
protocol the Ttime_on_air ≤ 128 ms, thus giving a maximum Toff value of: Toff = 12.672 s. A value of
0xFFFF indicates no transmission interval variations (∆tx) for the device.

3.3. FITRA Protocol Logic

The FITRA communication protocol is an application protocol that relaysits network and transport
capabilities into lower RF96 LoRa MAC protocol capabilities. Its protocol logic is independent from
lower-layer protocols. That is, the FITRA protocol can be encapsulated on top of both GPRS TCP/IP
stack and RF96 LoRa radio stack.

FITRA protocol logic includes the following: (i) registration to a gateway or to a GPRS service
provider; (ii) periodic measurement uploads to the Application Service (AS); and (iii) AS statistical
frames and AS control frames send to the actuator’s microcontroller. Apart from LoRa frames, FITRA
application protocol can also be encapsulated over UDP packets for the purpose of data transmission
over GPRS or Ethernet links.

The FITRA application protocol node registration is based on the protocol Application ID value.
All nodes (microcontrollers attached to actuators) that belong to the same farmer have the same
application ID value to their frames and a different valve ID value for each irrigation cluster accordingly.
Upon reception of a FITRA frame with a new valve ID, the AS recons the existence of a new FITRA
node in a farmer’s network, updates its nodes table for that network and acknowledges that frame.
If a node does not upload data for an interval called maximum periodic interval (1 h ≤ Tperiod_max≤ 24 h)
then that node is considered to be non-reached and is removed from the AS table of known network
nodes. If a node’s transmission interval is close to Tperiod_max(0.9Tperiod_max) then the period control
process is initiated for that node.



Future Internet 2017, 9, 78 17 of 23

The FITRA statistical information report frames include the “on” request report of watering
minutes per day from the node to the AS. The AS sets the request day in the past using the Monitor
Day request field of an acknowledgment frame. Then the node responds by setting both the monitoring
day field as well as the valve “on” time field on the next periodic interval frame.

The FITRA application protocol acknowledges each received frame and monitors frame flow
per node using a sequence numbering schema. A packet loss is indicated if the next frame sequence
number is bigger than the previous ACK frame acknowledgment field value. If this difference is more
than a value of maximum interval frame loss (3 ≤ MIFL ≤ 10), then the period control process is
initiated in order to increase the node’s transmission period.

The FITRA AS control frames include two distinct control commands: (i) the decision for the
next interval watering command send back to the node using the ACK valve next status field; and
(ii) the period control command (∆tx). The period control process is initiated for nodes of long
periods close to the maximum periodic interval or experience frame losses, in order to modify their
transmission intervals.

Performance comparison results of the two different OWS implementations proposed both using
the FITRA protocol are presented in Table 3. This experimental scenario included two nodes, one using
the OWS GPRS infrastructure (Figure 1), sending UDP data streams to the AS and one using the OWS
LoRa infrastructure (Figure 2), sending LoRa frames to the AS. Both nodes were equipped with a
5 Ah–6 V battery, placed on the same irrigation field. LoRa node distance from the gateway was
set to 1 km. The performance metrics that have been measured were the total number of packets
sent to the AS until battery depletion and the average round trip time (RTT) of each frame send and
corresponding ACK frame received, measured at the microcontroller nodes.

Table 3. FITRA Communication Protocol Performance results over GPRS and LoRa OWS system.

Frame Count Av. RTT

GPRS 4850 420 ms
LoRa 26,580 580 ms

From the experimental results, it is obvious that the LoRa capable OWS system node achieved
5.4 more total frames transmission that the GPRS OWS system node, until battery depletion. Both
nodes were using the FITRA protocol. The existence of an intermediate node (in our case the gateway
for the LoRa OWS system set 1 km away) for the operation of the LoRa OWS system, increased the
RTT frame time of the LoRa node up to 100–160 ms. For a watering system, such RTT variations are
not significant. Moreover, closer gateway placements of less than 1 km can further increase frame
count and decrease by more than 50% the Lora average RTT time.

4. Experimentation and Evaluation Results

In order to test and validate the FITRA irrigation algorithm, the authors constructed two similar
independent OWS systems, one using the MVA algorithm, and another using the FITRA algorithm.
Both systems utilize 8 ground moisture sensors that have been scattered into two neighboring fields of
100 m2 accordingly. The position of the sensors relevant to the actuator was almost identical for both
systems. The high-level architecture of the two OWS systems was similar to that of Figure 2. The only
distinction of the two irrigation systems was the decision algorithm that controls the actuator. In the
first system the decision algorithm was based on the majority algorithm (MVA), while in the second
system used the proposed by the authors’ fuzzy state and then NN state of the FITRA algorithm.
The thresholds (Athress) for the soil moisture sensors were set to 700, since the sensor produced
values between 130 and 1023. The 1023 value corresponds to total dry ground while the 130 value
corresponds to muddy ground. The threshold 700 (≈2/3 × 1023), was chosen and the plantations
used was that of tomatoes using the same tomato variety (Belladona). The authors used 100 tomato
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plants per field, using sparse planting of 60 cm horizontal plant distance 120 cm vertical row distance
(statistically 1 plant per square meter). Values from the ground moisture sensors, actuator states
and water consumption has been monitored and stored to a MySQL database at the Application
Server. The experiment lasted 150 days (March–July 2017). The first four months, March–June, used
the fuzzy FITRA algorithm, while the other month (July) used the neural network FITRA algorithm
implementation, with the March month dataset as the training dataset.

4.1. Water Consumption Results

From the experimental results, Figure 7 depicts irrigation time in minutes per day for dates from
2 March 2017 to 31 July 2017 for the majority algorithm. It is obvious that as we move towards the
summer the irrigation time per day constantly increases, with the exception of heavy rain days (30 June
and 11–12 July).
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The total irrigation time for the first scenario using the MVA algorithm was 883.9 h for a period
of 150 days, which results to 5.89 h of irrigation time per day. The watering time for the second
scenario was 821.36 h, which corresponds to 5.48 h of irrigation time per day. The FITRA algorithm
saved 62.54 irrigation hours, which results in 7% less water consumption for the same and even better
confirmed tomato plantation results. Tomato crops per field gave an average of 7.8 kg tomatoes per
plant per month for the MVA field and 8.9 kg tomatoes per plant per month for the field using the
FITRA algorithm (production increase of 14%).

4.2. Ground Humidity Results

The average value per day of each ground humidity sensor for the two scenarios are depicted in
Figure 8a–h.
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Figure 8. (a) Mean value per day of ground moisture sensor 1 for the two scenarios; (b) Mean value
per day of ground moisture sensor 2 for the two scenarios; (c) Mean value per day of ground moisture
sensor 3 for the two scenarios; (d) Mean value per day of ground moisture sensor 4 for the two scenarios;
(e) Mean value per day of ground moisture sensor 5 for the two scenarios; (f) Mean value per day of
ground moisture sensor 6 for the two scenarios; (g) Mean value per day of ground moisture sensor 7
for the two scenarios; (h) Mean value per day of ground moisture sensor 8 for the two scenarios.

Both MVA and FITRA behave normally according to the previous figures. The only figures where
two sensors of the MVA algorithm group of sensors present an erroneous and upper boundary sensor
behavior are in Figure 8c,f. In these figures the electrodes of these two sensors have been blocked
and left open-circuited. The authors deliberately left this malfunction of those electrodes to carry
on, as they wanted to test the error control capabilities of the MVA algorithm. That is, for the MVA
algorithm only 6 out of the 8 electrodes carried out the actuator selection process. Moreover, both
FITRA and MVA sensor upper lower bounds of accepted values interval has been set to 1020 and 120
respectively. From the algorithm error control experimentation, it has been proven that both algorithms
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enforced successfully their error control phases, and values outside of that interval have not been
taken into account.

The average ground moisture sensor values of the MVA scenario was 695.8, while the average
ground moisture sensor of the FITRA scenario was 608.13. This means that the ground moisture of
the FITRA scenario was 12.5% higher than the MVA scenario. This difference is due to the fact that
the FITRA algorithm opens and closes the central watering valve fewer times but for longer periods.
So the water manages to penetrate deep into the soil or it even evaporates. On the other hand, the
majority algorithm opens and closes the valve more often for shorter intervals. The water stays on the
surface of the soil and minimizes ground evapotranspiration.

Comparing the two scenarios, the authors observed that the ground moisture sensors present
similar values since they are closely scattered on each field. The weather conditions, the soil ingredients
and the sensor placements in relation to the watering system were similar for both test cases (MVA
and FITRA fields). However, the irrigation time in the FITRA scenario was smaller by 7% compared to
the MVA scenario, while the ground moisture was 12.5% higher in the FITRA irrigated field than the
MVA irrigated field. These differences are due to the different algorithms that control the actuator of
the two irrigation systems.

4.3. Comparison Results of the Two Algorithms Set on Close-By Tomato Fields

The FITRA irrigation algorithm prevails over the majority MVA algorithm at the following:

a. It can save water up to 7%. Comparing the results with the majority algorithm, the FITRA irrigation
algorithm manages to keep ground moisture 12.5% wetter with 7% less water consumption.

b. The FITRA algorithm can achieve higher crop yield that existing algorithms by up to 14%.
c. The FITRA algorithm pours water smoother than the majority algorithm, assisted by adaptive

fuzzy or NN process and achieving more targeted watering cycles according to the plant’s needs.
The result of such adaptation is that with the central valve changes it takes fewer times for
smaller time intervals and when needed. Moreover, the FITRA watering temp control process
prevents the algorithm from extreme temperature condition irrigation.

d. The farmer can weigh the sensors value based on the sensor’s distance from the actuator, while
in the majority algorithm all sensor measurements have the same weight.

e. As well as ground moisture, the FITRA algorithm monitors the air temperature. It capable of
interrupting (WTC process) the irrigation in extreme temperatures, so as to avoid the freezing or
the burning of the plants.

f. The FITRA algorithm monitors the sensor values for errors or transition to erroneous states.
If a value is out of logical range it is skipped and is not taken into consideration for the next
calculation interval.

5. Conclusions

Water scarcity is a major problem in the 21st century. The Internet of Things followed by smart
A.I. irrigation algorithms can lead to adaptive precision farming, improving crop yield, reducing water
consumption, and further increasing crop productivity and product quality.

Authors designed and implemented an Open Watering System (OWS) architecture that can
communicate and exchange sensory data information with an Application Server connected to the
Internet. Focusing on capabilities of existing IoT communication protocols, such as: IEEE 802.15.4, BLE,
LoRa, and 3G/4G, the authors proposed their OWS IoT irrigation system infrastructure over LoRa
radio. This LoRa radio implementation is targeted on low-cost and low-node energy consumption.
The authors also proposed an application protocol called the FITRA application protocol, which can be
used both over LoRa OWS and 3G/4G OWS systems and described its states and functionality.

The authors propose a new fuzzy neural network transition algorithm called FITRA that controls
state of the irrigation system actuator. The authors measured the performance of their proposed
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algorithm towards MVA algorithm on two nearby tomato crop fields. From the experimental results
it is easily proven that the FITRA protocol prevails over the majority MVA algorithm. The FITRA
algorithm manages to save 7% of water consumption while maintaining 12.5% more ground moisture
and producing 25% more monthly crop yield.

Furthermore, experiments proposed by the author’s FITRA application protocol for the
communication between the OWS system and the Application server have shown that LoRa OWS
can send the same amount of data up to 1 km away with 80% less node energy consumption thana
node that uses a 3G network transponder. For future work, the authors plan to compare the FITRA
algorithm with other known irrigation systems and algorithms.

Author Contributions: All authors equally conceived and designed the experiments, performed the experiments,
analyzed the data, and wrote the paper.
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