
future internet

Article

High-Performance Elastic Management for Cloud
Containers Based on Predictive Message Scheduling

Chengxin Yan, Ningjiang Chen * and Zhang Shuo

School of Computer and Electronic Information, Guangxi University, Nanning 530004, China;
yanchengxin313@163.com (Y.C.); zhs1992@126.com (Z.S.)
* Correspondence: chnj@gxu.edu.cn; Tel.: +86-139-7718-2589

Received: 2 October 2017; Accepted: 7 November 2017; Published: 28 November 2017

Abstract: Containerized data centers can improve the computational density of IaaS layers.
This intensive high-concurrency environment has high requirements for message scheduling and
container processing. In the paper, an elastically scalable strategy for cloud containers based on
predictive message scheduling is introduced, in order to reduce the delay of messages and improve
the response time of services and the utilization of container resources. According to the busy degree
of different containers, a management strategy of multiple containers at message-granularity level
is developed, which gives the containers better elasticity. The simulation results show that the
proposed strategy improves service processing efficiency and reduces response latency compared
with existing solutions.

Keywords: message scheduling; cloud container; elastic management; predictive strategy

1. Introduction

Container technology, represented typically by Docker (dotCloud, Inc., San Franciso, CA, USA),
has been widely used by a wide range of sandbox environments to deploy applications based on
operating systems with a time-sharing multiplexing mechanism. Containers can be started quickly,
with little resource consumption. The combination of container and micro-service architectures
provides an application-oriented lightweight infrastructure that can be extended by creating replicas
of bottleneck components [1]. In container-based micro-service architectures, there are a great deal
of log data, such as user behavior and system logs, which default to real-time consumption, and are
not suitable for asynchronous processing; additionally, there exists the problem of message coupling
and response delay [2]. Therefore, dynamic adjustment of message queues is studied in this paper.
In the micro-service architecture, a user’s events are achieved by calling a number of micro-services;
therefore, event-based micro-services can be decoupled by optimizing the messaging mechanism.
In the container-based cloud environment [3], existing research mostly focuses on job scheduling,
ignoring the impact of message scheduling on container performance. In order to enhance the
adaptive of optimization micro-services framework in containers, highly elastic management for cloud
containers is researched in this paper. This paper proposes an elastically scalable strategy for containers
in cloud system, based on container resource prediction and message queue mapping. By establishing
a multi-channel message queue-based processing model to control the scale of the container cluster,
we can achieve a decentralized control to address the dynamic expansion of container resources in
cloud containers.

The paper is organized as follows: Section 2 describes the background of our work and the related
work; Section 3 describes the framework of the elastically scalable model; Section 4 describes the
policy of elastic scalable strategy for containers; Section 5 shows the implementation of the prototype;
Section 6 gives the experimental results; and Section 7 draws the conclusions.

Future Internet 2017, 9, 87; doi:10.3390/fi9040087 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://dx.doi.org/10.3390/fi9040087
http://www.mdpi.com/journal/futureinternet

Future Internet 2017, 9, 87 2 of 13

2. Background

To date, there have been certain container systems, such as Docker and Rocket, which are based on
the CoreOS project (CoreOS, Inc., San Franciso, CA, USA), LXC, OpenVZ (SWsoft, Inc., Beijing, China),
and so on. Container technology is a lightweight virtualization technology that hosts applications
by using small, concise containers. Micro-services separate the overall framework according to the
functional structure. A micro-service framework is constructed by a number of small application
units and the corresponding micro-database unit. Containers and micro-services are widely used in
cloud-based systems. Much research has discussed how to guarantee the quality of services in the
context of cloud containers and micro-service architectures. Docker has a representative application
for data center purposes and for the construction of micro-service architectures, so our work is based
on Docker.

A framework named MMGreen [4] proposes a joint computing-plus-communication optimization
framework exploiting virtualization technologies to cope with the demands of the highly fluctuating
workload that characterizes this type of service. The idea of using real-time multi-processing and
embedding Docker containers into the workflow is presented in [5], and three kinds of embedding
strategies with different levels of granularity are used to verify the performance. After comparing the
performances under different conditions, the results show that the coarse-grained shared embedding
strategy has a better response speed. A strategy proposed in [6] setup waiting queues and release
queues for real-time message based on the working state to achieve a timely response. The Docker
container batch scheduling system, which uses a scheduler selection algorithm for scheduling
operations, is given in [7]. The BPEL engine and Docker are combined to support a multi-tenant
processing environment [8], which improves the performance of the system greatly. A resource
management platform named DoCloud has been designed to improve the availability of the cloud
cluster by dynamically changing the load of the containers [9]. Experiments in [10,11] resulted in
an infrastructure for micro-services that has a non-negligible impact on micro-service performance,
which is beneficial in terms of cost for both cloud vendors and developers. A workload prediction
model for the cloud is proposed through optimized artificial neural networks [12], with a neural
network and regression being used to predict the processor load [13].

Another type of work considers the size optimization of containers. Red Hat Enterprise Linux 7 Atomic
Host (hereinafter referred to as Light Docker) only provides the components necessary to run Docker,
removing some non-essential components to make the container lighter, and to effectively reduce the time
required for system updates and start-up. A container integrated with HA (High Availability) middleware
has been established, in which components in the scheduling scheme achieve high availability [14].
A distributed micro-service model based on Docker was designed, and an elastic controller for the distributed
system implemented, in [15]. The feasibility of container technology as an edge computing platform is
evaluated, and the experimental results prove that the strategy reduces the response time of services [16].
Docker and OpenStack are used to build a cloud service architecture that optimizes the performance of
Docker [17].

In general, the achievements of the above work are to enhance the ability of the system to handle
multiple tasks, or to reduce the size of the cloud necessary for deploying services. This paper works on
the granularity of the message, and investigates the good elastic scalability of the container, in order to
improve the overall performance in the high-concurrency message environment.

3. Elastically-Scalable Architecture for Cloud Containers

In this paper, core components of the elastically scalable model are made up of message processing
components and elastic controller components. Compared with the original container processing
architecture, a set of message queues are setup and mappings are created between message-queues and
Docker containers. The granularity of elasticity is initialized by dividing messages to achieve elastic
expansion of containers. The messages are transformed into elastic control components to complete

Future Internet 2017, 9, 87 3 of 13

the flexible stretching of containers. This flexible architecture does not need to arrange messages and
can eliminate large number of the complex HTTP (Hypertext Transfer Protocol) direct calls.

Elastic-Docker mainly includes a Queues Controller, Message_bus component, Elastic Controller
and Docker monitor (V 1.13, dotCloud, Inc., San Franciso, CA, USA). Queues Controller, Message_bus,
Elastic Controller are developed by our team. The Queues Controller classifies messages to form a
number of message queues. Message_bus delivers the messages by publish/subscribe mechanism.
Elastic Controller is to achieve the high-performance elastic management of containers. Docker monitor
achieves the monitored data of Docker cluster, including the status of Docker containers, and the
usage of CPU, memory, and network IO (Input Output). Figure 1 shows the architecture of the
elastically-scalable model, called Elastic-Docker in the paper.

Future Internet 2017, 9, 87 3 of 13

Elastic-Docker mainly includes a Queues Controller, Message_bus component, Elastic
Controller and Docker monitor (V 1.13, dotCloud, inc., San Franciso, CA, USA). Queues Controller,
Message_bus, Elastic Controller are developed by our team. The Queues Controller classifies
messages to form a number of message queues. Message_bus delivers the messages by
publish/subscribe mechanism. Elastic Controller is to achieve the high-performance elastic
management of containers. Docker monitor achieves the monitored data of Docker cluster, including
the status of Docker containers, and the usage of CPU, memory, and network IO (Input Output).
Figure 1 shows the architecture of the elastically-scalable model, called Elastic-Docker in the paper.

Figure 1. The architecture of Elastic-Docker.

Define Mi = <IDM, UserM, ContentM, Priority>, where IDM (ID of the Message) is the message
number, UserM is the owner of message, ContentM represents the content of message, and Priority
represents the priority of yjr message. Messages are dispatched and a number of message queues are
created according to the content of messages. Then, ContentM and topic are compared by fuzzy
matching to build the mappings. Messages with the same value of ContentM are mapped with
containers, so the elastic management for containers is achieved based on message scheduling. MQ
= {MSG, Map, Max} represents the message queue, MSG (Message Set Group) represents the queue
set, Map represents the map value, and Max represents the queue length threshold. MQ (Message
Queue) represents a set of queues defined as: MQueueSetk{MQ1, MQ2, MQ3, ..., MQi}, where the range
of k is in [2, k − 1].

In the case of high concurrency, users have higher requirements on the system response time
and resource utilization. The message priority value is determined by resource utilization, user
priority, and response time. The priority of message is calculated by multi-objective algorithm, and
the Pareto optimal surface is searched according to the weight vector. T

D21]x,...,x,[x=x , D is
the number of decision variables, the objective function expressed as f1, f2, ..., fM, and M is the target
number. The weight is introduced by the message object and user’s preference to dynamically adjust
the degree of targets. w1, w2, w3 ... wM represent the weight of the objective function, such as resource
consumption, user priority, and response priority. Finally, the objective function xc=(x)f iM is
obtained.

Figure 1. The architecture of Elastic-Docker.

Define Mi = <IDM, UserM, ContentM, Priority>, where IDM (ID of the Message) is the
message number, UserM is the owner of message, ContentM represents the content of message,
and Priority represents the priority of yjr message. Messages are dispatched and a number of
message queues are created according to the content of messages. Then, ContentM and topic are
compared by fuzzy matching to build the mappings. Messages with the same value of ContentM
are mapped with containers, so the elastic management for containers is achieved based on message
scheduling. MQ = {MSG, Map, Max} represents the message queue, MSG (Message Set Group)
represents the queue set, Map represents the map value, and Max represents the queue length threshold.
MQ (Message Queue) represents a set of queues defined as: MQueueSetk{MQ1, MQ2, MQ3, . . . , MQi},
where the range of k is in [2, k − 1].

In the case of high concurrency, users have higher requirements on the system response time
and resource utilization. The message priority value is determined by resource utilization, user
priority, and response time. The priority of message is calculated by multi-objective algorithm,
and the Pareto optimal surface is searched according to the weight vector. x = [x1,x2, . . . ,xD]

T, D is
the number of decision variables, the objective function expressed as f1, f2, . . . , fM, and M is the
target number. The weight is introduced by the message object and user’s preference to dynamically
adjust the degree of targets. w1, w2, w3 . . . wM represent the weight of the objective function, such as
resource consumption, user priority, and response priority. Finally, the objective function fM(x) = cix
is obtained.

Future Internet 2017, 9, 87 4 of 13

The Queue Controller module classifies the messages. Then the Message_bus module uses the
publish/subscribe mechanism and message queue for message delivery. Thus, message queues can
be set up: the elements in the MQueueSetk queue set is combined with the message queues, and the
messages in the queue are the smallest non-subdivided units. The messages are sorted by the value
of priority to multiple MQ collections and, finally, a new MQueueSetk {MQ1, MQ2, MQ3, . . . , MQi}
is generated. The real-time messages are processed efficiently by the combination of Broker, Topic,
Producer, and Consumer components.

4. Predictive Message Scheduling Strategy

In the micro-service architecture, the data is transmitted in the form of a message. Usually, the messages
are executed across multiple micro-services. Therefore, message scheduling is more accurate for the
micro-service level. Firstly, we establish a multi-channel model by classifying messages into k
categories for k different micro-services, and then the message queues are created to classify messages.
Thus, large-scale messages are dealt with by implementing message queue cache, as shown in Figure 2.
And the symbols used are listed in a Table 1.

Table 1. Definition of the symbols used.

Symbols Meaning Symbols Meaning

ContentM Content of message X(0) Original mount container sequence
topic Topic of the queue Y Data row of the containers

k′ Represents the ID of container a Grey scale of the containers
k Represents the ID of queue B Data matrix of the containers
m Represents the matching degree b Endogenous control grey of the containers

4.1. Queued Messages Scheduling Based on Prediction

In the process of classification, a fuzzy matching strategy is used to filter the queue topics,
to quickly determine the mapping relations of messages and micro-services. As fuzzy matching
has greater flexibility and selectivity for cluster partitioning, the size of the container cluster can be
adjusted by fuzzy matching, according to reasonable division of message topic. By the fuzzy matching
principle, the content of message ContentM and the topic are compared to determine whether they
are compliance.

Denote ContentM ∈ F(topic), and H(topic·ContentM) = 1
n

n
∑

i=1
|µtopic(ui) − µContentM(ui)| is the

characteristic function of topic. The function H (topic·ContentM) is used to calculate the matching
degree of fuzzy sets, and m = 1−H (topic·ContentM) represents matching degree.

Future Internet 2017, 9, 87 4 of 13

The Queue Controller module classifies the messages. Then the Message_bus module uses the
publish/subscribe mechanism and message queue for message delivery. Thus, message queues can
be set up: the elements in the MQueueSetk queue set is combined with the message queues, and the
messages in the queue are the smallest non-subdivided units. The messages are sorted by the value
of priority to multiple MQ collections and, finally, a new MQueueSetk {MQ1, MQ2, MQ3, ..., MQi} is
generated. The real-time messages are processed efficiently by the combination of Broker, Topic,
Producer, and Consumer components.

4. Predictive Message Scheduling Strategy

In the micro-service architecture, the data is transmitted in the form of a message. Usually, the
messages are executed across multiple micro-services. Therefore, message scheduling is more
accurate for the micro-service level. Firstly, we establish a multi-channel model by classifying
messages into k categories for k different micro-services, and then the message queues are created to
classify messages. Thus, large-scale messages are dealt with by implementing message queue cache,
as shown in Figure 2. And the symbols used are listed in a Table 1.

Table 1. Definition of the symbols used.

Symbols Meaning Symbols Meaning
ContentM Content of message X(0) Original mount container sequence

topic Topic of the queue Y Data row of the containers
k’ Represents the ID of container a Grey scale of the containers
k Represents the ID of queue B Data matrix of the containers
m Represents the matching degree b Endogenous control grey of the containers

4.1. Queued Messages Scheduling Based on Prediction

In the process of classification, a fuzzy matching strategy is used to filter the queue topics, to
quickly determine the mapping relations of messages and micro-services. As fuzzy matching has
greater flexibility and selectivity for cluster partitioning, the size of the container cluster can be
adjusted by fuzzy matching, according to reasonable division of message topic. By the fuzzy
matching principle, the content of message ContentM and the topic are compared to determine
whether they are compliance.

Denote ContentM F(topic)∈ , and
n

topic i ContentM i
i=1

1
H topic ContentM |μ (u) μ (u)|

n
• = −（ ） is the

characteristic function of topic. The function H (topic▪ContentM) is used to calculate the matching
degree of fuzzy sets, and m =1 H (topic ContentM)− • represents matching degree.

Figure 2. Model of predictive message scheduling.

Figure 2. Model of predictive message scheduling.

Future Internet 2017, 9, 87 5 of 13

In order to minimize resource consumption, this paper uses a self-response mode to determine
the start time and duration. Since the Grey prediction model can predict future demand based on
incomplete historical data, it is suitable to forecast the container demand. Firstly the original sequence
X(0) is formed by the original monitored data, and X(1) is generated by accumulative generation
method. It weakens the randomness of the original monitored data. The Grey model is established for
transforming X(1). The GM (1,1) model represents first-order, one-variable differential equation model
to predict elastic expansion of container. According to the prediction results, the value of corresponding
queue of micro-services can be dynamically adjusted to solve the problem of forecasting demand
quantity of container. In this way, a multi-channel model is established to prepare for subsequent
scaling prediction.

Suppose the containers mapping to n micro-services on host i, the usage of container is defined

as {C(0)
i,1 ,C(0)

i,2 , . . . ,C(0)
i,n }. Then we build a GM (1,1) model by sequence X(0). The acquisition of

the real-time data is performed by the monitoring component, and the usage data of the containers

in the set is then summed to obtain a new generated sequence X(1)
= {C(1)

i,1 ,C(1)
i,2 , . . . ,C(1)

i,n },

C(m)

i,k′ =
k′

∑
j=1

C(m−1)
i,j , (k′ = 1, 2, . . . , n). In order to solve the development grey value and endogenous

control grey value of container k′, the original data of container is used to establish the approximate
differential equation and brought into the mean generation operator. Consequently, we can obtain an
approximate differential equation for the number of containers:

dX(1)

dt

+aX(1)
= b (1)

where a is the Grey scale of the containers, b is the endogenous control grey of the containers.

Let
∧
a =

(
a
b

)
, B is the data matrix of the containers, Y is the data row of the containers, then we

have Y = B
∧
a:

∧
a =

[
ab

]T
, Y = [C(0)

i,2 ,C(0)
i,3 ,C(0)

i,4 . . . C(0)
i,n]

T

, B =


−0.5[C(1)

i,1 + C(1)
i,2] 1

−0.5[C(1)
i,1 + C(1)

i,2] 1
...

...

−0.5[C(1)
i,n−1 + C(1)

i,n−2] 1

 (2)

The actual container usage for n micro-services are summed up according to Equation (1),
and the differential equation of container assignment for the micro-service cluster is obtained.

C(0)
i,n = a[− 1

2 (C
(1)
i,n−1 +C(1)

i,n)] + b is solved to obtain the predictive value of the next container
allocated for micro-services. A linear dynamic model is used to approximately generate the number
of containers based on the new generated data, and the values of a and b are solved. The minimum

multiplication value is obtained:
∧
a = [ab]T = (BTB)

−1
BTY. Then the variables are to be separated

as follows:
∧(1)

Ci,k′+1 = (C(0)
i,1 −

b
a
)e−ak′

+
b
a

(3)

Future Internet 2017, 9, 87 6 of 13

The sequence
∧(1)
C i,k′+1 is subtracted cumulatively, then the final distribution prediction model for

containers is obtained, and the predicted value
∧∗
C

(0)

i,k′+1 is obtained.

∧∗

C
(0)

i,k′+1 =

∧

C
(1)

i,k′+1 −
∧

C
(1)

i,k′ = (C(0)
i,1 −

b
a
)(1−ea

)e−ak′ , k′ = 1, 2, . . . , n (3)

According to the prediction model, the length of the message queue and the number of queues
that the micro-service belongs to are adjusted dynamically. The history of the corresponding queues
are obtained and combined with the data obtained from message prediction. Based on the quantity
value obtained by the above-mentioned prediction model, the new containers are started quickly and
the temporarily unnecessary containers may be closed.

4.2. Elastic Management for Cloud Containers

The container demand forecasting module provides a direct basis for elastic control.

Elastic Controller components send the predicted value
∧∗
C

(0)

i,k′+1 to the Docker daemon, the driver
component controls the generation and closure of particular containers, then synchronizes the length
and the number of MQueueSetk. Then according to the results of previous classification of message
queues, MQueueSetk publishes messages to the micro-service and builds a mapping from the topic to
the container. The elastic management model for cloud containers based on message scheduling is
shown in Figure 3.

Future Internet 2017, 9, 87 6 of 13

'

= _ = (_)() ,
(0) (1) (1) b* (0) a ak'1 k' = 1, 2,..., ni,1 ai,ki,k ' 1 i,k ' 1

C e eC C C
∧ ∧ ∧ −

+ +
— (3)

According to the prediction model, the length of the message queue and the number of queues
that the micro-service belongs to are adjusted dynamically. The history of the corresponding queues
are obtained and combined with the data obtained from message prediction. Based on the quantity
value obtained by the above-mentioned prediction model, the new containers are started quickly and
the temporarily unnecessary containers may be closed.

4.2. Elastic Management for Cloud Containers

The container demand forecasting module provides a direct basis for elastic control. Elastic
Controller components send the predicted value (0)*

i,k ' 1C
∧

+

 to the Docker daemon, the driver

component controls the generation and closure of particular containers, then synchronizes the length
and the number of MQueueSetk. Then according to the results of previous classification of message
queues, MQueueSetk publishes messages to the micro-service and builds a mapping from the topic
to the container. The elastic management model for cloud containers based on message scheduling is
shown in Figure 3.

Figure 3. Elastic management model.

According to the Grey prediction model to determine the current demanded number of
containers, the Docker daemon copies the services by the number of containers. The deviation rate is
calculated by dynamically acquiring online monitoring values and predicted values of the container
number: actual predict

predict

count count
σ 100%

count

−
= × . The threshold value is corrected by the calculation of the

deviation rate to obtain the final threshold value. When the number of containers corresponding to
the service is larger than the threshold, it means that the container is at full capacity and it is to select
the predicted value as the threshold size when the predicted value is smaller. Then, a new container,
ContainerM+1, is produced to respond the new created service. The corresponding message queue
set for each micro-service is looped to maintain equalization of queue lengths. Figure 4 shows the
process of elastic management for containers.

Figure 3. Elastic management model.

According to the Grey prediction model to determine the current demanded number of containers,
the Docker daemon copies the services by the number of containers. The deviation rate is calculated
by dynamically acquiring online monitoring values and predicted values of the container number:
σ =

countactual−countpredict
countpredict

× 100%. The threshold value is corrected by the calculation of the deviation
rate to obtain the final threshold value. When the number of containers corresponding to the service is
larger than the threshold, it means that the container is at full capacity and it is to select the predicted
value as the threshold size when the predicted value is smaller. Then, a new container, ContainerM+1,
is produced to respond the new created service. The corresponding message queue set for each
micro-service is looped to maintain equalization of queue lengths. Figure 4 shows the process of elastic
management for containers.

Future Internet 2017, 9, 87 7 of 13
Future Internet 2017, 9, 87 7 of 13

Figure 4. Flowchart of elastic management for containers.

Compared with the existed Docker systems lacking of message scheduling, the scalability of
Elastic-Docker is more accurate for cloud containers. For example, Kubernetes and Swarm only
choose appropriate physical nodes to run a new container, which cannot meet system expansion
requirements under the micro-service framework. The main features of this work are as follow:
predictive message scheduling is used as an effective solution to solve the problems of service
optimization, and dynamic expansion of cluster systems is realized by adopting the flexible scalable
scheme in the aspect of the flexibility of containers.

5. Prototype Design

The designed prototype system named Elastic-Docker is shown in Figure 5. Core software
packages, such as docker-java.jar (V 1.0, dotCloud, inc., San Franciso, CA, USA), docker-py.jar (V 1.0,
dotCloud, inc., San Franciso, CA, USA), Kafka_2.10.jar (V 2.10, Apache Software Foundation, Forest
Hill, MA, USA), Zookeeper-3.3.4.jar (V 3.3.4, Google inc., Mountain View, CA, USA), Zkclient-0.3.jar
(V 0.3, Google inc., Mountain View, CA, USA) and ganymed-ssh2-build210.jar, are used in the system.
The third-party products include: Kafka middleware (V 0.10.2.1, Apache Software Foundation, Forest
Hill, MA, USA), Mysql database (V 4.1, Mysql AB inc., Stockholm, Sweden), Zookeeper (V 3.3.4,
Google inc., Mountain View, CA, USA), and the Docker container system (V 1.13, dotCloud, inc., San
Franciso, CA, USA). The Client module includes SSH2Client (V 4.0, NetSarang Computer inc., Santa
Clara, CA, USA), Zkclient (V 3.3.4, Google inc., Mountain View, CA, USA), and Docker Client. Kafka
(V 0.10.2.1, Apache Software Foundation, Forest Hill, MA, USA) is selected as the message bus,
combined with the Elastic module and Queue module to finish the elastic management of Docker
containers. SSH2 Monitor is developed in Python to achieve remote calls; the host CPU, memory, I/O,
and other status information can be displayed on the interface. We developed the Queue module,
Elastic module, andy SSH2 Monitor module in the prototype system.

Figure 4. Flowchart of elastic management for containers.

Compared with the existed Docker systems lacking of message scheduling, the scalability of
Elastic-Docker is more accurate for cloud containers. For example, Kubernetes and Swarm only choose
appropriate physical nodes to run a new container, which cannot meet system expansion requirements
under the micro-service framework. The main features of this work are as follow: predictive message
scheduling is used as an effective solution to solve the problems of service optimization, and dynamic
expansion of cluster systems is realized by adopting the flexible scalable scheme in the aspect of the
flexibility of containers.

5. Prototype Design

The designed prototype system named Elastic-Docker is shown in Figure 5. Core software packages,
such as docker-java.jar (V 1.0, dotCloud, Inc., San Franciso, CA, USA), docker-py.jar (V 1.0, dotCloud,
Inc., San Franciso, CA, USA), Kafka_2.10.jar (V 2.10, Apache Software Foundation, Forest Hill, MA, USA),
Zookeeper-3.3.4.jar (V 3.3.4, Google Inc., Mountain View, CA, USA), Zkclient-0.3.jar (V 0.3, Google Inc.,
Mountain View, CA, USA) and ganymed-ssh2-build210.jar, are used in the system. The third-party products
include: Kafka middleware (V 0.10.2.1, Apache Software Foundation, Forest Hill, MA, USA), Mysql database
(V 4.1, Mysql AB Inc., Stockholm, Sweden), Zookeeper (V 3.3.4, Google Inc., Mountain View, CA, USA),
and the Docker container system (V 1.13, dotCloud, Inc., San Franciso, CA, USA). The Client module
includes SSH2Client (V 4.0, NetSarang Computer Inc., Santa Clara, CA, USA), Zkclient (V 3.3.4, Google Inc.,
Mountain View, CA, USA), and Docker Client. Kafka (V 0.10.2.1, Apache Software Foundation, Forest Hill,
MA, USA) is selected as the message bus, combined with the Elastic module and Queue module to finish
the elastic management of Docker containers. SSH2 Monitor is developed in Python to achieve remote calls;
the host CPU, memory, I/O, and other status information can be displayed on the interface. We developed
the Queue module, Elastic module, andy SSH2 Monitor module in the prototype system.

Future Internet 2017, 9, 87 8 of 13

Future Internet 2017, 9, 87 7 of 13

Figure 4. Flowchart of elastic management for containers.

Compared with the existed Docker systems lacking of message scheduling, the scalability of
Elastic-Docker is more accurate for cloud containers. For example, Kubernetes and Swarm only
choose appropriate physical nodes to run a new container, which cannot meet system expansion
requirements under the micro-service framework. The main features of this work are as follow:
predictive message scheduling is used as an effective solution to solve the problems of service
optimization, and dynamic expansion of cluster systems is realized by adopting the flexible scalable
scheme in the aspect of the flexibility of containers.

5. Prototype Design

The designed prototype system named Elastic-Docker is shown in Figure 5. Core software
packages, such as docker-java.jar (V 1.0, dotCloud, inc., San Franciso, CA, USA), docker-py.jar (V 1.0,
dotCloud, inc., San Franciso, CA, USA), Kafka_2.10.jar (V 2.10, Apache Software Foundation, Forest
Hill, MA, USA), Zookeeper-3.3.4.jar (V 3.3.4, Google inc., Mountain View, CA, USA), Zkclient-0.3.jar
(V 0.3, Google inc., Mountain View, CA, USA) and ganymed-ssh2-build210.jar, are used in the system.
The third-party products include: Kafka middleware (V 0.10.2.1, Apache Software Foundation, Forest
Hill, MA, USA), Mysql database (V 4.1, Mysql AB inc., Stockholm, Sweden), Zookeeper (V 3.3.4,
Google inc., Mountain View, CA, USA), and the Docker container system (V 1.13, dotCloud, inc., San
Franciso, CA, USA). The Client module includes SSH2Client (V 4.0, NetSarang Computer inc., Santa
Clara, CA, USA), Zkclient (V 3.3.4, Google inc., Mountain View, CA, USA), and Docker Client. Kafka
(V 0.10.2.1, Apache Software Foundation, Forest Hill, MA, USA) is selected as the message bus,
combined with the Elastic module and Queue module to finish the elastic management of Docker
containers. SSH2 Monitor is developed in Python to achieve remote calls; the host CPU, memory, I/O,
and other status information can be displayed on the interface. We developed the Queue module,
Elastic module, andy SSH2 Monitor module in the prototype system.

Figure 5. Prototype design of Elastic-Docker. SSH2: Secure Shell; API: Application Program Interface;
DB: DataBase.

Various states and the information of containers are stored in system database monitored by
the Docker API (Application Program Interface). The containers are used as the message processing
part of the prototype system, and the Docker daemon is used to operate the entire Docker cluster.
Queue Module is controlled by the implementation of the algorithm that completes the message
processing, classification, and mapping operations. The Elastic module is used to achieve elastic
expansion of container cluster by creating the mappings.

6. Experiments

The effect of elastic scalability for cloud containers has been evaluated from multi-aspect experiments.
Twenty PC servers are used as the message generator, database servers, and Docker manager servers to
build an experimental environment. An E-shop system was chosen as the application test case. The E-shop
system is based on the benchmark program of TPC-W (Transaction Processing Performance Council for
Web), and Pylot software (V 1.26, Apache Software Foundation, Forest Hill, MA, USA) as the message
generator to generate high concurrent load. The E-shop system consists of several modules according to the
micro-service framework, such as a shopping service, a logistics service, a transportation business service,
a car service, and a business pay service. The configuration of the testing environment of the experiments is
shown in Figure 6.

Future Internet 2017, 9, 87 8 of 13

Figure 5. Prototype design of Elastic-Docker. SSH2: Secure Shell; API: Application Program Interface;
DB: DataBase.

Various states and the information of containers are stored in system database monitored by the
Docker API (Application Program Interface). The containers are used as the message processing part
of the prototype system, and the Docker daemon is used to operate the entire Docker cluster. Queue
Module is controlled by the implementation of the algorithm that completes the message processing,
classification, and mapping operations. The Elastic module is used to achieve elastic expansion of
container cluster by creating the mappings.

6. Experiments

The effect of elastic scalability for cloud containers has been evaluated from multi-aspect
experiments. Twenty PC servers are used as the message generator, database servers, and Docker
manager servers to build an experimental environment. An E-shop system was chosen as the
application test case. The E-shop system is based on the benchmark program of TPC-W (Transaction
Processing Performance Council for Web), and Pylot software (V 1.26, Apache Software Foundation,
Forest Hill, MA, USA) as the message generator to generate high concurrent load. The E-shop system
consists of several modules according to the micro-service framework, such as a shopping service, a
logistics service, a transportation business service, a car service, and a business pay service. The
configuration of the testing environment of the experiments is shown in Figure 6.

Figure 6. Configuration of the experimental environment.

As the elastic performance improvement is a multi-dimensional characterization, four sets of
experiments are set up to verify the effectiveness of our work. Experiment one is to verify the
throughput evaluation of cloud containers. Experiment two is to verify the prediction accuracy and
response delay of the services. Experiment three is to verify the system resource consumption.
Experiment four is to verify the elastic scalability of containers.

(1) Throughput Evaluation of Cloud Containers

Experiment one evaluates the throughput of messages in four different ways. The reasons for
their changes are tracked and analyzed by observing changes in the amount of messages sent in
different ways. There are concurrent messages (the size of batch message is from 20 to 2000) to verify
the effectiveness of message queue processing strategy. A single message is sent (every 200 bytes) as
the experimental base, experimental data of the message number produced per second are recorded.
According to Figure 7, we can see the comparison data of LightDocker (Red Hat Enterprise Linux 7
Atomic Host, Red Hat inc., Raleigh, NC, USA), Docker (V 1.13, dotCloud, inc., San Franciso, CA,
USA), Docker with Workflow(An prototype system developed in [5]), and Elastic-Docker systems.
Figure 8 shows the average experimental results of throughput in the environment.

Figure 6. Configuration of the experimental environment.

As the elastic performance improvement is a multi-dimensional characterization, four sets of
experiments are set up to verify the effectiveness of our work. Experiment one is to verify the

Future Internet 2017, 9, 87 9 of 13

throughput evaluation of cloud containers. Experiment two is to verify the prediction accuracy
and response delay of the services. Experiment three is to verify the system resource consumption.
Experiment four is to verify the elastic scalability of containers.

(1) Throughput Evaluation of Cloud Containers

Experiment one evaluates the throughput of messages in four different ways. The reasons for
their changes are tracked and analyzed by observing changes in the amount of messages sent in
different ways. There are concurrent messages (the size of batch message is from 20 to 2000) to verify
the effectiveness of message queue processing strategy. A single message is sent (every 200 bytes) as
the experimental base, experimental data of the message number produced per second are recorded.
According to Figure 7, we can see the comparison data of LightDocker (Red Hat Enterprise Linux 7
Atomic Host, Red Hat Inc., Raleigh, NC, USA), Docker (V 1.13, dotCloud, Inc., San Franciso, CA, USA),
Docker with Workflow(An prototype system developed in [5]), and Elastic-Docker systems. Figure 8
shows the average experimental results of throughput in the environment.

After collecting running data for a period of time, it can be seen from the results that Elastic-Docker
system greatly improves the concurrency processing capability compared with original Docker system.
As the amount of message generation continues to increase, the message batch number of the Docker
with Workflow and Docker grows slowly. As seen from the LightDocker’s curve, there is a significant
downward trend in the rate of message sending as the messages increase. The main reason is that the
simplification of the container mirroring component reduces its processing ability.

Future Internet 2017, 9, 87 9 of 13

After collecting running data for a period of time, it can be seen from the results that Elastic-
Docker system greatly improves the concurrency processing capability compared with original
Docker system. As the amount of message generation continues to increase, the message batch
number of the Docker with Workflow and Docker grows slowly. As seen from the LightDocker’s
curve, there is a significant downward trend in the rate of message sending as the messages increase. The
main reason is that the simplification of the container mirroring component reduces its processing ability.

Figure 7. Comparison of the message throughput.

Figure 8. Comparison of the average throughput.

Elastic-Docker still maintains a low delay when the number of batch messages is 2000, and the
throughput improves by 90%. Docker with Workflow curve in Figure 8 shows that the adoption of
workflow mechanisms in Docker does significantly improve service efficiency, but when a large
number of messages come into the system, the improvement of performance becomes inconspicuous
and short. As mentioned above, Elastic-Docker effectively improved the message throughput.

(2) Prediction Accuracy and Response Delay of Services

In Experiment 2, the changes of the message processing delay and the accuracy of the predictive
value are compared in four ways to verify the validity of the elastic expansion ability. In order to test
the accuracy of the container demand prediction method, different numbers of messages are selected
(the size of batch message is from 100 to 1500).

The Elastic-Docker system runs with different algorithm for prediction, including Grey
prediction, neural network algorithm, and regression analysis algorithm. The predicted values from
different methods are compared with an actual value. The experimental results are shown in Figure
9. By using four different methods to deal with elastic management, we can see the changes of the
service response speed. It can be seen that the error value of Grey prediction is in the range of [0.06,

Figure 7. Comparison of the message throughput.

Future Internet 2017, 9, 87 9 of 13

After collecting running data for a period of time, it can be seen from the results that Elastic-
Docker system greatly improves the concurrency processing capability compared with original
Docker system. As the amount of message generation continues to increase, the message batch
number of the Docker with Workflow and Docker grows slowly. As seen from the LightDocker’s
curve, there is a significant downward trend in the rate of message sending as the messages increase. The
main reason is that the simplification of the container mirroring component reduces its processing ability.

Figure 7. Comparison of the message throughput.

Figure 8. Comparison of the average throughput.

Elastic-Docker still maintains a low delay when the number of batch messages is 2000, and the
throughput improves by 90%. Docker with Workflow curve in Figure 8 shows that the adoption of
workflow mechanisms in Docker does significantly improve service efficiency, but when a large
number of messages come into the system, the improvement of performance becomes inconspicuous
and short. As mentioned above, Elastic-Docker effectively improved the message throughput.

(2) Prediction Accuracy and Response Delay of Services

In Experiment 2, the changes of the message processing delay and the accuracy of the predictive
value are compared in four ways to verify the validity of the elastic expansion ability. In order to test
the accuracy of the container demand prediction method, different numbers of messages are selected
(the size of batch message is from 100 to 1500).

The Elastic-Docker system runs with different algorithm for prediction, including Grey
prediction, neural network algorithm, and regression analysis algorithm. The predicted values from
different methods are compared with an actual value. The experimental results are shown in Figure
9. By using four different methods to deal with elastic management, we can see the changes of the
service response speed. It can be seen that the error value of Grey prediction is in the range of [0.06,

Figure 8. Comparison of the average throughput.

Future Internet 2017, 9, 87 10 of 13

Elastic-Docker still maintains a low delay when the number of batch messages is 2000, and the
throughput improves by 90%. Docker with Workflow curve in Figure 8 shows that the adoption
of workflow mechanisms in Docker does significantly improve service efficiency, but when a large
number of messages come into the system, the improvement of performance becomes inconspicuous
and short. As mentioned above, Elastic-Docker effectively improved the message throughput.

(2) Prediction Accuracy and Response Delay of Services

In Experiment 2, the changes of the message processing delay and the accuracy of the predictive
value are compared in four ways to verify the validity of the elastic expansion ability. In order to test
the accuracy of the container demand prediction method, different numbers of messages are selected
(the size of batch message is from 100 to 1500).

The Elastic-Docker system runs with different algorithm for prediction, including Grey prediction,
neural network algorithm, and regression analysis algorithm. The predicted values from different
methods are compared with an actual value. The experimental results are shown in Figure 9. By using
four different methods to deal with elastic management, we can see the changes of the service response
speed. It can be seen that the error value of Grey prediction is in the range of [0.06, 0.15], which can
be used to predict the demanded quantity of container with better prediction accuracy and lower
error value. The experiment shows that the presented forecasting method in the paper can effectively
predict the value of the container according to less historical data, so as to continuously improve the
quality and efficiency of services. Figure 10 shows the average response delay of message processing.
According to the experimental data, there is no significant difference in the number of message
delays when the number is in the [20, 1500]. However, as the message number continues to increase,
the latency of Docker, LightDocker, Docker with Workflow are growing nearly linearly.

Future Internet 2017, 9, 87 10 of 13

0.15], which can be used to predict the demanded quantity of container with better prediction
accuracy and lower error value. The experiment shows that the presented forecasting method in the
paper can effectively predict the value of the container according to less historical data, so as to
continuously improve the quality and efficiency of services. Figure 10 shows the average response
delay of message processing. According to the experimental data, there is no significant difference in
the number of message delays when the number is in the [20, 1500]. However, as the message number
continues to increase, the latency of Docker, LightDocker, Docker with Workflow are growing nearly
linearly.

Figure 9. Actual value and predicted value.

Figure 10. Comparison of service latency.

(3) System Resource Consumption

Experiment 3 compares the system resource consumption in four different ways. In order to
verify message processing in the context of system resource overhead, four different situations are
tested to compare CPU and memory consumption in containers under continuous monitoring.

Figures 11 and 12 show that CPU consumption and memory consumption of the four systems
increase with the increase of the number of messages. With the increase of workload, the
consumption of CPU and memory under the four kinds of system increase gradually. The Elastic-
Docker is less expensive than the other three methods in terms of CPU and memory consumption
when the number of message reaches 1500/s. Due to the accurate message scheduling for container
clusters, Elastic-Docker is significantly lower than the other three systems in terms of resource
consumption when faced with a message volume of 1500/s. This experiment shows the advantages
of Elastic-Docker resource consumption, obviously.

Figure 9. Actual value and predicted value.

Future Internet 2017, 9, 87 10 of 13

0.15], which can be used to predict the demanded quantity of container with better prediction
accuracy and lower error value. The experiment shows that the presented forecasting method in the
paper can effectively predict the value of the container according to less historical data, so as to
continuously improve the quality and efficiency of services. Figure 10 shows the average response
delay of message processing. According to the experimental data, there is no significant difference in
the number of message delays when the number is in the [20, 1500]. However, as the message number
continues to increase, the latency of Docker, LightDocker, Docker with Workflow are growing nearly
linearly.

Figure 9. Actual value and predicted value.

Figure 10. Comparison of service latency.

(3) System Resource Consumption

Experiment 3 compares the system resource consumption in four different ways. In order to
verify message processing in the context of system resource overhead, four different situations are
tested to compare CPU and memory consumption in containers under continuous monitoring.

Figures 11 and 12 show that CPU consumption and memory consumption of the four systems
increase with the increase of the number of messages. With the increase of workload, the
consumption of CPU and memory under the four kinds of system increase gradually. The Elastic-
Docker is less expensive than the other three methods in terms of CPU and memory consumption
when the number of message reaches 1500/s. Due to the accurate message scheduling for container
clusters, Elastic-Docker is significantly lower than the other three systems in terms of resource
consumption when faced with a message volume of 1500/s. This experiment shows the advantages
of Elastic-Docker resource consumption, obviously.

Figure 10. Comparison of service latency.

Future Internet 2017, 9, 87 11 of 13

(3) System Resource Consumption

Experiment 3 compares the system resource consumption in four different ways. In order to
verify message processing in the context of system resource overhead, four different situations are
tested to compare CPU and memory consumption in containers under continuous monitoring.

Figures 11 and 12 show that CPU consumption and memory consumption of the four systems
increase with the increase of the number of messages. With the increase of workload, the consumption
of CPU and memory under the four kinds of system increase gradually. The Elastic-Docker is less
expensive than the other three methods in terms of CPU and memory consumption when the number of
message reaches 1500/s. Due to the accurate message scheduling for container clusters, Elastic-Docker
is significantly lower than the other three systems in terms of resource consumption when faced
with a message volume of 1500/s. This experiment shows the advantages of Elastic-Docker resource
consumption, obviously.Future Internet 2017, 9, 87 11 of 13

Figure 11. Comparison of CPU consumption.

Figure 12. Comparison of memory consumption.

(4) Elastic Scalability of Cloud Containers

Experiment 4 compares the elastic scalability of Elastic-Docker with original Docker. The times
of containers that can be stretched in a high concurrent environment is an important indicator to
measure the flexibility under the same cluster size of hosts. In this paper, the scenarios of workload
changes are frequently selected as the experimental environment. The average time of stretching and
shrinking of the two systems is counted in several experiments, as shown in Figure 13.

Figure 13. Comparison of scalability.

In the case of high concurrent applications, frequent changes in workload led to the pressure of
the container, and also frequent changes, so it can effectively test the elasticity in this environment.
With the increase of hosts in the container cluster, the elasticity is 60% higher than the original Docker

Figure 11. Comparison of CPU consumption.

Future Internet 2017, 9, 87 11 of 13

Figure 11. Comparison of CPU consumption.

Figure 12. Comparison of memory consumption.

(4) Elastic Scalability of Cloud Containers

Experiment 4 compares the elastic scalability of Elastic-Docker with original Docker. The times
of containers that can be stretched in a high concurrent environment is an important indicator to
measure the flexibility under the same cluster size of hosts. In this paper, the scenarios of workload
changes are frequently selected as the experimental environment. The average time of stretching and
shrinking of the two systems is counted in several experiments, as shown in Figure 13.

Figure 13. Comparison of scalability.

In the case of high concurrent applications, frequent changes in workload led to the pressure of
the container, and also frequent changes, so it can effectively test the elasticity in this environment.
With the increase of hosts in the container cluster, the elasticity is 60% higher than the original Docker

Figure 12. Comparison of memory consumption.

(4) Elastic Scalability of Cloud Containers

Experiment 4 compares the elastic scalability of Elastic-Docker with original Docker. The times of
containers that can be stretched in a high concurrent environment is an important indicator to measure
the flexibility under the same cluster size of hosts. In this paper, the scenarios of workload changes are
frequently selected as the experimental environment. The average time of stretching and shrinking of
the two systems is counted in several experiments, as shown in Figure 13.

Future Internet 2017, 9, 87 12 of 13

Future Internet 2017, 9, 87 11 of 13

Figure 11. Comparison of CPU consumption.

Figure 12. Comparison of memory consumption.

(4) Elastic Scalability of Cloud Containers

Experiment 4 compares the elastic scalability of Elastic-Docker with original Docker. The times
of containers that can be stretched in a high concurrent environment is an important indicator to
measure the flexibility under the same cluster size of hosts. In this paper, the scenarios of workload
changes are frequently selected as the experimental environment. The average time of stretching and
shrinking of the two systems is counted in several experiments, as shown in Figure 13.

Figure 13. Comparison of scalability.

In the case of high concurrent applications, frequent changes in workload led to the pressure of
the container, and also frequent changes, so it can effectively test the elasticity in this environment.
With the increase of hosts in the container cluster, the elasticity is 60% higher than the original Docker

Figure 13. Comparison of scalability.

In the case of high concurrent applications, frequent changes in workload led to the pressure of
the container, and also frequent changes, so it can effectively test the elasticity in this environment.
With the increase of hosts in the container cluster, the elasticity is 60% higher than the original Docker
system. The destruction will be carried out only when a container has no message to deal with
anymore, thus, the amount of stretch is higher than the amount of shrink. The experimental results
show that Elastic-Docker has higher flexibility than the original Docker.

7. Conclusions

This paper proposes an elastically-scalable policy for cloud containers, which meets the
requirements of cloud environment and reduces the delay of service provision. Compared with
the existed strategies, real-time prediction of containers number and message scheduling are taken
into account in the presented policy, so as to protect the SLA (Service Level Agreement) of tenants and
improve the provider’s resource utilization. The method, based on predictive message scheduling
to obtain the classifications and mappings of messages, makes message processing more targeted,
which greatly improves the scalability of containers effectively. The experiments on the prototypal
system show that the proposed policy can meet the demand of dynamic changes in workload and
the elasticity of the system. We will address the larger message processing problem and further
reduce the service response delay, and study optimization methods to improve the message processing
performance in the future.

Acknowledgments: This work is supported by the Natural Science Foundation of China (No. 61363003, 61063012),
the National Key Technology R and D Program of China (No. 2015BAH55F02).

Author Contributions: Yan Chengxin designs the architecture of Elastic-Docker and implements the system
prototype. Analysis and interpretation of experimental data. Chen Ninjiang contributes to conception and
the design of Elastic-Docker. Drafting the article and guiding it critically for important intellectual content.
Zhang Shuo mainly finished the language collation and the proofreading. Collecting and arranging the
correlative materials.

Conflicts of Interest: The authors declared that they have no conflicts of interest to this work.

References

1. Amaral, M.; Polo, J.; Carrera, D. Performance Evaluation of Microservices Architectures using Containers.
In Proceedings of the 14th IEEE International Symposium on Network Computing and Applications,
Cambridge, MA, USA, 28–30 September 2015; pp. 27–34.

2. Jaramillo, D.; Nguyen, D.V.; Smart, R. Leveraging microservices architecture by using Docker technology.
In Proceedings of the 2016 IEEE South East Conference, Norfolk, VA, USA, 30 March–3 April 2016; pp. 1–5.

Future Internet 2017, 9, 87 13 of 13

3. Bernstein, D. Containers and cloud: From Lxc to docker to kubernetes. IEEE Cloud Comput. 2014, 1, 81–84.
[CrossRef]

4. Shojafar, M.; Canali, C.; Lancellotti, R.; Abawajy, J. Adaptive Computing-plus-Communication Optimization
Framework for Multimedia Processing in Cloud Systems. IEEE Trans. Cloud Comput. 2016, 1. [CrossRef]

5. Zheng, C.; Thain, D. Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue,
and Docker. In Proceedings of the 8th International Workshop on Virtualization Technologies in Distributed
Computing, Portland, OR, USA, 15 June 2015; pp. 31–38.

6. Hofmeijer, T.J.; Dulman, S.O.; Jansen, P.G. Dcos, a real-time light-weight data centric operating system.
In Proceedings of the IASTED International Conference on Advances in Computer Science and Technology,
Innsbruck, Austria, 22–24 November 2014; pp. 259–264.

7. Sallou, O.; Monjeaud, C. GO-Docker: A Batch Scheduling System with Docker Containers. In Proceedings of
the IEEE Cluster 2015, Chicago, IL, USA, 8–11 September 2015; pp. 514–515.

8. Nikol, G.; Tr, M.; Harrer, S. Service-Oriented Multi-tenancy (SO-MT): Enabling Multi-tenancy for Existing
Service Composition Engines with Docker. In Proceedings of the IEEE Symposium on Service-Oriented
System Engineering, Oxford, UK, 29 March–2 April 2016; pp. 238–243.

9. Kan, C. DoCloud: An elastic cloud platform for Web applications based on Docker. In Proceedings of
the 18th International Conference on Advanced Communication Technology, Pyeongchang, South Korea,
31 January–3 February 2016; pp. 478–483.

10. Kang, H.; Le, M.; Tao, S. Container and Microservice Driven Design for Cloud Infrastructure DevOps.
In Proceedings of the 2016 IEEE International Conference on Cloud Engineering, Berlin, Germany, 4–8 April 2016;
pp. 202–211.

11. Ueda, T.; Nakaike, T.; Ohara, M. Workload characterization for microservices. In Proceedings of the 2016 IEEE
International Symposium on Workload Characterization, Providence, RI, USA, 25–27 September 2016; pp. 1–10.

12. Kousiouris, G.; Cucinotta, T.; Varvarigou, T. The effects of scheduling, workload type and consolidation
scenarios on virtual machine performance and their prediction through optimized artificial neural net-works.
J. Syst. Softw. 2011, 84, 1270–1291. [CrossRef]

13. Imam, M.T.; Miskhat, S.F.; Rahman, R.M. Neural network and regression based processor load prediction
for efficient scaling of Grid and Cloud resources. In Proceedings of the 14th International Conference on
Computer and Information Technology, Dhaka, Bangladcsh, 22–24 December 2011; pp. 333–338.

14. Li, W.; Kanso, A.; Gherbi, A. Leveraging Linux Containers to Achieve High Availability for Cloud Services.
In Proceedings of the IEEE International Conference on Cloud Engineering, Tempe, AZ, USA, 9–13 March 2015;
pp. 76–83.

15. Stubbs, J.; Moreira, W.; Dooley, R. Distributed systems of microservices using Docker and Serfnode. In Proceedings
of the 7th International Workshop on Science Gateways, Budapest, Hungary, 3–5 June 2015; pp. 34–39.

16. Ismail, B.I.; Goortani, E.M.; Ab Karim, M.B.; Tat, W.M.; Setapa, S.; Luke, J.Y.; Hoe, O.H. Evaluation of Docker
as Edge computing platform. In Proceedings of the IEEE Conference on Open Systems, Malacca, Malaysia,
24–26 August 2015; pp. 130–135.

17. Affetti, L.; Bresciani, G.; Guinea, S. aDock: A Cloud Infrastructure Experimentation Environment Based on
Open Stack and Docker. In Proceedings of the 8th International Conference on Cloud Computing, New York,
NY, USA, 27 June–2 July 2015; pp. 203–210.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MCC.2014.51
http://dx.doi.org/10.1109/TCC.2016.2617367
http://dx.doi.org/10.1016/j.jss.2011.04.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Elastically-Scalable Architecture for Cloud Containers
	Predictive Message Scheduling Strategy
	Queued Messages Scheduling Based on Prediction
	Elastic Management for Cloud Containers

	Prototype Design
	Experiments
	Conclusions

