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Abstract: The Box–Jenkins model is a polynomial model that uses transfer functions to express
relationships between input, output, and noise for a given system. In this article, we present a Box–
Jenkins linear model for a lithium-ion battery cell for use in electric vehicles. The model parameter
identifications are based on automotive drive-cycle measurements. The proposed model prediction
performance is evaluated using the goodness-of-fit criteria and the mean squared error between the
Box–Jenkins model and the measured battery cell output. A simulation confirmed that the proposed
Box–Jenkins model could adequately capture the battery cell dynamics for different automotive drive
cycles and reasonably predict the actual battery cell output. The goodness-of-fit value shows that the
Box–Jenkins model matches the battery cell data by 86.85% in the identification phase, and 90.83% in
the validation phase for the LA-92 driving cycle. This work demonstrates the potential of using a
simple and linear model to predict the battery cell behavior based on a complex identification dataset
that represents the actual use of the battery cell in an electric vehicle.

Keywords: Box–Jenkins model; lithium-ion battery cell; electric vehicles; automotive drive-cycle
measurements

1. Introduction

The near exhaustion of fossil energy sources and the significant number of vehicles
in the world are two factors that have necessitated the search for an alternative source
of energy [1]. Furthermore, the transport sector is one of the main gas emission sources
of greenhouse gases [2]. Thus, it is important to reduce consumption and dependence
on fossil fuels. The electrification of the vehicle powertrain is a key step to reduce these
emissions and greenhouse gases [3]. This type of vehicle is all-electric and uses rechargeable
batteries to power an electric motor. As there is no toxic gas emission, this vehicle is called
a rechargeable electric vehicle or green vehicle [4,5]. With the growing popularity of electric
vehicles, the batteries used in these applications are at the center of attention. However,
it is often mentioned that batteries are very important and expensive components in an
electric drivetrain. Recently, lithium-ion batteries have drawn attention compared to other
battery types due to their long life, high energy density, respect for the environment, and
low rate of self-discharge [6–8].

This type of battery requires close monitoring by a dedicated computer commonly
called ‘Battery Management System’ (BMS). The BMS essentially performs three types of
tasks: measurement (current, voltages, temperatures, insulation resistance) [9,10], estima-
tion of different battery states and the development of alerts [11,12], and management of
the quantity of energy usable (cell balancing function) [13]. To improve battery energy
management, its autonomy, and its lifetime, comprehensive knowledge of its dynamic
behavior is essential. Therefore, mathematical models are needed to represent and predict
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these behaviors [6]. Generally, the purpose of battery cell modeling is to approximate the
behavior of the cell from the measured data output and/or input [14]. Thus, the models
describe a relationship between the input and the output of the battery cell to model or
predict the output of the system at the next moment. This relationship is defined through
parameters that must be determined for each battery. This step of calculating parameters is
referred to as identification. The identification of the battery cell includes determining a
model parameter vector that minimizes the difference between the measured output (the
measured battery cell terminal voltage Vmes (t)) and the model output (the model battery
cell voltage Vmod (t)). The identification process consists of several steps. First, a simple
analysis determines the properties of the battery cell. Based on its properties, a model
structure is chosen. Then the parameters are estimated from the input/output data. Finally,
a validation step is proposed to ensure that the model describes the behavior of the cell. If
not, an iteration and refinement step is necessary [15].

Generally, in system identification, three types of battery models are identified: the
black-box model, gray box model, and the model defined by the user (white-box model).
The black-box model assumes that the batteries are not known and all model parameters
are adjustable regardless of the physical context. We note that the parameters cannot all
be set arbitrarily [16]. The gray-box model assumes that some of the information on the
underlying dynamic or certain physical parameters is known and the model parameters
may have some constraints. The model defined by the user assumes that the commonly
used parametric models cannot represent the model we want to estimate with the desired
performance [17–19]. In this article, we use the black-box model. Several types of black box
models in the literature have been developed to estimate battery parameters. These models
vary from nonlinear models based on structured blocks such as the Hammerstein–Wiener
model [20,21] to models based on neuron networks such as the Nonlinear Auto-Regressive
with eXogene input models (NARX) [22].

This article later discussed the sampled dynamic parametric black box models that
are most appropriate for battery cell modeling to be integrated into a battery management
system for electric vehicles that require a simple and linear model. The most often used
parametric structures in identification are the Autoregressive with Extra Input model
(ARX) [23,24], the autoregressive moving average with exogenous inputs model (AR-
MAX) [25,26], the output-error model (OE) [27], and the Box–Jenkins model (BJ) [28]. The
advantage of these models is that their writing is locally linear between the points con-
sidered at the tn,tn−1and tn−2 instants [29]. Thus, estimating unknown parameters is
faster, flexible, and easy to adapt to the data of the battery cell. This work shows that the
application of this type of model to battery cells gives interesting results when used in
electric vehicles.

Hence, we focus on the Box–Jenkins model for a lithium-ion battery cell used in an
electric vehicle. We used real data collected during different driving cycles to obtain a
simple model that best reproduces the behavior of a battery implemented in an electric
vehicle, there are several modeling studies. But in this work, we are looking for a model
with reduced complexity and computation time. Among the advantages of the Box–Jenkins
model, we can note its flexibility as we can choose several orders of models to obtain
the best BJ model for the battery cell. In this article, we have performed the comparison
between the performances of BJ model and two other model types including the equivalent
electric circuit, and the neural network model. The BJ model gives the best performance in
terms of the mean squared error between measured and simulated outputs.

The paper is divided into four parts. In the first part, we present the bibliographic
identification of linear systems using the Box–Jenkins polynomial model. In the second
part, we first present the identification procedure of the battery cell during the driving
cycle process of an electric vehicle using the Box–Jenkins polynomial model. In the third
part, we focus on the presentation of experimental data used to estimate and validate the
Box–Jenkins model proposed for the NCR18650PF Panasonic lithium-ion battery cell, an
NCA chemistry cell that is similar to the cells used in Tesla’s electric cars. In the fourth part,
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we first present the results of the identification and the validation of the battery cell using
MATLAB software. Then we present our interpretation of the results obtained. Finally, a
conclusion summarizes our work.

2. Box–Jenkins Polynomial Model Structure

The general block diagram of the polynomial model is given in Figure 1
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Figure 1. Block-diagram of the polynomial model.

A polynomial model can use a generalized notion of transfer functions to express
the relationship between the noise e(t), the output y(t), and the input u(t) using the
following Equation

A(q)y(t) =
nu

∑
i=1

Bi(q)
Fi(q)

ui(t − nki) +
C(q)
D(q)

e(t) (1)

where
-A, B, C, D, and F are polynomials variables expressed in the time-shift operator q−1.
-nu is the input number, ui is the ith input, and nki is the ith input delay (dead time)

given by the number of samples before the output responds to the input. The variance of
the white noise e(t) is assumed to be λ.

In practice, not all the polynomials are simultaneously active. Often, simpler forms
are used such as Box–Jenkins, output-error, and ARMAX. We can also add an integrator in
the noise source so that the general model becomes in the following form [30]

A(q)y(t) =
nu

∑
i=1

Bi(q)
Fi(q)

ui(t − nki) +
C(q)
D(q)

1
1 − q−1 e(t) (2)

We can use frequency or time domain data to estimate polynomial models.
To estimate this model, we have to determine its order as a set of integers representing

the number of coefficients for each polynomial that we include in the chosen structure
(nb for B, nf for F, nc for C, nd for D, and na for A), and the number of samples nk corre-
sponding to the dead time (input delay).

The coefficients number in denominator polynomials is equal to the poles number,
and the coefficient’s number in the numerator polynomials is equal to the zeros number
plus 1. When the dynamics from u(t) to y(t) contain a delay of nk samples, the first nk
coefficients of B are zero.

Box–Jenkins Model Structure

The block diagram of Box–Jenkins is shown in Figure 2.
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The general Box–Jenkins model structure is as follows [30]

y(t) =
nu

∑
i=1

Bi(q)
Fi(q)

·ui(t − nki) +
C(q)
D(q)

e(t) (3)

The number of input channels is represented by nu.
The Box–Jenkins model orders are defined as follows:

nb : B(q) = b1 + b2q−1 + . . . + bnbq−nb+1 (4)

nc : C(q) = 1 + c1q−1 + . . . + cncq−nc (5)

nd : D(q) = 1 + d1q−1 + . . . + dndq−nd (6)

nf : F(q) = 1 + f1q−1 + . . . + fnfq
−nf (7)

where:

• nb is the B polynomial order plus 1 (Ny − by − Nu matrix)
• nc is the C polynomial order plus 1 (Ny − by − 1 matrix)
• nd is the D polynomial order plus 1 (Ny − by − 1 matrix)
• nf is the F polynomial order plus 1 (Ny − by − Nu matrix)
• nk is the input delay (in number of samples, Ny − by − Nu matrix) where Nu is the

input number and Ny is the output number.

A matrices vector containing the Box–Jenkins model orders and delays must contain
nonnegative integers.

Using rational polynomial functions, the Box–Jenkins model provides an independent
setting for noise and dynamics.

When noise does not enter the input, BJ models are used, but this is a primary
measurement disturbance, for noise-modeling this structure provides additional flexibility.

3. Experimental Data

This section aims to define the experimental data for li-ion battery cell modeling.
These data consider the specific characteristics of a use in a battery management system
of an electric vehicle. This use can be represented by a combination of standard profiles,
which determine the real use in electric vehicles on urban and rural roads and highways.
This representation leads to an interest in the study of the dynamic behavior of this element
with high speeds and represents the actual use of the battery in the different conditions and
driving styles of an electric vehicle. To conduct this study, we focused on a single cell rather
than a complete battery. This choice eliminates the problems of inter-element connectivity,
balancing, and homogeneity of the characteristics as well as the test conditions within
a complete battery. Moreover, to simplify the interpretation of the results, we preferred
a ‘black box’ modeling type to a purely electrochemical one. Thus, the models studied
are characterized by purely electrical parameters and variables. First, we present the
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experimental data and the tests implemented. We justify the choice of these tests. Finally,
this model is validated in the time domain by using a different current profile from that
used in the estimation phase of the model.

Thus, we use the experimental tests of driving cycles performed by Dr. Phillip Kollmeyer
at the Wisconsin-Madison University, which represent the actual use of the battery cell in
an electric vehicle. The battery cell type used in these tests is a new Panasonic 18650 battery
cell with a lithium nickel cobalt aluminum oxide (LiNiCoAlO2 or NCA) chemistry [31,32].
The battery cell parameters are described in Table 1. All the testing was performed in a
thermal chamber. The schematic of the experimental apparatus is given in [33,34].

Table 1. Panasonic 18,650 pf cell parameters.

Battery Cell Parameters Value

Nominal Open Circuit Voltage
Capacity

3.6 V
Min. 2.75 Ah/Typ. 2.9 Ah

Min/Max Voltage 2.5 V/4.2 V
Mass/Energy Storage 48 g/9.9 Wh

Minimum Charging Temperature 10 ◦C
Cycles to 80% Capacity 500 (100% DOD, 25 ◦C)

These tests are based on the driving cycles that are presented as follows [35,36]:

• UDDS: In the early 70s, this cycle was developed to describe an urban route. The cycle
consists of a cold start step. This step is followed by a transient step with many speed
peaks that start from rest.

• LA-92: This cycle represents, similar to the UDDS, an urban route and it has a higher
average speed. LA-92 is a chassis-dynamometer driving schedule for light-duty
vehicles developed in 1992 by the CARB (California Air Resources Board).

• US06: This test addresses the need for aggressive, high-acceleration and/or high-speed
driving behavior, rapid speed fluctuations, and driving behavior following startup.

• HWFET: This drive cycle is the Highway Fuel Economy Test developed in 1974.
Overall, it simulates interstate rural and highway driving conditions.

• Neural Network: This drive cycle consists of a combination of portions of the US06
and LA92 drive cycles, and it was designed to have some additional dynamics that
may be useful for training neural networks.

• MIX: This drive cycle represents a random mix of the five driving cycles presented
previously (LA-92, HWFET, NN, US06, HWFET, and UDDS).

The drive cycle tests are terminated when voltage first hits 2.5 V. We note that during
the driving cycle process, the measurements used to model our battery cell are as follows:

- The measured voltage at the terminal of the battery cell in (V).
- The measured current applied to the battery cell in (A).
- The time of the test measured in (s), which starts from 0 s at the beginning of each

data set.
- The ambient temperature of the test chamber where the battery cell is located in degC,

which remains fixed at 25 degC during the test.

Furthermore, the drive cycle power profile is calculated for an electric Ford F150 truck
with a 35 kWh battery pack scaled for a single 18650PF cell.

In this work, we used six different sets of experimental data measured during the
driving cycle process. The first was for the BJ polynomial model estimation given in
Figure 3 [37] and five others for the validation of the estimated model to guarantee the
effectiveness of the proposed model using different driving cycles described previously [37].
In this article we represented in Figure 4 only the validation data for LA-92 driving cycle.
These data consist of the measured current applied to the battery cell as a function of
driving cycle time and the measured voltage at the terminal of the battery cell as a function
of driving cycle time.



World Electr. Veh. J. 2021, 12, 102 6 of 15

1 

 

 

F3 

 
F4 

 
F6 

Figure 3. Experimental data for model estimation (MIX driving cycle): (a) Current; (b) Voltage [37].
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Figure 4. Experimental data for model validation (LA-92 Driving cycle): (a) Current; (b) Voltage [37].

4. Battery Cell Identification Procedure

Our objective is to set a linear model structure using the Box–Jenkins polynomial
model and to adjust its coefficients by estimating from the measurements inputs/outputs
of the observed battery cell.

To estimate the model parameters. MATLAB toolbox “System Identification” was
used. The battery cell model estimation process is shown in Figure 5. This process can be
divided into seven steps:

1. Acquire experimental data sampled from the actual battery cell during a driving cycle
of an electric vehicle to estimate the Box–Jenkins polynomial model. For this step, we
used data from experimental tests available in [37].

2. Import the experimental data in MATLAB toolbox “System Identification”.
3. Choose the Box–Jenkins polynomial model structure that can approximate the opera-

tion of this cell.
4. Specify the BJ model orders and delays in the orders field.
5. Choose a search method for iterative minimization in the iteration option.
6. Start the system identification process to add to the model board in the system

identification toolbox. If the model quality metrics are not acceptable and the number
of iterations is less than or equal to the maximum allowed value IT_MAX, update the
BJ model and move to the next iteration, as the battery cell BJ model is not suitable.

7. Validate the estimated BJ model by comparing the BJ model response with the battery
cell measured response. To validate the estimated model, it is necessary to use a
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dataset different from that used to estimate the BJ model. For this step, we used data
from another experimental test available in [37]. If the model quality metrics are not
acceptable, the battery cell BJ model is not suitable.
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Our method provides a discrete parametric model from measurements inputs/outputs
sampled at the same instants. The determination of the model parameters is based on the
prediction error. The error is regarded as noise measurements between the actual output
and the predicted output. The advantage of this method is that it is relatively simple to
implement and can be implemented in a recursive form.

This method minimizes the cost function (a function of the error between BJ model
output and the measured battery cell output) using numerical optimization. For scalar
outputs, a weighted norm of the prediction error can be defined as

VN(G, H) =
N

∑
t=1

e2(t) (8)

where:
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- e(t) is a vector representing the difference between the model predicted output and
the battery cell measured output

- VN(G, H) is the cost function
- N is the data size

e(t) can be defined as

e(t) = H−1(q)[y(t)− G(q)·u(t)] (9)

where y(t) is the BJ model output, u(t) is the model input, G and H expressions can be
written for the BJ model in the form

G(q) =
B(q)
F(q)

(10)

H(q) =
C(q)
D(q)

(11)

In step 5, it is necessary to use the search method for iterative minimization such as
Gauss-Newton (gn), Trust-region reflective Newton, or Gradient Search Interior-Point to
estimate the Box–Jenkins model to minimize the cost function.

In our case, the search method used for iterative minimization is Gauss–Newton. The
parameter that gives the stop command to the chosen algorithm is tolerance: when the
expected improvement of the parameter values is less than a given threshold, the iterative
search stops.

To determine the model quality, it is necessary to compare the model response during
the validation phase with the measured response of the battery cell. These two types of
data can be compared qualitatively, quantitatively, or with statistical methods.

Qualitative methods are based on a visual comparison between measured data and
model data quantitative methods require performance measures such as goodness of fit
and mean squared error (MSE) to determine the complexity and accuracy of the model.
Often, when comparing several models using this model quality metrics, it is clear that the
accuracy of the model increases with the goodness of fit and decreased MSE [30].

5. Results and Discussion

In this section, we present the results of the estimation phase of the BJ model for
different configurations, followed by the results of the validation phase. Finally, we
perform a comparison to two other models.

5.1. BJ Black-Box Model Estimation

The problem with battery cell identification is the estimation of the coefficients of
the assumed model from the observation of input/output of the battery cell by using the
principle of minimizing a quadratic criterion. The technical analysis offered by MATLAB
software was used based on the choice of the BJ parametric model. Once the BJ model is
selected, its order is determined as described in Section 2. The order represents the number
of coefficients that allow better modeling of this signal in the case of a parametric model.
The order of the model cannot be determined accurately without a more detailed analysis.
The order choice is usually achieved by minimizing the quadratic error between the model
predicted output and the battery cell measured output.

BJ model is a linear polynomial model with flexible parameterization, as we can
choose several orders of models to obtain the best BJ model for the battery cell. In practice,
two criteria are used to determine the best model: the goodness of fit and the mean squared
error (MSE). In this paper, we propose the BJ model with 10 versions using different
polynomial variables order nb and nf while keeping the order nc and nd and the delay
nk constant as shown in Table 2. Based on the selection criteria of models mentioned
previously, the model BJ7 is selected as the best model since it presents the minimum MSE
and maximum goodness of fit.
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Table 2. Box–Jenkins polynomial model orders and properties.

Model
Polynomial Orders Input Delay Model Properties

nb nc nd nf nk MSE Fit (%)

BJ1 0 1 2 1 1 0.009718 62.23

BJ2 1 1 2 2 1 0.006826 68.35

BJ3 2 1 2 3 1 0.001406 85.64

BJ4 3 1 2 4 1 0.001923 83.2

BJ5 4 1 2 5 1 0.001364 85.85

BJ6 5 1 2 6 1 0.001193 86.77

BJ7 6 1 2 7 1 0.001176 86.86

BJ8 7 1 2 8 1 0.001267 86.36

BJ9 8 1 2 9 1 0.001207 86.69

BJ10 9 1 2 10 1 0.001351 85.92

Based on the identification results in Table 2, we find that from the Box–Jenkins model
of order 3 (BJ3), we can more easily follow battery cell behavior during the driving cycles
of an electric vehicle. However, the Box–Jenkins models of order 1 and 2 (BJ1 and BJ2)
do not follow and yield large errors (MSE) when compared with that given by other
models identified.

The structure of the selected model BJ7 using discrete-time polynomial with noise
integration model can be written in the form

V(t) =
B(z)
F(z)

·I(t − nk) +
C(z)

D(z)·(1 − z−1)
·e(t) (12)

where:

- I (t) the battery cell input, V (t) the battery cell output, and e (t) the noise
- The polynomials variable B, C, D, and F are expressed in the time-shift operator z−1

as follows:

B(z) = 0.02496 z−1 − 0.02795 z−2 − 0.007791 z−3 + 0.0001969 z−4 + 0.0107z−5 − 0.0001224 z−6 (13)

C(z) = 1 − 0.444 z−1 (14)

D(z) = 1 − 0.8878z−1 − 0.1096 z−2 (15)

F(z) = 1 − 1.253 z−1 − 0.1886 z−2 + 0.04867 z−3 + 0.4137 z−4 − 0.01071 z−5 + 0.06252 z−6 − 0.07261z−7 (16)

After obtaining the coefficients of polynomial variables B, C, D, and F for the selected
model, using the procedure described in Section 4 and experimental data described in
Section 3, the output voltage accuracy and robustness analysis for the battery cell model
described in Section 2 is performed based on statistical metrics, such as MSE and goodness
of fit.

Figure 6 shows the experimental battery cell voltage and the voltage provided by
the selected model, and Figure 7 shows the error between this model response and the
experimental data. From these two figures, we notice that these two responses are similar.
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Figure 6. Measured and simulated model output.
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Figure 7. Measured minus simulated model output.

5.2. BJ Black-Box Model Validation

The resulting model is then analyzed and its prediction and simulation performance
is tested. An important validation test is to assess the ability of the model to reproduce the
output of the battery cell designed for an input data set that was not used for the coefficient
estimation. The residue, in other words, the difference between the battery cell and the
model output, are analyzed to ensure that they no longer contain any more explicable
information, in particular by studying their non-correlation with input signals. To evaluate
and validate the Box–Jenkins polynomial model established previously, it is necessary to
compare the results between the experimental and the simulation voltage using different
data to those used in model estimation

Therefore, we used five different datasets that represent the different driving cycles
described in Section 3: LA-92, HWFET, NN, US06, and UDDS. Table 3 shows the results of
the performance for the model selected (BJ7) using the goodness-of-fit criteria.
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Table 3. Performance of the model (BJ7) in terms of goodness of fit for different driving cycles.

Drive Cycle Type Fit (%)

LA-92 90.83
HWFET 81.85

NN 90.55
US06 89.6

UDDS 90.35

All the different driving cycles tested, as shown in Table 3, present important results
in terms of precision based on goodness of fit, especially when evaluating this model with
the LA-92, NN, UDDS, and US06 driving cycle, Hereafter, we only present the results of
the LA-92 driving cycles since it shows better performance in terms of goodness of fit.

Figures 8 and 9 show the results of the validation phase for the LA-92 driving cycle.

 

2 

 

F7 

 
F8 

 

Figure 8. Measured and simulated model output.

 

2 
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F8 

 

Figure 9. Measured minus simulated model output.

Figures 6–9, and Tables 2 and 3 show that the model BJ7 successfully models the
dynamic behavior of the selected battery cell, as the goodness of fit was 86.85% in the
model estimation phase and 90.83% in the validation phase for the LA-92 driving cycle.
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5.3. Comparison between the BJ Model (BJ7) and Two Other Models

The performances of the BJ model (BJ7) are compared to two other models using the
mean squared error (MSE) criteria between the voltage simulated and measured for the
battery cell. This comparative study was established to verify the efficiency and precision
of the proposed model (BJ7) and the two following models:

- Equivalent electrical circuit model (EECM): a second-order model that consists of
an internal resistance R0 in series with an ideal voltage source Uoc and two RC
dipoles parallel circuit pairs to capture double-layer capacitance and charge transfer
resistance effects.

- Neural network model: a simple neural network model that was developed based on
neural network fitting.

For the identification of these models, we used the same measurement data that
represent a random mix of the five driving cycles, as described in Section 3.

From the results presented in Table 4 using the mean squared error (MSE) criteria as
a model performance, we note that the Box–Jenkins model (BJ7) offers the best accuracy
compared to the two other models.

Table 4. Different models performance based on MSE using MIX driving cycle.

Model Type MSE

Neural network model 0.00514245
Box–Jenkins model (BJ7) 0.001177

Equivalent electrical circuit model 0.0013

5.4. Discussion

In this paper, we aimed to develop a linear Box–Jenkins black-box model for a lithium-
ion battery cell to estimate its dynamic behavior with good accuracy. The main results
obtained from this work are the following:

- In most cases, the selected battery cell model BJ7 provides the minimum error between
measured and simulated output, which is based on the low MSE value and the high
goodness of fit value compared to other models presented previously in Table 4. For
the LA-92 driving cycle, the goodness of fit was 86.85% with the estimation data and
90.83% for the validation data, which shows that BJ7 model successfully represents
the dynamic behavior of the battery cell for an electric vehicle driving cycle.

- Furthermore, if a simple and basic battery cell model has to be used, the best option is
the BJ3 model for its simplicity and linearity.

6. Conclusions

In this article, we proposed a linear model for the li-ion battery cell. This type of battery
attracts attention for its performance in terms of specific power. Given the specificities of the
battery management systems in an electric vehicle, we are interested in studying the battery
cell dynamic behavior in its actual use. A suitable Box–Jenkins polynomial model for this
type of application is proposed using experimental data that represent the real and dynamic
behavior of the li-ion battery based on the driving cycle measurements of an electric vehicle.
The proposed model was validated in the time domain with different experimental data to
that used in the estimation phase. The effectiveness of the proposed model in comparison
with other models was established. For the accuracy of the polynomial Box–Jenkins model,
the goodness of fit was 86.85% for the model estimation data and 90.83% for the validation
data for LA-92. In conclusion, for an integrated battery management system in an electric
vehicle, the best choice is the BJ3 model since it requires minimal computing power and is
a good fit compared to the other models. However, if we want a better structure than the
BJ3 model, the best option is the BJ7 model.
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Abbreviations and Notations
The following abbreviations and notations are used in this manuscript:
ARMAX Autoregressive moving average with exogenous inputs
ARX Autoregressive with Extra Input
BJ Box–Jenkins
BMS Battery Management System
EECM Equivalent electrical circuit model
Fit Goodness-of-fit
IT_MAX Maximum iteration
GN Gauss-Newton
HWFET Highway Fuel Economy Test
MSE Mean squared error
NARX Nonlinear Auto-Regressive with eXogene input
NN Neural Network
OE Output-Error
UDDS Urban Dynamometer Driving Schedule
US06 or (SFTP) Supplemental Federal Test Procedure
A, B, C, D, and F polynomials variables
Vmes measured battery cell terminal voltage
Vmod model battery cell voltage
t time
VN cost function
N data size
Nu input number
Ny output number
nb B polynomial order plus 1
nc C polynomial order plus 1
nd D polynomial order plus 1
nf F polynomial order plus 1
nk input delay
λ variance of the white noise e(t)
u(t) input
e(t) noise
y(t) output
ui ith input
nki ith input delay
LiNiCoAlO2 or NCA lithium nickel cobalt aluminum oxide
MIX random mix of the five driving cycles (LA-92, HWFET, NN, US06,

HWFET, and UDDS)
V voltage unity
A current unity
S time unity
degC temperature unity
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