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Abstract: The increasing penetration rate of electric vehicles, associated with a growing charging
demand, could induce a negative impact on the electric grid, such as higher peak power demand.
To support the electric grid, and to anticipate those peaks, a growing interest exists for forecasting
the day-ahead charging demand of electric vehicles. This paper proposes the enhancement of a
state-of-the-art deep neural network to forecast the day-ahead charging demand of electric vehicles
with a time resolution of 15 min. In particular, new features have been added on the neural network
in order to improve the forecasting. The forecaster is applied on an important use case of a local
charging site of a hospital. The results show that the mean-absolute error (MAE) and root-mean-
square error (RMSE) are respectively reduced by 28.8% and 19.22% thanks to the use of calendar and
weather features. The main achievement of this research is the possibility to forecast a high stochastic
aggregated EV charging demand on a day-ahead horizon with a MAE lower than 1 kW.

Keywords: aggregated charging demand; day-ahead forecast; electric vehicle; feature importance;
recurrent neural network

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) has further confirmed that
climate is warming up due to human activities which are the principal source of carbon
dioxide emissions in the atmosphere [1]. To reduce such emissions, new technologies are
being massively implemented such as wind energy, solar energy, and electric vehicles
(EV). Electric vehicles are presented as a sustainable alternative to conventional internal
combustion engine (ICE) vehicles. In a Sustainable Development Scenario (SDS) 2020–2030,
the EV share is expected to grow exponentially up to 13.4% in 2030 [2]. While EVs have
many advantages compared to ICE vehicles, such an increase in number of electric vehicles
will have negative consequences on the electric grid by inducing higher peak powers,
frequency and voltage deviations and an overall increase in energy demand [3].

In order to mitigate these problems, electric vehicles can be charged intelligently by
spreading or shifting the charging demand over time, according to user and electricity
system needs. This coordination of EV charging provides a complex optimization problem
that could benefit from EV charging demand forecast. This research focuses on developing
accurate EV charging demand forecasters, which can be used by energy management
systems for coordinated EV charging.

This paper is organized as follows. Section 2 gives an introduction to the methods
and benefits of coordinated smart charging, provides an overview of the relevant literature
on the EV charging demand forecasting of small and large EV fleets, and highlights the
contribution of this research with respect to the literature gaps. Section 3 provides a
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complete overview of the neural networks configurations including data pre-processing,
neural network detailed characteristics, and forecast post-processing. Then, Section 4
shows the specificity of the use case under study and the simulations results, including
the loss function evaluation, forecast examples, and a feature importance analysis. Finally,
Section 5 concludes the results of this research.

2. Literature Review

For the management of coordinated smart charging, literature has proposed many
different methods, of which a couple of them are discussed here. Authors in [4] propose a
two-stage optimization scheduler which can both satisfy the EV charging demand needs
and take advantage of low-load periods. A similar objective is studied in [5] but including
bi-directional charging. The results show the possibility to reduce the emissions and the
investments in peak load plants. In [6], a bi-directional scheduling algorithm is developed
as distributed frequency regulation source and shows the great opportunity for Vehicle-
to-Grid (V2G) to take part as frequency regulator. Using bi-directional charging, it is also
possible to facilitate the integration of renewable energy sources (RES), as shown in [7].
Finally, a review is available in [8] which summarizes different types of control algorithms
to schedule the charging of electric vehicles in a smart grid context.

These methods for coordinated smart charging could help local energy system (LES)
operators (e.g., microgrid operators or EV aggregators) and grid operators (transmission
system operators (TSO) and distributions system operators (DSO)), to better manage the
electricity grid, by anticipating the charging demand of EVs. For grid operators, short-term
forecast of the charging demand of large EV fleets could help better dispatch generation
units, enhance the safety of electric grid, reduce congestion problems, help regulating the
grid stability, etc. [9,10]. For LES operators, the energy management systems (EMS) could
include short-term forecast of the EV charging demand in order to enhance the operational
optimization of its assets by using predictive control optimization techniques (for instance
model predictive control algorithms) [11].

Several scientific studies offer an analysis of the forecast of the aggregated charging
demand of large EV fleets on a short-term horizon. Authors in [12] propose a Seasonal
AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) and
compare it to a persistence benchmark. The results show improved performances by
more than 26%. In [13], through a hierarchical approach where the forecasting problem is
decomposed to sub-problems, the authors managed to improve their forecasting accuracy
by 9.5%. Authors in [14], study different forecast algorithms from traditional statistical
algorithms to artificial intelligence algorithms. The study shows that the neural network
algorithm performed best, mainly on peak demand prediction. Finally, reference [10]
proposes an AutoRegressive Integrated Moving Average (ARIMA) forecaster improved by
tuning its parameters in order to minimize the mean-square error (MSE). In addition, it
uses the EV charging demand forecast in a scheduling problem and it shows better unit
commitment, as well as a reduction in operating cost.

Nonetheless, few papers forecast smaller EV fleets of typical charging sites such
as office buildings, hotels, or shops with higher EV drivers stochastic behavior. Three
papers [15–17], from the same authors, forecast the EV charging demand of a campus
with 15 to 28 outlets with different algorithms, such as Modified Pattern-based Sequence
Forecasting (MPSF), ARIMA, Support Vector Regression (SVR), Random Forest (RF), etc.
Their specificity lies in a trade-off between computational time and forecast accuracy, which
is important for their use case. The results show that the best algorithm to use in forecasting
is the MPSF.

A well-known type of neural network called recurrent neural network (RNN) is more
and more used in literature for forecast applications. For instance, such type of neural
network can be used for wind power forecast [18], multinational trade forecast [19], peak
wave energy period forecast [20], natural gas demand forecast [21], residential electricity
load forecast [22], and electricity prices forecast [23].
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Among such examples, two recent studies, References [24,25], from the same authors,
have implemented this algorithm to forecast the EV charging demand. The simulation
results show the superior performance of Long Short-Term Memory (LSTM) network,
which is a kind of RNN, compared to conventional timeseries forecasters. However, the
two previous papers study either the use case of large EV fleets or forecast on a super-
short-term horizon (minute level). In [26], authors propose to forecast the aggregated
EV charging demand for the next hour (using previous 24 h demand) by developing an
Ensemble Learning approach combining an artificial neural network (ANN), an RNN, and
an LSTM. The results show better performances than the individual neural networks.

Research Gap and Contribution

This literature review shows the lack of research on forecasting the EV charging
demand. This is especially true on small EV fleets which tend to be more difficult to
forecast, due to a higher stochastic behavior, short-term horizon, and high time resolution.
Consequently, this paper builds on previous works by forecasting a small EV fleet on a
day-ahead horizon and on a 15 min timestep resolution. The small EV fleet dataset is based
on real data of a hospital semi-public charging site. To achieve better forecast results of
such a difficult use case, multiple new contributions are included such as additional input
features for the neural network, a variable learning rate function, and a post-processing
of the forecast. These new contributions are compared with a state-of-the-art forecaster.
Finally, an analysis is performed on the importance of individual features used to train the
neural networks.

3. Materials and Methods

A scheme of the framework is shown in Figure 1 where each subsection’s name and
number are given.

Data pre-processing
• Data transformation

• Data partitioning 

• Data normalization

Neural networks - LSTM

Model performance 
evaluation

S.2.1.1

S.2.1.2

S.2.1.2
S.2.2.2

S.2.3

S.2.4

Features Final 
configs.

Forecast post-
processing

S.2.2.3

Technical background
S.2.2.1

Figure 1. Framework of the models.

Firstly, a data pre-processing step, explained in Section 3.1, is needed in order to
transform, divide, and normalize the data. Then, Section 3.2 focuses on the neural networks
used to forecast. It includes a technical background, an in-depth analysis on the input
features, and a summary on the different neural networks’ configurations. Finally, a post-
processing of the forecast in Section 3.3 and a model performance evaluation in Section 3.4
are provided.

3.1. Data Pre-Processing
3.1.1. Data Transformation

The raw data contain individual EV charging sessions data which consist of: (a) the
EV users’ radio frequency identification (RFID), (b) the arrival and departure times, and
(c) the energy consumed (in kWh). Such raw individual EV charging session data have
to be transformed into an EV charging demand profile (in kW) in order to comply with
the objective of this paper which is to forecast the aggregated EV charging demand on a
15 min timestep. In other words, each individual EV charging session from the raw data
needs to be transformed into an individual EV charging profile, and each individual EV
charging profile is stacked up to obtain a final aggregated EV charging demand timeseries.

To transform the raw individual EV charging session data into an individual EV
charging profile, a common method is to consider the actual charging power (uncoordi-
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nated charging) used to express it as a power over time, hence a timeseries. However,
on an EMS perspective, uncoordinated charging power forecast is only useful when the
chargers are non-controllable. In the case of smart or bi-directional chargers, a different
forecast is needed that includes somehow the energy needs and the user flexibility. In
addition, the charging power value of the charging sessions is not available, hence it is not
possible to build an uncoordinated EV charging power profile. These are the reasons why
a different method is used to obtain an individual EV charging profile. The latter consists
of computing an average power, Pavg, using (1) similarly to [17].

Pavg =
Energy consumed [kWh]

Parking time [h]
(1)

For example, a charging session of 10 kWh over a parking time of 10 h gives an average
power of 1 kW over the whole charging session. The advantage of this method lies in the
fact that it indirectly includes the charging flexibility of the EV users. For instance, with
the same previous example but with a lower flexibility of 1 h parking time, the average
power will be equal to 10 kW instead of 1 kW. Finally, Figure 2 summarizes graphically the
method used in this paper to obtain an aggregated EV charging demand.

Raw data
→

Sess. 1: RFID1, START1, STOP1, ENERGY1

Sess. 2: RFID2, START2, STOP2, ENERGY2

Sess …: RFID…, START…, STOP…, ENERGY…

…

AGGREGATION

�me

�me

power

power

Aggregated 
power

�me

start1 stop1

start2 stop2

Figure 2. From raw data to aggregated EV charging power profile.

3.1.2. Data Partitioning and Normalization

A first and important step is to divide the timeseries into three subsets, mainly a
training, a validation, and a testing subset, following the standard practice of a 0.7/0.2/0.1
partitioning. After that, the training subset (including all features explained in Section 3.2.2)
is normalized before entering the neural network. Two different normalization techniques
have been tested, called z-score and min-max normalization. The min-max normalization,
after a preliminary test, showed clearly better performances, similarly to what has been
observed in literature, and was thus the one selected for this paper. The formula of the
min-max normalization is given by (2).

xN =
xt − xmin

xmax − xmin
(2)

where xt is the non-normalized data point, xmin the minimum value, and xmax the maxi-
mum value of all data points.

3.2. Neural Networks
3.2.1. Technical Background

An artificial neural network (ANN) is a network made of multiple layers containing
neurons interconnected between them. The interconnections are made of weights which
have to be defined. There are many different classes of ANN which are used in many
different applications. A particular class of ANN is of interest for forecast applications
which is called Recurrent Neural Network (RNN). The specificity lies in the sequential
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temporal dimension where previously learned information is used to define the next
weights. By remembering the past, they make better decisions for the future, which is what
is needed to forecast timeseries. The difference between a classical ANN and a RNN is
represented in blue in Figure 3. The blue arrows show that at an instant t, the RNN receives
information at time t but also information previously learned at time t− 1. Mathematically,
such new links are given by (3) and (4) [26].

ht = f (Uht−1 + Wxt + b) (3)

yt = g(Vht + c) (4)

where ht and ht−1 are the hidden layers state at time t and t− 1, U, V, and W are the weight
matrices, b and c are the biases, and f and g are the activation functions.

ANN

tanh

x(t)

y(t)

RNN

tanh

x(t)

y(t)

+

tanh

+

tanh

y(t-1)

+

x(t-1)

y(t+1)

x(t+1)

h(t-1) h(t) h(t+1)

LSTM

tanh

x(t)

y(t)

+

h(t-1) h(t)
sigm sigm

sigm

x

+x
c(t-1)

x

tanh

c(t)

f i m

o

Figure 3. Different simplified representations of neurons of an ANN, an RNN, and an LSTM.

There exist different RNN architectures, and among them, the most important one is
the long short-term memory (LSTM) network [27]. This is the type of neural network used
to forecast the EV charging demand in this paper. They solve one of the biggest problems
of RNN which is that such neural networks do not learn from long term information.
They have what is called a vanishing gradient problem [28]. Such problem is solved in
LSTM networks by adding specific gating mechanisms in the recurrent feedback loop.
The gating mechanism controls what information should be kept or discarded while the
neural network learns. The difference between a classical RNN and an LSTM network
is represented in orange in Figure 3. More precisely, three new gates and one new unit
are added in the LSTM neurons; an input gate i, a forget gate f , an output gate o, and
an internal memory unit m. Their specific representations are given mathematically by
(5)–(10) and graphically in Figure 3 at time t.

it = σ(Wi(xt + ht−1) + b) (5)

ft = σ(W f (xt + ht−1) + b) (6)

ot = σ(Wo(xt + ht−1) + b) (7)

mt = tanh(Wm(xt + ht−1) + b) (8)

ct = ft × ct−1 + it ×mt (9)

ht = ot × tanh(ct) (10)

where Wi, f ,o,m are the weight matrices associated to the corresponding gates and unit. For
additional information on ANN, RNN, and LSTM networks, readers are referred to [27].
Multiple LSTM configurations are tested in this paper and compared with the configuration
from [25], denoted LSTM-B. All configurations contain an input layer, two hidden layers,
and an output layer. It has been decided to use two hidden layers because they give the
ability to obtain a deep learning configuration and thus, extract higher level information
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from the timeseries [24]. The neural networks are implemented in Python using Tensorflow
platform and Keras library [29].

3.2.2. Features

Three different neural networks are tested in this paper denoted as LSTM-B, LSTM-C,
and LSTM-W. The first neural network, called LSTM-B, is used as reference, where ‘B’
refers to ‘Base’. The second neural network, called LSTM-C, includes additional calendar
features, where ‘C’ refers to ‘Calendar’. The last neural network, called LSTM-W, includes
additional weather features, where ‘W’ refers to ‘Weather’. The calendar features are
included because the end-user behavior depends on the type of day considered (working
day or weekend, holiday or not, and the day of the week) and the time of the day. The
weather features tested in this paper are the daily outside temperature and daily rainfall,
because the individual EV energy demand is expected to change in function of the outside
temperature and rainfall as shown in [30–32]. The list of features, partially based on [24,33],
is given in Table 1.

Table 1. Input layer features.

Class Feature LSTM-B LSTM-C LSTM-W

Load EV charging demand [kW] X X X
Average weekly EV demand [kW] X X

Calendar

Quarter-hour number [/] X X
Day number [/] X X

Binary working day [0 or 1] X X
Binary Holiday [0 or 1] X X

Weather Daily temperature [◦C] X
Daily rainfall [mm/h] X

Two of the calendar features, quarter-hours (denoted ∆T) and day number (denoted
D), have a periodicity that the neural network does not directly understand. For instance,
after 23h45 (timestep = 95) follows 00h00 (timestep = 0) and after Sunday (day = 6) follows
Monday (day = 0). To overcome this issue, the initial features are transformed into cyclical
values (sinus and cosines) using (11) for quarter-hours and (12) for day numbers [34].

∆Tsin/cos =

{
sin(∆T × 2π × 1

96 )
cos(∆T × 2π × 1

96 )
(11)

Dsin/cos =

{
sin(D× 2π × 1

7 )

cos(D× 2π × 1
7 )

(12)

3.2.3. Final Configuration

The three different LSTM configurations are summarized in Table 2. Additional
explanations on how the parameters of the table have been defined are detailed in the
next paragraphs.

The batch size is a trade-off between training speed and accuracy. The smaller the
batch size, the faster the convergence will be. However, larger batches can reach lower
minima than smaller batches [35]. In addition, the batch size can also be chosen in function
of the nature of the data. Since the optimization speed is not an issue in this research, it has
been decided to set the batch size equal to two days data (96 timesteps times 2).
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Table 2. Neural network characteristics.

Parameters LSTM-B LSTM-C LSTM-W

Epochs 30 50 50
Batch size 512 192 192
Optimizer RMSprop Adam Adam

Loss function MAE MSE MSE
Learning rate 0.001 0.001 * 0.001 *

Hidden neurons 16 25 ** 30 **
Activation function Tanh Tanh ** Tanh **

Dropout 0.3 0 ** 0.3 **
(*) learning rate is variable as given by (13) and (**) hyperparameters.

Configurations LSTM-C and LSTM-W use the Adam optimizer, similarly to [24], be-
cause it combines the advantages of the RMSprop optimizer and the AdaGrad optimizer [36].
The optimizer is evaluated using a mean-square error (MSE) loss function since the forecast
results performed better than when using the mean-absolute error (MAE) loss function.

It has been decided to add a variable learning rate (*) in function of the number of
epochs. The goal is to avoid either having a too slow convergence (small learning rate) or
to avoid training divergence (too big learning rate) [37]. The variable learning rate is given
by (13). Thanks to this, performances are slightly enhanced.

learing rate =

{
0.001 when epochs < 20

0.0005 when epochs ≥ 20
(13)

In a neural network, some parameters cannot be learned by the network itself and
have to be defined manually before the actual training. These parameters, called hyperpa-
rameters, need to be adjusted manually by either trial-and-error or using a hyperparameter
optimizer. The optimizer used in this paper is a Bayesian optimization that uses Gaussian
processes, implemented in Python using Scikit-optimize library. The parameters indicated
with a double asterisk (**) in Table 2 have been hyperparameterized.

3.3. Forecast Post-Processing

To enhance the forecast of the neural networks, additional post-processing is per-
formed based on observations done on the data used in this paper. The first rule applied to
the forecast consists of replacing any negative power forecast to zero, since it is impossible
to have negative aggregated EV charging demand. The second rule applied to the forecast
consists of replacing the night aggregated EV charging demand to zero as well. This can
be justified thanks to the data analysis performed in Section 4.1 where it is shown that
between midnight and 5 am, the mean aggregated EV charging demand is zero. Both rules
have been applied directly on the forecast and have a positive small impact.

3.4. Model Performance Evaluation

Two different well-known evaluation metrics are computed to assess the accuracy of
the forecast. The first metric, called root-mean-squared error (RMSE), is given by (14):

RMSE =

√√√√ 1
N

N

∑
t=1

(P̂t − Pt)2 (14)

where N is the number of timesteps (e.g., N = 96 timesteps for day-ahead forecast), P̂t is
the power forecast at timestep t, and Pt is the real power at timestep t. The second metric,
called mean-absolute error (MAE), is given by (15).

MAE =
1
N

N

∑
t=1
| P̂t − Pt | (15)
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4. Results and Discussions
4.1. Use Case and Data Analysis

The charging sessions have been recorded in a hospital semi-public charging site which
consists of six chargers containing two Type 2 connectors of 22 kW each. The charging
sessions have been recorded from mid-June 2018 until end-July 2019. Most of the charging
sessions (95.2%) are from commuters, charging frequently at the chargers. Nevertheless,
the EV charging sessions follow a constant pattern with a high stochastic behavior, as
shown in Figure 4, where quarter-hours of the year are summarized in mean values, first
and third quartile values, and the maximum values. The power profile is characterized
by a typical working behavior where commuters arrive in the morning and leave in the
afternoon. The maximum values indicate the high variability in average charging power
where maximum values can go up to 30 kW (including charging flexibility) which is six
times higher than the mean value.

0 5 10 15 20

Time of the day [h]

0

5

10

15

20

25

30

Po
w

er
[k

W
]

Yearly EV charging demand statistical analysis

Mean
Maximum
Interquartiles

Figure 4. Yearly EV charging demand summarized to one day time where the mean, quartiles, and
maximum values are shown.

Additionally, the weekly average EV charging demand is shown in Figure 5. The
figure illustrates that there are weeks with higher average EV charging demand and weeks
with lower average EV charging demand. For instance, weeks 28 and 29 represent the
period between Christmas and new year vacations. Consequently, the weekly variability
is included in the input dataset, so that the neural networks are informed of higher or
lower EV charging demand. In addition, Figure 5 shows the subdivision of the dataset into
training, validation, and test subsets.

0 10 20 30 40 50 60

Week number [/]

0.0

0.5

1.0

1.5

2.0

2.5

A
ve

ra
ge

po
w

er
[k

W
]

Weekly average EV charging demand

Training subset
Validation subset
Test subset

Figure 5. Weekly EV charging demand. Different colors are given for the training, validation, and
test dataset.
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4.2. Simulation Results
4.2.1. Neural Network Convergence Analysis

For each neural network, two important curves are presented in Figure 6. These curves
indicate if the training of the neural networks correctly convergences to a minimum MSE.

0 10 20 30 40 50

Epochs

0.000

0.005

0.010

0.015

0.020

0.025
M

S
E

(a) Training losses

LSTM-B
LSTM-C
LSTM-W

0 10 20 30 40 50

Epochs

0.000

0.005

0.010

0.015

0.020

0.025

M
S

E

(b) Validation losses

Figure 6. Training and validation losses expressed in mean-square error (MSE).

Firstly, an important difference between the minimum MSE of LSTM-B and of the
two new neural networks can be observed. This result shows that LSTM-C and LSTM-
W perform better by converging to a lower MSE than LSTM-B. Secondly, the difference
between LSTM-C and LSTM-W is almost negligible. Nevertheless, these curves show that
the three neural networks correctly converge for both training and validation losses and
that there are neither over-fitting nor oscillation issues.

4.2.2. Two-Weeks Period Forecast Example

A two-weeks period time taken from the test subset which consists of 14 day-ahead
forecast examples, generated each time at midnight, is presented in Figure 7. The figure
shows the real EV charging demand and the three different neural networks’ forecasts. To
have a better quantification, the RMSE and the MAE are computed and shown in Figure 8
for each day of the two-weeks period time.

2019−07−07 2019−07−09 2019−07−11 2019−07−13 2019−07−15 2019−07−17 2019−07−19 2019−07−21
Date

0

2

4

6

8

10

Po
w

er
[k

W
]

Multiple day-ahead forecast examples

True demand
LSTM-B
LSTM-C
LSTM-W

Figure 7. 14 day-ahead forecast examples using three different neural networks.
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Figure 8. Daily RMSE and MAE of the two week forecast example.

The first and main observation is the excellent performances of LSTM-C and LSTM-W
compared to LSTM-B thanks to additional calendar features. For instance, this can be
observed on the 13th of July (Saturday) where LSTM-B forecasts a working day, whereas
the two new neural networks successfully forecast the Saturday. Another example can be
observed on the 15th of July. For these two specific days, LSTM-W performed best with a
reduction in RMSE by up to 92.7% and with a reduction in MAE by up to 92.5%.

A second observation is the difficulty of having a satisfactory forecast during weekend
days. Since EV users that charge during the weekend appear to have a random behavior
(mainly non-commuters), the neural networks have difficulties to accurately forecast. For
instance, on the 7th of July and on the 14th of July, one charging session occurred that was
not predicted by any of the neural networks. Still the RMSE and MAE of LSTM-C and
LSTM-W are low for weekends, as indicated in Figure 8 with hatched lines.

Regarding working days, both LSTM-B and LSTM-C understand the difference be-
tween different working days. For instance, on the 12th of July, Figure 7 shows that
the LSTM-C is able to predict the peak demand. However, in general, a drawback of
the method to construct the EV charging demand (in Section 3.1) is reflected by discrete
steps in the real aggregated EV charging demand that the neural networks are not able to
accurately predict.

4.2.3. Test Subset Performances

The average MAE and RMSE for the full test subset and for each neural network,
including the relative reduction in error compared to LSTM-B, are shown in Table 3.

Table 3. MAE and RMSE results for each individual neural network.

Metrics LSTM-B LSTM-C LSTM-W

MAE 1.25 kW 0.96 kW (−23.2%) 0.89 kW (−28.8%)
RMSE 2.29 kW 1.85 kW (−19.22%) 1.92 kW (−16.16%)

On a MAE perspective, LSTM-W performed the best, followed by LSTM-C and then
LSTM-B. On a RMSE perspective, LSTM-C outperformed LSTM-W, followed by LSTM-B.
This means that LSTM-C performs better in extreme cases (peak power), which can also be
observed in Figure 7. In conclusion, adding calendar features increases the performance
of the forecaster in extreme cases (peaks), whereas adding weather features increases the
performances on MAE perspective.
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4.2.4. Feature Importance

The layers of the neural networks presented in this paper are interconnected by
weights which need to be defined during the training of the neural networks. In particular,
weights connected to the input layer can be analyzed in order to have an understanding on
how the neural networks interact with the features. To do so, the algorithm of [38] has been
applied on LSTM-C and LSTM-W to analyze the importance of the features. They calculate
the importance of the features based on a simple underlying principle of allocating a higher
importance to bigger weights and weights which are more susceptible to variations during
training. Their algorithm is called Variance-based feature Importance in Artificial Neural
Networks (VIANN) and is available in [39]. The results of such algorithm applied to both
neural networks are shown in Figure 9.
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Figure 9. Features importance assessment.

The aggregated EV charging demand of the past 24 h feature has an important weight
for both neural networks. This was expected since it is a inherent feature required by
recurrent neural networks. For LSTM-C, the neural network allocates an important weight
to the binary holiday feature. Regarding LSTM-W, the two additional weather features
have also an important weight in the neural networks. The other LSTM-C and LSTM-W
features have, to a greater or lesser extent, the same weight for the neural networks.

It is important to note that this feature-importance analysis does not necessarily rank
the features based on their overall impact on the forecast results (RMSE and MAE of the test
subset) because it does not take into account how often a feature manifests. For instance,
the holiday feature is indicated to have a big importance yet has little effect on the overall
MAE and RMSE because it does not influence the forecasting accuracy of any other regular
day. This is confirmed using the intuitive Leave-One-Feature-Out (LOFO) analysis [40].
When a holiday manifests itself in the test subset, the results show that MAE and RMSE
are respectively 5.78 and 6.11 times higher that day (15th of August—National holiday in
Belgium) when removing the binary holiday feature.

This analysis provides an insight into the neural network dynamics and triggers
further research into understanding the underlying behavior of features with respect to
the forecast variable. The results highlight the fact that the binary holiday and weather
features demonstrate differences in pattern when those features manifest and should thus
be included to avoid large errors on those moments, even if there overall MAE and RMSE
improvements are marginal.

4.3. Forecast Timing and Real-Time Capabilities

A requirement for the forecasters in this paper is to be able to use them in real
applications. This means that the forecasters should work in a sufficiently fast way, in
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order, for instance, to use them (near) real-time. Accordingly, an analysis is performed on
the time for training, validation, and testing of the neural networks. Such activities are
done on an Intel® Xeon® E-2176M processor with 64 Gb of installed RAM. Table 4 shows
the time to train together with the validation of the neural networks and the time to test
50 day-ahead forecasts with the average time to test one day-ahead forecast.

Table 4. Timing of training, validation, and testing of the neural networks.

Neural Networks Training and Testing Average Time for a
Validation [min] 50 Days [s] Day-Ahead Forecast [s]

LSTM-B 3.88 3.17 0.063
LSTM-C 11.47 3.42 0.068
LSTM-W 15.04 3.28 0.065

The results show a very small forecasting time of less than 0.1 s, which results in
the possibility to use it in real-time applications. However, real-time application is only
possible if the neural networks are trained beforehand using historical data. It can also be
observed that the training and validation times of LSTM-C and LSTM-W are much higher
than LSTM-B, mainly due to more data (more features) that have to pass through the neural
network when trained.

5. Conclusions

The objective of this paper was to forecast the electric vehicle (EV) charging demand
on a day-ahead horizon and on a 15 min time resolution. Two new forecast algorithms
are presented and compared with a state-of-art algorithm extracted from the literature.
The three algorithms are based on long-short-term memory (LSTM) neural networks. The
algorithms differ mainly on the input data where the two newly presented algorithms
include additional features such as calendar and weather features, in order to help the
neural networks to capture the variabilities in daily EV charging demand. The neural
networks are tested on a difficult use case of a hospital charging site. The results show
great performance, despite the high variability and the high stochastic behavior of the EV
charging demand pattern with a MAE lower than 1 kW. The root-mean-square error is
reduced by 16.16% to 19.22% and the mean-absolute error (MAE) is reduced by 23.2% to
28.8% compared to the algorithm from literature (LSTM-B).

A feature importance analysis was conducted to understand the neural network
dynamics and highlighted the relative importance of the holidays and weather features for
the LSTM-C and LSTM-W forecasts, respectively. Future research could be performed in
order to test the algorithms on different use cases and evaluate whether the underlying
behavioral patterns manifest across the use cases. This will lead to the correct choice of
appropriate forecaster for the chosen application according to their performance.

The day-ahead forecasters in this paper demonstrate an advancement to the state-of-the
art with regards to accuracy. They are real-time capable with respect to the focus application
of energy management. The forecasters allow for the enhancement of the optimization of the
scheduling of electric vehicle charging by including the future charging demand.
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The following abbreviations are used in this manuscript:

EMS Energy management system
EV Electric vehicle
MAE Mean-absolute error
MSE Mean-square error
LSTM Long short-term memory
LSTM-B Long short-term memory-Base
LSTM-C Long short-term memory-Calendar
LSTM-W Long short-term memory-Weather
Relu Rectified linear unit
RMSE Root-mean-square error
RNN Recurrent neural network
Tanh Hyperbolic tangent
VIANN Variance-based feature Importance in Artificial Neural Networks
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