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Abstract: The identification of knee points in lithium-ion (Li-ion) batteries is crucial for predicting
the battery life, designing battery products, and managing battery health. Knee points (KPs) refer to
the transition points in the aging speed and aging trajectory of Li-ion batteries. KPs can be identified
using a wealth of aging data and various regression-based methods. However, KP identification
relies on a large amount of aging data, which is exceedingly time-consuming and resource-intensive.
To overcome this issue, we propose a novel method based on KP characteristics to identify the KPs
and critical aging speed. Firstly, we extract the main aging trajectory using curve-fitting techniques.
Secondly, we calculate the aging speed at each cycle to identify the KPs. We then explore the
relationship between the KPs and cycle life and develop a knee point identification algorithm. The
correlation coefficient between the KPs and cycle life provides a valuable indicator of the critical
aging speed, enabling accurate identification of KPs. To validate our approach, we apply it to the
Li(NiCoMn)O2, LiFePO4, and LiCoO2 cell datasets. Our results demonstrate a strong correlation
between the KPs and cycle life for these battery types. By employing our proposed method, KPs
can be identified for battery life prediction, product design, and health management. Moreover, we
summarize a critical degradation speed of −0.03%/cycle can serve as an empirical threshold for
warning against capacity diving and KPs. The statistical transition speed threshold can eliminate the
dependence on extensive aging data throughout the entire battery’s lifecycle for identifying capacity
knee points.

Keywords: lithium-ion battery; accelerated aging; knee point identification; critical aging speed
interval; battery cycle life; battery safety and health

1. Introduction

During the operation of lithium-ion batteries, a phenomenon known as a knee point
may occur. When the battery reaches this knee point, there is a rapid decline in capacity,
which accelerates the aging process and poses potential safety risks [1,2]. Accurately
identifying and predicting knee points is of great importance for ensuring the safe and
economical use of batteries [3]. Additionally, capacity diving is a crucial factor to consider
in the control strategy of electric vehicles [4]. In terms of predicting the battery lifespan,
taking knee points into account can enhance the accuracy of aging trajectory predictions
based on machine learning techniques [5].

The accelerated aging mechanism of lithium-ion batteries encompasses several factors,
including the loss of positive and negative electrode active materials, lithium-ion loss, and
increased internal resistance [6]. High discharge rates can accelerate battery aging, with the
capacity degradation speed of lithium-ion batteries increasing as the discharge rate rises.
Additionally, as the discharge rate increases, the aging mechanism of lithium-ion batteries
changes [7]. Weiping Diao et al. [8] discovered, using incremental capacity analysis and
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destructive analysis, that an increase in the positive electrode internal resistance can lead
to capacity diving in batteries. Xiaoguang Yang et al. [9] observed that the thickening of
the solid electrolyte interphase (SEI) film during lithium-ion aging not only resulted in a
decrease in the negative electrode porosity but also triggered lithium evolution. This lithium
evolution further contributed to a decrease in the negative electrode porosity, thereby
exacerbating the extent of lithium evolution. Throughout this process, the reduced porosity
of the negative electrode and separator led to a significant increase in the battery’s internal
resistance. Yang Gao et al. [10] identified that the mechanism behind battery capacity diving
primarily involves the loss of active materials and lithium plating, with high temperatures
and discharge rates significantly increasing the likelihood of accelerated aging.

Currently, machine learning and deep learning techniques are widely employed for
predicting knee points in battery capacity [11]. Saurabh Saxena et al. [12] proposed a
method based on convolutional neural networks to predict the knee point of lithium-ion
battery capacity. Weihan Li et al. [13] introduced a deep-learning-based approach for
battery health diagnosis, enabling the prediction of knee points in a single shot without
the need for iteration or feature extraction. Samuel Greenbank et al. [14] proposed a data-
driven method that utilizes automated feature selection to generate inputs for a Gaussian
process regression model, which predicts knee points. Paula Fermín Cueto et al. [15]
used the Bacon and Watts model and a battery capacity decay curve to identify capacity
diving points and predicted knee points using machine learning. They also discovered
a strong correlation between knee points and the cycle life of LiFePO4 (LFP) batteries.
Caiping Zhang et al. [16] proposed a method that combines quantile regression with Monte
Carlo simulation to achieve online recognition of knee points in accelerated aging batteries.
Weiping Diao et al. [17] utilized the slope change rate and the two tangent lines of the
capacity decay curve to identify battery knee points. While knee point prediction in capacity
diving aims to determine whether rapid capacity decay will occur at the current moment,
the capacity knee point represents a turning point in the speed of battery capacity decay [18].
In ref. [1], Bacon–Watts, Kneedle, bisector, and tangent ratio methods were used to identify
the battery knee points. The Bacon–Watts, Kneedle, bisector, and tangent ratio methods
mainly focus on the shape of the aging curve’s transition points, and they lack attention to
the capacity decay speed at the capacity knee point. However, the current identification
methods for capacity knee points heavily rely on a large amount of capacity aging data and
curve fitting, lacking a critical aging speed interval threshold suitable for detecting knee
points in lithium-ion batteries of different material systems. Consequently, the identification
of battery capacity knee points relies on a substantial amount of historical aging data and
faces challenges in online identification. Unlike the Bacon–Watts, Kneedle, bisector, and
tangent ratio methods in ref. [1], the knee point identification method proposed in this
paper targets the correlation between the capacity knee points and cycle life as the search
criterion for the critical aging rate in knee point identification. Therefore, the identified
capacity knee points correspond to the inflexion points in the accelerated aging battery’s
decay curve, and these capacity knee points hold significant importance for predicting
battery cycle life.

To address the challenge of identifying battery capacity knee points, this paper col-
lected accelerated aging data for Li(NiCoMn)O2 (NCM) batteries, LFP batteries, and LiCoO2
batteries. Subsequently, the correlation between the capacity knee point and the cycle life
of accelerated aging batteries was analyzed. Building upon the strong correlation observed
between the capacity knee point and the cycle life of accelerated aging batteries, a critical
aging speed range and a capacity knee point identification method for accelerated aging
batteries are proposed. Additionally, the critical aging speed range for the capacity diving
of NCM batteries, LFP batteries, and LiCoO2 batteries was analyzed, providing a valuable
foundation for safety warnings regarding the accelerated aging of batteries, even in the
absence of a large amount of historical aging data. The structure of this paper is organized
as follows: Section 2 presents the cycle life experiences and results of the battery. Section 3
introduces the critical aging speed range and the capacity knee point identification method.
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Section 4 presents the discussion and identification results of the capacity knee point and
the critical aging speed range. Finally, Section 5 summarizes the conclusions of this paper.

2. Cycle Life Test and Battery Aging Datasets

In the process of lithium-ion battery degradation, capacity diving occurs at uncertain
times, making it difficult to predict the emergence of knee points. This section aims to
address this issue by collecting cycle aging data from NCM, LFP, and LiCoO2 batteries,
and analyzing the degradation characteristics of accelerated aging batteries across different
material systems. The specifications of NCM, LFP, and LiCoO2 batteries are summarized in
Table 1. The NCM battery dataset includes 114 Ah and 36 Ah NCM batteries. The charging
and discharging cut-off voltage of the 114 Ah NCM batteries are 4.25 V and 2.8 V. The
charging and discharging cut-off voltage of the 36 Ah NCM batteries are 4.15 V and 2.5 V.

Table 1. Nominal specifications of the batteries.

Item NCM LFP LiCoO2

Cathode material Li[NixCoyMn1−x−y]O2 LiFePO4 LiCoO2
Anode material Graphite Graphite Graphite

Nominal capacity 114 Ah, 36 Ah 1.1 Ah 5 Ah

Charging cut-off voltage 4.25 V (114 Ah)
4.15 V (36 Ah) 3.6 V 4.48 V

Discharging cut-off voltage 2.8 V (114 Ah)
2.5 V (36 Ah) 2 V 3 V

From a pool of 36 aging NCM batteries in IEEE DataPort (DOI: 10.21227/gnst kz81),
19 accelerated aging NCM batteries were selected to analyze their knee points in this paper.
The NCM battery dataset can be found at ‘https://ieee-dataport.org/documents/early-
diagnosis-accelerated-aging-lithium-ion-batteries-integrated-framework-ageing’ (accessed
on 27 August 2022). The 36 NCM data were collected and published in [19] for analyzing
aging mechanisms and accelerated aging diagnosis. These batteries utilized graphite as
the negative electrode material and were subjected to cycling at various temperatures and
discharge rates. The specific cycling temperature and discharge current rate for each cell
can be found in Table 2. Figure 1 illustrates the cyclic capacity aging trajectory of the
19 accelerated aging NCM batteries. The capacity retention ratio is calculated by dividing
the discharge capacity of the nth cycle by the discharge capacity of the first cycle. The aging
trajectory of these 19 accelerated aging NCM batteries exhibits a significant nonlinearity. In
these 19 accelerated aging NCM batteries, batteries 11 and 12 are 114 Ah NCM batteries,
and other batteries are 36 Ah NCM batteries.

Table 2. Cycle temperature and discharge current rate of NCM batteries.

NCM Battery Number Temperature Discharge Current Rate

11, 12 25 ◦C 0.5 C
20, 21, 22, 23, 24 25 ◦C 1 C

25, 26 25 ◦C 1.5 C
27 25 ◦C 2 C
28 10 ◦C 1.5 C

29, 30 35 ◦C 1 C
31, 32, 33 35 ◦C 1.5 C
34, 35, 36 45 ◦C 1 C

https://ieee-dataport.org/documents/early-diagnosis-accelerated-aging-lithium-ion-batteries-integrated-framework-ageing
https://ieee-dataport.org/documents/early-diagnosis-accelerated-aging-lithium-ion-batteries-integrated-framework-ageing
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Figure 1. Aging characteristics of accelerated aging NCM batteries under different temperatures and
discharge current rates.

Next, we will introduce the LFP battery aging dataset [20]. This dataset consists of
aging data from 124 LFP batteries that were cycled until the end of their lifespan. These
batteries underwent cycling tests under fast charging conditions. The cyclic testing of the
124 LFP batteries was conducted using the Arbin lithium-ion battery testing equipment at
a temperature of 30 ◦C. The calibration capacity of the LFP batteries used in the testing was
1.1 Ah, and the calibration voltage was set at 3.3 V.

All LFP batteries in this study were subjected to either a first- or second-order fast
charging strategy. The format of this strategy is denoted as “C1 (Q1)-C2”, where C1 and
C2 represent the battery rate during the first and second constant current fast charging
stages, and Q1 represents the state of charge (SOC) during the current switching. Upon
reaching an 80% SOC, the battery undergoes a 1 C constant current–constant voltage (CC-
CV) charging step, following which all batteries are discharged at a rate of 4 C. The charging
and discharging cut-off voltage for these batteries are set at 3.6 V and 2.0 V, respectively. The
charging and discharging cut-off voltage are according to the manufacturer’s specifications.
Figure 2 illustrates the cyclic capacity decline trajectory of the 123 accelerated aging LFP
batteries (excluding one defective battery with a cycle life of less than 200). These 123 LFP
batteries are all accelerated aging batteries, and there will be capacity drops and knee points
in the process of the LFP batteries’ cycle aging. After the capacity knee point, the cycle
capacity of the LFP batteries decreases fast, and the aging rate increases rapidly.
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In contrast to the cycle life experiments conducted on the NCM and LFP batteries
under various cycle conditions, the cycle life tests performed on the LiCoO2 batteries
employed consistent cycle conditions. This approach aimed to investigate the impact
of the battery production process consistency on the degradation characteristics of the
batteries. The LiCoO2 battery cycle life dataset not only provides data on the cycle aging
of lithium-ion batteries with different material systems for this study but also explores
whether the battery production process can lead to accelerated aging.

The cycle life test of the LiCoO2 batteries involved 124 batteries. The cycling test was
conducted at a temperature of 25 ◦C, and the battery manufacturer provided the cycling
charging system. The charging system followed a multi-stage constant current and constant
voltage charging protocol. Initially, a constant current of 6 A (1.2 C) was applied until the
voltage reached 4.25 V, followed by a cut-off current of 1 C. Subsequently, the battery was
subjected to constant current and constant voltage charging at 1 C until reaching 4.45 V,
followed by a cut-off current of 0.8 C. Lastly, the battery underwent constant current and
constant voltage charging at 0.8 C until reaching 4.48 V, followed by a cut-off current of
0.104 C. The battery was allowed to rest for 5 min. For the cyclic discharge system, a
constant current discharge of 0.7 C was applied until reaching a cut-off voltage of 3.0 V. All
batteries underwent 700 cycles of charging and discharging.

Figure 3 depicts the cyclic capacity aging trajectories of 124 LiCoO2 batteries, all of
which underwent 700 cycles. Among them, 106 LiCoO2 batteries exhibited an approxi-
mately linear decay in their cyclic capacity aging curve, while 18 LiCoO2 batteries displayed
a nonlinear decay. The LiCoO2 batteries with an approximately linear decay maintained a
cycling capacity retention ratio of over 80% after 700 cycles, indicating that they did not
reach the end of their lifespan. These batteries exhibited a cycling life exceeding 700 cycles.
On the other hand, the LiCoO2 batteries with nonlinear decay exhibited a cycling capacity
retention ratio below 80% and a cycling life of less than 700 cycles. Consequently, this study
employed 700 cycles as the threshold to differentiate between normal aging and accelerated
aging LiCoO2 batteries, resulting in 106 normal aging LiCoO2 batteries and 18 accelerated
aging LiCoO2 batteries. The inconsistency in the battery production process is identified
as the cause of accelerated aging in LiCoO2 batteries, given that all 124 batteries share
the same material system and cycling conditions. Enhancing and refining the production
process of lithium-ion batteries can mitigate the risk of accelerated aging caused by the
battery production process and prolong the lifespan of these batteries.
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3. Identification Method for Critical Aging Speed Range and Knee Points
3.1. Knee Point Characteristics Analysis

As depicted in Figure 4a, the aging rate of 19 NCM accelerated aging batteries is
presented. It can be observed from Figure 4b that the aging rate of NCM accelerated aging
batteries experiences a rapid increase of approximately −0.025% per cycle. In our previous
study [19], we discovered a robust linear relationship between the capacity knee point and
cycle life when the aging rate of NCM accelerated aging batteries was around −0.025% per
cycle. Similarly, in ref. [15], a strong linear correlation between the capacity knee point
and cycle life of LFP batteries was identified using the Bacon–Watts method. Hence, for
accelerated aging batteries, there exists a significant association between the capacity knee
point and cycle life.
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3.2. Knee Point and Critical Aging Speed Interval Indentification Method Based on the Knee
Point Characteristics

Based on the analysis presented in the preceding section, it can be observed that
employing −0.025%/cycle as the pivotal aging speed, the critical aging rate of accelerated
aging batteries not only discriminates between normal and accelerated degradation phases
but also exhibits a robust correlation between the capacity knee point corresponding to
the critical aging speed and the cycle life. Additionally, a knee point with an aging speed
akin to −0.025%/cycle as the critical aging speed may also exhibit a substantial correlation
with the cycle life. Therefore, the extraction of capacity diving points necessitates the
determination of the critical aging speed range.

Drawing from the definition of critical aging speed and knee points, as well as the
key characteristic of a strong correlation between the capacity knee point and cycle life,
the optimal critical aging speed range and identification method of capacity knee point,
considering the aging characteristics of knee points is shown in Figure 5.

Figure 5. The flow chart of the proposed knee point identification method is based on the knee
point characteristic.
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The knee point and critical aging speed interval identification method based on the
knee point characteristics includes three steps:

Step 1: Initially, employ a polynomial model to fit the capacity aging trajectory curve
of the accelerated aging battery, extract the primary decay trend of the battery, and then cal-
culate the aging speed of each cycle for each battery according to Formula (1). Subsequently,
calculate the search range for the critical aging speed (vmin, vmax) using Formulas (2) and (3).

vn,k = Cdis,n−1,k − Cdis,n,k (1)

vmax = max (vn,k) (2)

vmin = min (vn,k) (3)

Among them, n is the number of cycles, k is the battery sample number, and Cdis,n,k
and Cdis,n−1,k are the capacity retention ratio of the kth battery on the n cycle and n−1 cycle,
respectively. vn,k is the aging speed of the kth battery during the nth cycle. vmax is the
maximum value of the aging speed of all batteries in the dataset, and vmin is the minimum
value of the aging speed of all batteries in the dataset.

Step II: Within the search range of critical aging speed (vmin, vmax), select a specific
critical aging speed. The first time, we select the minimum aging speed vmin as the critical
speed to obtain the knee points of the accelerated aging batteries. Solve to obtain the
number of cycles at which each battery’s aging speed equals the selected critical aging
speed; this is the capacity knee point of each accelerated aging battery. Subsequently,
calculate the correlation coefficient between the extracted capacity knee point and cycle
life of the M accelerated aging batteries using Formula (4). If the correlation coefficient
exceeds the correlation coefficient threshold (correlation coefficient threshold > 0.9), the
chosen critical aging speed will be designated as the optimal critical aging speed vbest.

r =
∑M

k=1
(
KPk − KP

)
·
(
CLk − CL

)√
∑M

k=1
(
KPk − KP

)2·
√

∑M
k=1
(
CLk − CL

)2
(4)

Among them, KP and M are the capacity knee point and the total number of samples
of the accelerated aging battery, CL is the cycle life of the accelerated aging battery, k is the
sample number, vKP is the aging speed at the capacity knee point, and r is the correlation
coefficient between the capacity knee point and the cycle life of the accelerated aging battery.
When the absolute value of the correlation coefficient approaches 1, this indicates a strong
correlation between the capacity knee point and the battery cycle life. This means that the
capacity knee point determines the duration of the battery’s cycle life and is a crucial basis
for predicting battery life.

Step III: Within the critical aging speed search range (vmin, vmax), repeat step II by
continuously adding a certain amount of additional decay rate (e.g., −0.005%/cycle) to
the critical aging speed selected previously to obtain a new critical aging speed. Extract
the capacity knee points based on the selected critical aging speeds, and then determine
the optimal critical aging speed based on whether the correlation coefficient between the
capacity knee points and cycle life exceeds the correlation coefficient threshold. After
traversing the entire critical aging speed search range (vmin, vmax), we can obtain a set of w
optimal critical aging speeds, denoted as {vbest,1, vbest,2, . . ., vbest,w }, where w represents the
total number of samples with the optimal critical aging speed. There is a strong correlation
between the capacity knee points corresponding to the optimal critical speed and the
cycle life.
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Then, calculate the minimum and maximum values of the optimal critical aging speeds
to determine the optimal critical aging speed range (vbest,min, vbest,max). Finally, identify the
capacity knee point at which the aging speed reaches the optimal critical aging speed.

vbest,max = max (vbest,w) (5)

vbest,min = min (vbest,w) (6)

4. Results and Discussion

The proposed method for identifying the critical aging speed and knee points was
validated on a dataset of NCM accelerated aging batteries. The optimal critical aging speed
range for NCM accelerated aging batteries was found to be between −0.032%/cycle and
−0.016%/cycle. The correlation coefficients between the capacity knee points and cycle
life extracted based on the critical aging speeds within this range were greater than 0.98.
Notably, the identified optimal critical aging speed ranges were all located at the stage
where the battery aging speed begins to rapidly increase, enabling the distinction between
slow and rapidly increasing battery aging speed stages.

On a dataset of 123 LFP accelerated aging batteries (excluding one defective battery
with a cycle life of less than 200), the proposed method for identifying the critical aging
speed range and capacity knee point was verified, with a correlation coefficient threshold
of 0.98. The optimal critical aging speed range for LFP accelerated aging batteries was
ultimately determined to be between −0.035%/cycle and −0.014%/cycle. The correlation
coefficients between the capacity knee points extracted based on the critical aging speeds
within this interval and the cycle life were all greater than 0.98.

As illustrated in Figure 6a, the relationship between the capacity knee point and battery
cycle life of LFP batteries was identified using −0.025%/cycle as the critical aging speed.
Similar to the cyclic aging characteristics of NCM lithium-ion batteries, a strong linear
correlation was observed between the capacity knee point and cycle life of LFP batteries.
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On the dataset of 18 accelerated aging LiCoO2 batteries, the proposed method was
validated, with a correlation coefficient threshold of 0.98. The optimal critical aging speed
range for LiCoO2 accelerated aging batteries was ultimately determined to be between
−0.096%/cycle and −0.03%/cycle. Notably, the correlation coefficients between the capac-
ity knee points and cycle life extracted based on the critical aging speeds within this range
were greater than 0.98.

As illustrated in Figure 6b, the capacity knee point corresponds to a cycle time at
which the aging speed is −0.03%/cycle. A strong linear correlation was observed between
the capacity knee point and the cycle life of LiCoO2 batteries, with a correlation coefficient
of 0.98.
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Taking into account the relationship between the capacity knee points and cycle
life of NCM, LFP, and LiCoO2 batteries, it can be observed that there is a strong linear
correlation between the capacity knee point and cycle life of lithium-ion batteries across
different material systems. The capacity knee point determines the cycle life and aging
characteristics of accelerated aging batteries. Therefore, for the prediction of the lifespan
of lithium-ion batteries, the prediction of capacity knee points and determining whether
capacity knee points will occur is of great significance. Based on the critical aging speed
range and capacity knee point identification method proposed in this paper, the critical
aging speed ranges for NCM, LFP, and LiCoO2 batteries with capacity knee points were
determined to be −0.032%/cycle to −0.016%/cycle, −0.035%/cycle to −0.014%/cycle, and
−0.096%/cycle to −0.03%/cycle, respectively. Considering the critical aging speed ranges
of the three battery material systems, the critical aging speed threshold for the capacity
knee point of lithium-ion batteries is approximately −0.03%/cycle ± 0.005%/cycle.

In ref. [1], five different capacity knee point identification methods were employed to
identify the capacity knee point of accelerated aging LFP batteries, and it was found there
is a linear correlation between the capacity knee point and the cycle life. The capacity knee
point identification method based on the critical aging speed proposed in this paper also
demonstrates a correlation coefficient close to 1 between the capacity knee point identified
on the LFP battery dataset and the cycle life.

Table 3 is constructed for a better comparison between the proposed method and those
reported in the ref. [1]. Compared to the identification methods of Bacon–Watts, Kneedle,
bisector, quantile regression, and tangent ratio, the identification method of capacity knee
point proposed in this paper fully considers the correlation between the knee point and
cycle life. The proposed method is knee-point-characteristic-based, while the Bacon–Watts,
Kneedle, bisector, quantile regression, and tangent ratio methods are model-based. The
Bacon–Watts, Kneedle, bisector, quantile regression, and tangent ratio methods need a
large amount of aging data to fit the regression model for knee point identification. After
obtaining the critical aging speed threshold, the capacity diving and knee points can be
determined by comparing the capacity difference between two adjacent cycles with the
critical aging speed threshold. Therefore, the proposed knee point identification method
can reduce the dependence on a large amount of aging data for knee point identification
and capacity diving warning.

Table 3. Comparison of different knee point identification methods.

Item Proposed Method Bacon Watts Kneedle Bisector Tangent Ratio

Method category Knee-point-
characteristic-based Model-based Model-based Model-based Model-based

Consider critical
aging
speed

Consider Not Not Not Not

Data requirements
for real application Few Large Large Large Large

The proposed method can be applied to different material systems including LFP,
LiCOO2, and NCM batteries, and can obtain the critical aging speed intervals of different
battery material systems. By comprehensively considering the critical aging speed intervals
of three material systems, the critical aging speed threshold of the lithium-ion battery knee
point is about −0.03%/cycle ± 0.005%/cycle. This empirical aging speed threshold can be
used as an important reference for offline and cloud-based accelerated aging warning for
lithium-ion batteries.
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5. Conclusions

By analyzing the aging characteristics of accelerated aging batteries with three different
material systems, it is found that there is a strong linear correlation between the capacity
knee point and the cycle life of NCM batteries, LFP batteries, and LiCoO2 batteries. This
proves that the capacity knee point of lithium-ion batteries is the key factor affecting the
battery cycle life. The critical aging speed interval of accelerated aging batteries and the
identification method of the capacity knee point is established. By identifying the critical
aging speed range and capacity knee point of accelerated aging batteries with three material
systems, the critical aging speed range of accelerated aging batteries with different material
systems was obtained. Considering the critical aging speed range of batteries with three
material systems, the critical aging speed threshold of the capacity knee point for lithium-
ion batteries is approximately −0.03%/cycle ± 0.005%/cycle. This aging speed empirical
threshold can serve as an important reference for offline and cloud-based warning systems
for accelerated aging. For the diagnosis of accelerated aging in actual batteries, when the
aging speed is less than −0.03% ± 0.005%/cycle, the battery is in a relatively safe normal
aging range. When the difference in the capacity retention ratio obtained from two cycle
tests reaches or exceeds −0.03% ± 0.005%/cycle, it can be considered that the battery
has a high risk of accelerated aging. The research in this article reveals the important
significance of the battery capacity knee point for battery life prediction and provides an
important reference basis for battery accelerated aging diagnosis suitable for offline and
cloud conditions.

In the future, by identifying capacity knee points, a battery’s remaining life can be
more accurately predicted. When a battery approaches the capacity knee point, users can
be reminded to replace the battery promptly, avoiding power interruptions or performance
issues at critical times. The capacity knee point identification method can help users
monitor the health status of the battery in real time. When the battery capacity experiences
an abnormal decline, users or systems can be alerted for repair or replacement, avoiding
potential safety hazards or performance issues caused by battery malfunctions.
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