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Abstract: Increasing penetration of electric vehicles brings a set of challenges for the electricity
system related to its energy, power and balance adequacy. Research related to this topic often requires
estimates of charging demand in various forms to feed various models and simulations. This paper
proposes a methodology to simulate charging demand for different driver types in a local energy
system in the form of time series of charging sessions. The driver types are extracted from historical
charging session data via data mining techniques and then characterized using a kernel density
estimation process. The results show that the methodology is able to capture the stochastic nature of
the drivers’ charging behavior in time, frequency and energy demand for different types of drivers,
while respecting aggregated charging demand. This is essential when studying the energy balance
of a local energy system and allows for calculating future demand scenarios by compiling driver
population based on number of drivers per driver type. The methodology is then tested on a simulator
to assess the benefits of smart charging.

Keywords: electric vehicle; smart charging; simulation; clustering; user behavior

1. Introduction

Governments are pushing towards the electrification of the transport sector to reduce
the human-related CO2 emissions in order to fight climate change. For instance, the Eu-
ropean Parliament adopted the proposal stating that CO2 emissions of new passenger
cars should be reduced by 100% by 2035 [1]. Such climate-focused policy pledges and
announcements will increase the number of electric vehicles on the market since they are
zero tailpipe emission cars. In the International Energy Agency (IEA) Announced Pledges
Scenario (APS), the electric vehicle (EV) global market share is expected to grow up to 30%
in 2030 [2].

Following the increase in the number of EVs, new charging infrastructures must be
installed at different locations (residences, office buildings, hospitals, etc.). Such new in-
stallations should be carried out in a controlled way by assessing the possible impacts on
electric systems, and potentially, to act accordingly in case of emerging problems. In sci-
entific literature, simulations show that the installation of new charge points will impact
the electric grid on different levels, from local energy systems (LES) [3] to distribution
and transmission system operators (DSO and TSO) [4]. Typical issues are for instance
voltage deviations, congestion issues and/or increase of peak powers [5]. Solutions to
these problems are already strongly studied and often presented in simulations. There
exist multiple solutions to the problem of installing new charge points, but two are of
high interest: (a) adapt the design of electric system by reinforcing it, and (b) charge in an
intelligent manner (smart charging or vehicle-to-grid) [6].
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While simulations are of great interest to understand, anticipate and solve future
problems, they require accurate data and models to have a correct representation of the
reality. With respect to the simulations of EV charging sessions, an important stakeholder
needs to be modelled which is the EV driver with their EV. The complexity relies on the
modeling of individual human behavior (e.g., arrival and departure time) as well as the
characteristics of the EV used by the driver (e.g., charging power). In addition, for most of
the use cases, a fleet of EVs needs to be modelled which contains a panel of different EV
drivers with different charging behaviors. These complexities are the main subject of this
paper which proposes an electric vehicle charging sessions data generator with specific
new contributions that simplify the modeling of the charging demand of a fleet of EVs.

1.1. Literature Review

The modeling of the mobility demand has already been conducted in previous works
and can be divided into two main stochastic methods. The first method uses Markov chain
processes. The Markov chain method associates a probability for the transition from a state
to another state, where state could mean, for instance, driving state or charging state.

Authors in [7] propose an inhomogeneous Markov chain method to model the use of
EV in order to assess the impact of load profiles at different parking locations. The results
show a low deviation with the real mobility dataset. In [8], driver’s behavior are simulated
using a heterogeneous Markov chain process fitted on data collected by the US Bureau of
Labor Statistics. The objective is to predict personal vehicle use and to assess the impact
on the electricity demand. Authors in [9] use an inhomogeneous Markov chain process to
model driving patterns. The model is fitted using data collected directly from an EV. In [10],
authors use a cyclic Markov chain model to describe the behavior of charging stations.
From this, they derive charge profiles to include in power grid simulation or to forecast
electricity demand.

The advantage of the Markov-chain process is that the model takes the previous state
into account, and hence assumes a consequential relationship between states. The disadvan-
tage is that it usually requires abundant empirical data that is often not available. To tackle
the issue of need of abundant data, a second method is also used in literature and consists
often of using probability density functions without using consequential relationships.
Such method is less accurate but easier to implement since it requires less data.

Authors in [11] developed a tool that generates time series of vehicle mobility, driving
consumption, grid availability and grid electricity demand. The input parameters are
numerous, ranging from EV driver information to EV characteristics and charge point
information. Such input data are usually unknown for new charging locations, for instance,
when a site wants to design or expand its charging location. Authors in [4] adapted a
“Remote-Areas Multi-energy systems load Profiles” (RAMP) software engine, from [12],
for stochastic EV driver behavior simulation. The simulator uses EV driver data from
surveys to classify the behavior into default groups such as student, workers and inactive
users, but also into small, medium and large EV sizes. This methodology has been designed
to simulate mass-scale deployment of EVs on a country-level, which is not necessarily suited
for smaller charging locations. To simplify this, authors in [13] generated EV charging
sessions based on standard probability density functions. Typically, arrival and departure
times are based on Gaussian distributions, and the daily mileage is based on log-normal
distributions. However, this methodology lacks accuracy when dealing with different
types of EV drivers because it assumes one probability density function for all drivers.
In [14], authors developed an electric vehicle load profile generator. Their method focuses
on generating load profiles directly from existing empirical data from EVs. The dataset
used comes from three field trials in Germany from 2011 to 2015. Their method allows
for a realistic representation of EV demand. However, it cannot be used to model EV
charging behavior for different use cases. Authors in [15] modelled charging profiles
of EVs based on real-world electric vehicle charging data. They focus on trip level and
conditional probabilities to determine whether an EV will be charged after a trip or not.
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The method is applied on residential use cases which makes it very user-centric modeling
and not necessarily suited for a pool of EVs. In [16], authors propose a synthetic data
generator for electric vehicle charging sessions using a large dataset of 1.8 million sessions.
The results show great statistical similarities between the generated and real data. While
this method works well for large use cases, it is unknown if it can be applied to specific
local energy systems.

Since most of these previous works have different input data, different end-objectives
and different techniques to model the mobility demand, Table 1 attempts a classification of
the previous cited papers.

Table 1. Literature review classification on mobility demand modeling.

Topic Classification Papers

Survey [4,7,17]
Input data Limited empirical data [9,13,16] & [This paper]

Abundant empirical data [8,10,11,14,15]

Residential [7–9,15]
Use cases Local energy system (e.g., office building) [10,14] & [This paper]

Large-scale use cases (e.g., country level) [4,11,13,16,17]

Consequential probabilities [7–10,16]Method Non-consequential probabilities [4,11,13–15,17] & [This paper]

1.2. Research Gap and Contributions

The list of papers previously cited shows the interest in modeling the charging behav-
ior. There are still some research questions to be answered. First of all, the models presented
previously tend to use different types of datasets leading to different methodologies and
results. Some of these papers use abundant empirical data (e.g., EV motor power, battery
capacity, temperature, etc.) which usually are not available, difficult to access and very
user- and vehicle-centric. Other papers use surveys to build their model which is less
accurate than empirical data and not easy to deploy. Very few papers have developed a
methodology able to be applied on many different use cases such as local energy systems
(e.g., office buildings, shops, etc.). Secondly, none of the previous papers have the ability to
capture specific charging behaviors of a specific use case—for instance, specific behaviors
such as morning vs. afternoon charging shifts or employee vs. visitor charging behavior.
Nonetheless, such particular charging behaviors must be included in the model to have a
more accurate simulation.

The previous research gaps are the main research questions that are intended to be
solved in this paper. The key contributions of the EV charging sessions generator proposed
in this paper are:

• The input dataset of the methodology originates from a standard communication
protocol widely available in the interoperability of charging infrastructures. The stan-
dard communication protocol allows for applying the methodology on many different
and specific use cases (office buildings, shops, houses, etc) and can help to investi-
gate/design different use cases;

• The classification of EV driver’s profiles with similar charging behaviors in order to
improve the modeling and simulation results. The classification is performed using a
clustering technique. In addition, the Kernel Density Estimation process is used to
better capture details of each cluster as well as particular charging behaviors;

• The modularity of the generator, its ease-of-use and the standardized output data
format are key attributes of its scalability and replicability.

1.3. Structure of Paper

The paper is organized as follows: The methodology of the charging sessions generator
is explained in Section 2. The use case upon which the generator is tested is presented in
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Section 3.1, and the results are analyzed in Section 3.2. In addition, Section 3.3.1 focuses on
the validation of the methodology. Finally, to illustrate the benefit of using the generator,
the impact of uncoordinated and smart charging is simulated and presented in Section 3.4.2.

2. Materials and Methods

The structure of the methodology proposed in this paper is illustrated in Figure 1. It
consists mainly of four different steps. In a first step, a data pre-processing is carried out
and detailed in Section 2.1. This step explains the origin of the data, the cleaning of it and
the features it contains. Section 2.2 introduces the clustering algorithm used to characterize
the EV charging behavior and the need to normalize the dataset. Followed by this, the main
generator algorithm with the statistical parameters is explained in Section 2.3. Finally,
Section 2.4 details the validation criteria used to assess the performances of the methodology.

Data

Data source
Data cleaning 
Data features

Data normalization

Clustering Generator Simulator

Figure 1. Scheme of the methodology of the generator.

2.1. Data Pre-Processing
2.1.1. Dataset and Features

The dataset consists of individual charging sessions where each of them contains
four different features: (a) an identification, (b) a plug-in time, (c) a plug-out time; and
(d) an energy consumed. These features are usually available since they are part of the
communication standard “Open Charge Point Protocol” (OCPP) between charge points and
the charge point operator (CPO) [18]. These charging sessions data are required in order to
bill a charging session to an EV driver (using Charge Detail Record (CDR) in OCPP).

To obtain a specific behavior per EV driver, a technique is used to replace all charg-
ing sessions from an individual EV driver to one specific theoretical charging session.
The method consists of computing the mean value of the plug-in times, the parking times
(where parking time is the difference between plug-in and plug-out times) and the energy
charged, of all the charging sessions of an EV driver. This results in one theoretical charging
session per EV driver consisting of only mean values.

Once each EV driver is associated with one theoretical charging session, they still
need to be classified based on the frequency of charging. In other words, a new feature
shall be associated with a driver to differentiate regular EV drivers from occasional ones.
One would use the number of charging sessions of an EV driver to make the distinction.
However, this approach would be limited by the fact that the period where these charging
sessions took place would not be considered. For instance, an EV driver that charged
20 times in 20 days is assumed to have the same behavior as an EV driver that charged
20 times in 200 days. To include this aspect, the frequency of charging is used instead of
just the number of charging sessions. The frequency of charging, denoted f req, is defined
in (1):

f req =
Number of charging sessions

Period between first session and last day of the dataset
(1)

The period in the denominator includes the last day of the dataset and not the last day
of an EV driver session. Unless this distinction is made, a driver with a single charging
session would present a frequency of one which would misleadingly be interpreted as a
100% probability of having one session per day.
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2.1.2. Data Cleaning

The raw dataset needs to be cleaned since it contains charging sessions that failed or
did not start. From a time perspective, all charging sessions with parking times lower than
five minutes are removed. In addition, duplicated charging sessions, based on the plug-in
time, are filtered out. Finally, the time is in UTC so it is adjusted to local time.

A second set of filters is applied on the energy measurements. Firstly, all charging
sessions with an energy charged lower than 500 Wh are filtered out. In addition, charging
sessions with an energy demand higher than 120 kWh are deleted. Finally, an average
charging power is computed per charging session by dividing the energy by the parking
time. All average power higher than 22 kW is removed since the charge points are AC
technology, hence limited to 22 kW.

2.2. Clustering Technique

The objective is to group EV drivers with a similar charging behavior. There exist
multiple techniques to group similar objects together. A well-known approach is an unsu-
pervised machine learning technique called clustering. Among the numerous clustering
algorithms in the literature, the most common one is the k-means clustering. The objec-
tive of this clustering algorithm is to minimize the within-cluster sum of squares. It is
mathematically expressed in (2):

min
k

∑
i=1

∑
x∈Si

‖x− µi‖2 (2)

where k is the number of clusters, Si a subset of datapoints of cluster i, and µi is the
mean value of the subset Si. An in-depth explanation on the working principle of k-means
clustering can be found in [19]. Examples of clustering of charging sessions using k-means
algorithm can be found in [20–23].

The k-means algorithm requires the number of clusters as input to cluster. Since it is
unknown how many clusters there are, different metrics are used from literature to help
identify the correct number of clusters. These are the elbow method [21] and the Davies–
Bouldin score [22]. The elbow method consists of plotting the clustering results in the
function of the number of clusters. The number of clusters to choose should appear in an
elbow on the plot. Intuitively, the more clusters are added, the better the objective function
is, but the higher the probability is of over-fitting. Hence, the plot should reflect the balance
between the maximum number of clusters and the over-fitting issue. The Davies–Bouldin
score is another method which computes the ratio of within-cluster and between-cluster
distances. The lower the value is, the optimal number of clusters is.

The clustering proposed in this study works in two stages. A first clustering is
performed on the charging sessions’ plug-in time, parking time and energy charged features.
The second clustering is then performed on the frequency of charging of an EV driver. It
has been decided to cluster in two stages since clustering all features together results in a
bad grouping of EV drivers and low flexibility in choosing the right number of clusters.

Finally, grouping behaviors together has the advantage of being able to modify certain
groups in different ways, making the methodology highly modular. For instance, if a
cluster has been identified as employee behavior (early arrival time and long parking time),
and it is known from the charging site that many new employees will switch to EVs in the
coming years; this specific cluster can be modified to mimic this future behavior specific to
the site. Section 3.4.1 shows an example of the strength of the methodology in being able to
modify certain clusters to draft future scenarios.

Data Normalization

The features that will be clustered are on different scales, with different ranges,
and sometimes on a different order of magnitude. The issue is that clustering techniques
rely strongly on the distance between features. Hence, it is important to adjust all feature
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scales to a common scale by using a normalization technique. Two different common nor-
malization techniques can be found in literature, called z-score and min-max normalization.
The choice between the two depends mainly on the data source and its characteristics. Since
the data source is based on human behavior, which is highly stochastic and usually follow-
ing Gaussian distributions, the technique used is the z-score normalization. The formula of
the z-score normalization is given by (3)

xN =
xt − µ

ρ
(3)

where xt is the non-normalized data point, µ is the mean value, and ρ is the
standard deviation.

2.3. Generator Principle
2.3.1. Statistical Distributions

Once the charging sessions have been clustered together, some statistical parameters
are extracted to build probability distributions. The main statistical parameters which are
extracted per cluster are listed hereunder:

• The probability of having a certain number of charging sessions per day. It has been
decided to divide this probability into two probability distributions, mainly one for
the working days and one for the weekend days, since the number of sessions are
highly different;

• The probability of having an EV plug-in and plug-out at a certain time;
• The probability of having a certain amount of energy to charge.

Each statistical distribution is estimated using a kernel density estimation process
from [24] instead of the common Gaussian distribution used in many papers. The advantage
relies in a smoother representation of the drivers behavior and hence better results. This is
shown in Section 3.3.1.

2.3.2. Pseudo Algorithm

The EV charging sessions generator principle is shown in Algorithm 1. It requires
two inputs: (a) the period over which to simulate and (b) the probability distributions per
cluster. Using this information, the generator works in two main steps:

• Step (1) For each cluster, and for each day to simulate, a function (called f1) determines
the number of charging sessions to generate;

• Step (2) For each charging session to generate, two functions (called f2 and f3) deter-
mine the plug-in and plug-out time, and the energy to charge.

Algorithm 1 EV charging session generator

1: Input: Simulation dates, clusters data
2: for all clusters do
3: for all simulation dates do
4: f1: Get number of sessions
5: for all sessions do
6: f2: Get plug-in and plug-out time
7: f3: Get energy
8: Output: Generated charging sessions

The first function (f1) chooses a certain number of charging sessions for the day and
cluster selected. It will select randomly a number of sessions based on the probability
distribution of the frequency feature for a cluster. Similarly, the second function (f2)
chooses a plug-in and plug-out time based on the probability distributions of those features.
With function (f3), two values are created: (a) the maximum energy that can be charged
considering the maximum charging power of the charger during a parking time determined
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with (f2), and (b) a random energy selection based on the distribution of the energy feature
of the cluster. This is carried out to verify that the energy generated for the session is lower
than the maximum energy that can be charged.

2.4. Validation Criteria

In order to ensure the validity of the proposed method, the dataset is divided into two
subsets. A first subset, called training subset, contains 90% of the dataset, and a second
subset, called validation subset, contains the remainder of the dataset. The training subset
allows for fitting the model by creating the clusters and to generate EV charging sessions
data. Then, the generated EV charging session data can be assessed by comparing it with
the validation subset.

The objective is to assess the fit between the generated charging sessions and the
real charging sessions. Since the charging sessions are characterized by plug-in time,
parking time and energy consumed, histograms of each feature will be shown. Followed
by this, a comparison between the histograms from the generated charging sessions and
the validation charging sessions will be shown and assessed. The assessment is carried out
using the chi-square histogram distance evaluation metrics detailed in (4) [25]:

χ2 =
1
2

n

∑
i=1

(pi − qi)
2

pi + qi
(4)

where i = 1, ..., N is the ith bin on the total amount of bins N, and pi and qi are the
occurrences associated with bin i.

3. Results and Discussion
3.1. Use Case

The use case understudy is to simulate the expected charging needs in 2025 of the
hospital’s parking lot in Brussels. It is an open-access charging location, with paid parking
fee. It consists of six charge points containing two Type 2 (IEC 61851) connectors, hence a
maximum of 12 connectors, delivering up to 22 kW each. The charging sessions have been
logged between May 2018 and January 2022. This period corresponds to 10,477 charging
sessions and 424 different EV drivers. To have a better understanding on the use case under
study, the number of charging sessions from frequent drivers represents 95.7% of the total
number of charging sessions. In addition to a parking lot, solar panels of 590 kWp are
installed with an on-site transformer limited to 630 kW. Different buildings are connected
to transformer with a low electricity demand compared to the transformer limit.

3.2. Clustering Results

The first step is to cluster the plug-in time, the parking time and the energy charged.
Using the elbow method and Davies–Bouldin score, the number of clusters has been set to
five. The two methods are shown in Figure 2.

The elbow method does not show a straightforward elbow so it does not help to
find the optimal number of clusters. Still, the number of clusters should be between four
and seven. On the other hand, the Davies–Bouldin score indicates the optimal number of
clusters to be five clusters (lowest score on Figure 2). To have an idea on how EV drivers
differ and are grouped, two different clusters are represented, as an example, in Figure 3,
by illustrating the plug-in times, parking times and energy needs.
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Figure 2. Number of clusters identification for the k-means clustering algorithm.
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Figure 3. Results of the first clustering.

Both clusters have similar plug-in times and energy demands but a strong difference
in parking times. Cluster 0 typically represents an early visitor profile, whereas Cluster
4 typically represents an employee profile, with early arrival and long stay. To have a
quantitative understanding, Table 2 summarizes the characteristics of the five clusters.

Table 2. Clusters’ quantitative characteristics.

Cluster ID # of Sessions # of Drivers Plug-In Time
(Mean Value)

Parking Time
(Mean Value)

Energy (Mean
[kWh]) Sub-Clusters

Cluster 0 1088 104 Morning
(09h26) Mid (04h15) Low (7.22) 2

Cluster 1 826 139 Afternoon
(15h51) Mid (05h52) Low (9.31) 2

Cluster 2 521 39 Morning
(09h42) Long (07h03) High (40.4) 2

Cluster 3 2 1 Afternoon
(16h45)

Very long
(38h48) Low (5.07) N.A.

Cluster 4 6618 69 Morning
(08h15) Long (08h58) Mid (7.9) 3

Note: Parking time: “Short” below 3 h, “Mid” for [3–6] h, “Long” for [6–9] h, “Very long” over 9 h. Energy: “Low”
below 10 kWh, “High” over 10 kWh.

Table 2 shows a couple of different charging behaviors which are interesting to analyze.
First of all, the mean energies are relatively low except for Cluster 2 (which represents
9.2% of the number of total EV drivers). Cluster 2 and Cluster 4 have the same parking
behavior (morning arrival and long stay) but not the same charging behavior (higher energy
demand). A second interesting result to discuss is that Cluster 3 is represented only by
one driver because this driver has a very different behavior compared to the other clusters.
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This cluster shows the good performances of the clustering technique since it is able to
exclude outliers into an individual cluster. Finally, Cluster 0 and Cluster 1 differ from
the other clusters with short parking times, and are themselves differentiated by morning
and afternoon arrivals. To conclude, Table 2 shows high differences in behavior between
clusters. Hence, it shows the importance to cluster drivers’ behavior.

The last column of Table 2 shows the results of the second level clustering. It indicates
the number of subclusters based on the frequency of charging. The results show that
most of the clusters are divided into two subclusters, mainly in low and high frequency of
charging. Nevertheless, for certain clusters, more than two subclusters are required due to
the higher frequency divergence of charging.

3.3. Generator Results
3.3.1. Validation

Figure 4 shows three histograms that consist of plug-in times, parking times and
energy needs, for both generated charging sessions and the real charging sessions (from
the validation subset). The number of charging sessions generated is 1335, which is close to
the original number of charging sessions which is 1422, on a period of four months.
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Figure 4. Comparison of plug-in time, parking time and energy needs between generated and real
charging sessions.

The results show a good match between the generated and the real charging sessions.
The methodology proposed in this paper is able to capture different subtleties. For instance,
regarding the plug-in times, the method correctly generates many charging sessions in the
morning but tends to underestimate the afternoon charging sessions. Similarly, the gener-
ated parking times follow correctly the validation subset but with an underestimation of
short parking times. Finally, the generated energy needs fit the validation subset, with an
underestimation of higher energy demand. This is due to a low number of charging ses-
sions with high energy demand (as shown in Table 2). In general, Figure 4 shows the great
representativeness of the methodology proposed in this paper with a close match between
the generated subset and the validation subset.

3.3.2. The Impact of Clustering and Kernel Density Distribution

Two important novelties are included in the methodology of this paper which are
the introduction of clustering and the use of kernel density distributions. It is therefore
interesting to assess their impact on the validation subset. Four different scenarios are
tested and assessed by computing the chi-square histogram distance using (4). The results are
presented in Table 3.
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Table 3. Chi-square distance evaluation for different scenarios.

Scenario
ID Description Plug-In

Time
Parking

Time
Energy
Needs

1 Gaussian distribution without clustering 491.8 135.7 261.3
2 Gaussian distribution with clustering 379.1 167.7 136.7
3 Kernel distribution without clustering 123.9 48.9 221.4
4 Kernel distribution with clustering 103.7 37.9 181.5

From Table 3, it can be observed that the introduction of kernel distribution has a
positive impact, by reducing the chi-square distance, on the plug-in time and parking time but
not on the energy needs. The main reason is that the energy needs distribution in Figure 4
strongly follows a Gaussian distribution. It can also be observed that the introduction of
clustering has a positive impact on the three features, where scenario 4 has the lowest chi-
square distance. It is important to note that the clustering main objective is not to improve
the model, but rather to make it modular by allowing changes in groups of EV drivers.

3.3.3. The Evolution in Charging Behavior

It has been observed that the charging session generator tends to underestimate the
energy demand. From the example of the previous section, the total energy demand from
the generated charging sessions is 14,480 kWh, which is 19.2% lower than the real validation
total energy demand of 17,933 kWh. To understand such underestimation, Figure 5 shows
the daily energy demand of the full dataset.
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Figure 5. Daily charging energy demand evolution.

From Figure 5, it can be observed that the daily energy demand has a strong evolution
over the four years of the dataset. Two main reasons can explain such evolution which
are an increase of the number of users and the evolution from PHEVs to BEVs. The draw-
back of the methodology proposed in this paper is that it includes low energy demand
charging sessions (from 2018 until 2020) in the statistical distributions. Consequently, it
will reproduce such energy demands in the validation subset, hence lowering the overall
energy demand. An interesting future research would be to find a methodology that can
model the evolution.

3.4. Simulation Results
3.4.1. Scenario Construction

The final objective of the methodology proposed in this paper is to generate EV
charging session data based on clustered EV drivers’ behavior. Generating EV charging
session data directly from the clusters will reproduce the same scenario as the existing one
(from the existing data) which is not the goal. To generate future scenarios, some changes
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in the clusters are required to build more realistic (future) scenarios. How these scenarios
are built is the main subject of this section.

It is known from literature that the EV penetration follows an exponential behavior,
and that it will likely still follow an exponential behavior in the future [2]. Knowing this,
the clusters are expected to follow an exponential behavior. Consequently, an extrap-
olation technique is used to evaluate the trend of each cluster and the expected future
behavior. In this paper, a nonlinear least squares method is used to extrapolate the clusters
behaviors [26]. Results of this method are shown in Figure 6.
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Figure 6. Extrapolation of number of charging sessions per cluster.

From the extrapolation technique, a scenario can be drafted for 2025. The clusters are
then accordingly modified, and the scenario will be simulated in Section 3.4.2.

3.4.2. Uncoordinated vs. Smart Charging

The use case understudy is a hospital parking lot which desires to install new charge
points to meet the future EV charging demand in 2025. The first objective is to analyze the
impact of installing new charge points using uncoordinated charging on the local energy
system. The second objective is to analyze the positive impacts of coordinating the charging
processes using a smart charging algorithm.

In order to achieve this, the generated charging sessions produced by the generator
are simulated in a simulator available in [6]. The smart charging algorithm is a model
predictive control algorithm that minimizes the cost of charging and the peak powers.
In this paper, perfect forecast is used to simplify the simulations. The results are presented
in Figure 7 showing the charging power profile dynamics by building, for each quarter hour,
the mean values, 1st and 3rd quartiles values and the maximum values of full simulation.

Figure 7 shows the strong impact of uncoordinated charging on the parking lot of
the hospital. The maximum values go up to 728 kW, exceeding the maximum capacity of
the on-site 630 kW transformer. In addition, important injection can be seen during the
day, mainly because the EVs are fully charged. When controlling the charge points in a
smart way, the maximum peaks, the 3rd quartile and the mean values are strongly reduced
to take advantage of overproduction during the day. This is the peak shaving and valley
filling principle. The self-consumption changes from 27.5% for uncoordinated charging to
59% for smart charging.
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Figure 7. Six-month simulation of uncoordinated and smart charging.

4. Conclusions

In this paper, an EV charging sessions generator is presented. It enables the creation of
charging sessions data based on historical data of a specific charging location. The historical
data have been analyzed to group different types of EV drivers together. For each group,
specific sets of statistical parameters are extracted, which are then used by the generator.
The full methodology is applied on a use case of a hospital which plans to expand its EV
fleet. The results are presented in two parts.

A first part is dedicated on the clustering of EV charging sessions from historical
data. The different types of EV drivers are presented with some important characteristics.
The results show the big differences in behavior between the EV drivers and the importance
of grouping such drivers. A second part focuses on the actual generation of EV charging
sessions data. The generator is validated by comparing the historical data set with a
newly generated session according to populated clusters. A scenario is then defined and
analyzed by simulating uncoordinated charging and smart charging from the generated
charging sessions. The results indicate the strong impact on power and energy demand
when adding new EV drivers to the population. The analyzed scenario highlights the
need for grid reinforcement or smart charging technologies to avoid overloading and peak
demands due to an increase of charging sessions of specific EV driver types. The good
results of the validation process demonstrate the potential of this generator to simulate
new scenarios while the scenario analysis demonstrates its usefulness to analyse future EV
transition scenarios.

Future research could include a method to follow the evolution of the energy demand
of EVs since drivers are switching from plug-in hybrid EVs to battery EVs requiring more
charging needs.
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The following abbreviations are used in this manuscript:

APS Announced Pledges Scenario
BEV Battery Electric Vehicle
CPO Charge Point Operator
CDR Charge Detail Record
DSO Distribution System Operator
EV Electric Vehicle
IEA International Energy Agency
LES Local Energy System
OCPP Open Charge Point Protocol
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