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Abstract: Unmanned tractors under ploughing conditions suffer from body tilting, violent shaking
and limited hardware resources, which can reduce the detection accuracy of unmanned tractors for
field obstacles. We optimize the YOLOv8 model in three aspects: improving the accuracy of detecting
tilted obstacles, computational reduction, and adding a visual ranging mechanism. By introducing
Funnel ReLU, a self-constructed inclined obstacle dataset, and embedding an SE attention mechanism,
these three methods improve detection accuracy. By using MobileNetv2 and Bi FPN, computational
reduction, and adding camera ranging instead of LIDAR ranging, the hardware cost is reduced. After
completing the model improvement, comparative tests and real-vehicle validation are carried out,
and the validation results show that the average detection accuracy of the improved model reaches
98.84% of the mAP value, which is 2.34% higher than that of the original model. The computation
amount of the same image is reduced from 2.35 billion floating-point computations to 1.28 billion,
which is 45.53% less than the model computation amount. The monitoring frame rate during the
movement of the test vehicle reaches 67 FPS, and the model meets the performance requirements of
unmanned tractors under normal operating conditions.

Keywords: unmanned tractor; inclined working condition; dedicated dataset; algorithm improve-
ment; camera ranging

1. Introduction

Obstacle recognition is a core aspect of vehicle assisted driving control systems [1–3].
As assisted driving systems for passenger cars are becoming more and more mature, they
are gradually being applied to intelligent agricultural machines. Compared with passenger
cars, tractors always have one side of their wheels stuck in the soft soil after ploughing,
so that the vision sensor always has an inclination of about 10◦ [4], as shown in Figure 1.
This affects the detection of obstacles. In addition, violent shaking of the tractor can reduce
the accuracy of the camera in recognizing obstacles in the field [5]. The hardware cost
of the tractor’s assisted driving system and the lack of controller arithmetic are also key
technologies that need to be solved urgently.

Current visual perception is mainly based on deep learning methods for detection [6],
which can be divided into One-stage and Two-stage according to the detection stage [7].
R-CNN series [8–10] is a very classical Two-stage algorithm, which firstly extracts the
candidate frames, then filters them using a classifier, and finally removes the duplicate
frames and fine-tunes the predicted frames using non-maximal suppression [11]. Two-stage
has some advantages in terms of detection accuracy, but suffers from the disadvantages of
difficult training, slow detection, and difficult optimization. Single-stage detectors, includ-
ing methods such as YOLO [12–17] and SSD [18], benefit from the excellent performance
of the Transformers [19] detection model in the field of natural language processing, and
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have a faster detection speed. Debasis Kumar et al. [20] demonstrated that training with
a specially customized dataset can significantly improve the detection performance of
YOLOv8; Wang Zhibin et al. [21] demonstrated that the larger the self-constructed dataset,
the better the training and the vehicle detection accuracy of the YOLO algorithm. Sun
Zhongzhen et al. [22] expanded the tilted dataset to improve the model’s recognition ac-
curacy of tilted obstacles. All of the above studies proved that training vision algorithms
with self-constructed field obstacle-specific large datasets can improve the detection of field
obstacles by tractor assisted driving systems.
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In 2020, the team of Ningning Ma [23] proposed the activation of features using the 
FReLU function, which achieves the pixel-level modelling capability in a simple way; 
scholars such as Ying Yao [24] proved the pixel-level modelling capability of the FReLU 
function. In 2017, the MobileNet [25] model was proposed, and this network can signifi-
cantly reduce the amount of model computation while maintaining the performance of 
the model. Numerous scholars applied the MobileNet to the YOLO algorithm and verified 
the contribution of MobileNet to model lightweighting [26–28]. Mingxing Tan and others 
[29] proposed a bidirectional weighted feature network BiFPN, which can scale the depth 
and width of the backbone network and feature network. Yunfei Zhang et al. [30] pro-
posed a multi-scale image feature fusion compression algorithm using arithmetic coding 
to eliminate the statistical redundancy of compact features, which solves the problem of 
the large amount of feature data, which makes it difficult to transmit efficiently. Guo Yue 
et al. [31] used BiFPN for a YOLO model to significantly reduce the number of floating 
points. Fan Zhang [32] et al. applied the improved attention module to the deep learning 
model to significantly reduce the number of parameters of channel attention and improve 
the detection speed. Bisong et al. [33] used a monocular camera to complete obstacle pose 
estimation and localization, saving costs but with lower accuracy. Jingliang et al. [34] used 
a binocular camera to localize pedestrians in orchards to complete high accuracy pedes-
trian monitoring. Although these studies have improved the detection accuracy of vision 
algorithms and reduced the cost, they are only applicable to obstacle detection under a 
normal viewing angle. In this paper, the research focuses on solving the problem of accu-
racy reduction caused by the tilted perspective and violent shaking of the tractor under 
ploughing conditions. 

The purpose of the improved model proposed in this paper is to reduce the effect of 
tractor body tilt on the obstacle recognition effect, and at the same time save the hardware 
cost and controller computational resources of the tractor’s unmanned or assisted driving 
control system. In this paper, the YOLOv8 algorithm is improved in the following aspects: 
firstly, the binocular ranging module is added to the algorithm, so that the ranging task 
can be accomplished without the use of radar; then, the backbone network is improved 
by using MobileNetV2 to lighten the backbone network; then, the neck network is im-
proved by using BiFPN to lighten the neck network; then, by improving the activation 
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In 2020, the team of Ningning Ma [23] proposed the activation of features using the
FReLU function, which achieves the pixel-level modelling capability in a simple way;
scholars such as Ying Yao [24] proved the pixel-level modelling capability of the FReLU
function. In 2017, the MobileNet [25] model was proposed, and this network can signif-
icantly reduce the amount of model computation while maintaining the performance of
the model. Numerous scholars applied the MobileNet to the YOLO algorithm and veri-
fied the contribution of MobileNet to model lightweighting [26–28]. Mingxing Tan and
others [29] proposed a bidirectional weighted feature network BiFPN, which can scale the
depth and width of the backbone network and feature network. Yunfei Zhang et al. [30]
proposed a multi-scale image feature fusion compression algorithm using arithmetic coding
to eliminate the statistical redundancy of compact features, which solves the problem of
the large amount of feature data, which makes it difficult to transmit efficiently. Guo Yue
et al. [31] used BiFPN for a YOLO model to significantly reduce the number of floating
points. Fan Zhang [32] et al. applied the improved attention module to the deep learning
model to significantly reduce the number of parameters of channel attention and improve
the detection speed. Bisong et al. [33] used a monocular camera to complete obstacle pose
estimation and localization, saving costs but with lower accuracy. Jingliang et al. [34]
used a binocular camera to localize pedestrians in orchards to complete high accuracy
pedestrian monitoring. Although these studies have improved the detection accuracy of
vision algorithms and reduced the cost, they are only applicable to obstacle detection under
a normal viewing angle. In this paper, the research focuses on solving the problem of
accuracy reduction caused by the tilted perspective and violent shaking of the tractor under
ploughing conditions.

The purpose of the improved model proposed in this paper is to reduce the effect of
tractor body tilt on the obstacle recognition effect, and at the same time save the hardware
cost and controller computational resources of the tractor’s unmanned or assisted driving
control system. In this paper, the YOLOv8 algorithm is improved in the following aspects:
firstly, the binocular ranging module is added to the algorithm, so that the ranging task
can be accomplished without the use of radar; then, the backbone network is improved by
using MobileNetV2 to lighten the backbone network; then, the neck network is improved
by using BiFPN to lighten the neck network; then, by improving the activation function
and embedding the SE noticing mechanism, the model accuracy can be improved; and
finally, a specialized dataset is established to improve the accuracy of obstacle detection
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in tilted view. The task of monitoring obstacles in the field with high accuracy is realized
while the model is lightweighted.

1.1. Activation Function Improvement

The YOLOv8 algorithm classifies and identifies field obstacles through neural net-
works, and the binocular ranging algorithm outputs the distance of field obstacles using
the binocular parallax principle, and the two combine to complete the monitoring task.
The principle of the whole monitoring model is shown in Figure 2. The backbone net-
work of the YOLOv8 model is the CSPDarkNet [35] model, which has a large number of
convolutional modules and needs to occupy a large amount of controller arithmetic. In
this paper, the convolution module is optimized with MobileNetV2, which can reduce
nearly half of the computation without changing the number of feature maps and save
the computational resources of the unmanned tractor. At the same time, the SE attention
mechanism [36] is embedded in the backbone network, which improves the field obstacle
detection accuracy while reducing the computational volume. The activation function
of YOLOv8 is the SiLU activation function [37], which is less robust and the recognition
confidence polarization is serious in the process of tractor field operation. In this paper,
we adopt the FReLU activation function with stronger robustness, which is more suitable
for the actual operating conditions of the tractor. The neck network of YOLOv8 model has
two fewer convolutional connection layers than the previous feature pyramid network
FPN [38], and it is not easy for the large feature maps to be fused with the small feature
maps, so this paper uses the BiFPN path aggregation network, which fuses feature maps
at different scales. The detection accuracy is further improved while saving the controller
computational resources.
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Figure 2. Monitoring model. 

In the case of tractor ploughing, the tractor body will shake violently and the body 
will be tilted to the right by about 10°, the SiLU activation function space used in the orig-
inal YOLOv8 is not sensitive, and the recognition error of tilted obstacles is more than 
10%. As shown in Figure 3a, the confidence level of the original model is 96% at the highest 
and 46% at the lowest, with an error as high as 50%; as shown in Figure 3b, the confidence 
level of this model is 98% at the highest and 89% at the lowest, with an error of 9%. This 
is due to the fact that the stability of the SiLU activation function is not good enough, and 

Figure 2. Monitoring model.

In the case of tractor ploughing, the tractor body will shake violently and the body will
be tilted to the right by about 10◦, the SiLU activation function space used in the original
YOLOv8 is not sensitive, and the recognition error of tilted obstacles is more than 10%. As
shown in Figure 3a, the confidence level of the original model is 96% at the highest and
46% at the lowest, with an error as high as 50%; as shown in Figure 3b, the confidence
level of this model is 98% at the highest and 89% at the lowest, with an error of 9%. This is
due to the fact that the stability of the SiLU activation function is not good enough, and
in the picture appears slightly tilted. The recognition effect will be unstable, in contrast,
because this model uses the FunnelReLU activation function, which makes the model more
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resistant to interference. Even when the tractor is ploughing, the camera is often jittery, and
the recognition effect of the obstacle will not see great change.
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FunnelReLU has two core components. The first one treats the non-positive part of
the original activation function with zeros by adding a funnel condition as in Equation (1).
FunnelReLU extends it to a 2D condition that depends on the spatial context of each pixel.
The spatial pixel calculation is shown in Equations (2) and (3).

y = max(x, 0) (1)

f(xc,i,j) = xωc,i,j · pω
c (2)

T(xc,i,j) = xωc,i,j · pω
c (3)

T(xc,i,j)—the funnel condition, xωc,i,j—the window on c channel centered at 2D position
(i, j), i and j denote the co-ordinate positions of the center window, pω

c —the parameters
shared by this window in the same channel.

The second place extends the original activation function to a sizable activation func-
tion with pixel-level modelling capabilities by using spatial conditions in the activation
function through a convolution operation. This allows the network to generate spatial
conditions for each pixel in the nonlinear activation, solving the spatial insensitivity prob-
lem. The activation region of FunnelReLU can be not only rectangular, but also rectangular
or curved, which makes a better match with the shape of the object itself. A comparison
of activation regions of FunnelReLU, ReLU and PReLU [39] is shown in Figure 4. On
the rightmost side of the figure is the original ReLU function without any modifications
and additions, in the middle is the FReLU activation function with common parameter
conditions added on top of the ReLU activation function, and on the rightmost side is the
FunnelReLU activation function with common parameter conditions added on top of the
ReLU activation function.
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1.2. Feature Map Output Method Improvement

The backbone network of YOLOv8 consists of convolutional layers, and the convo-
lutional module consumes a lot of controller computational resources. MobileNetV2 [40]
first enlarges the dimension, which does not increase a lot of computation, but helps the
network to better learn and express the image features, then extracts the features with
depth-separated convolution, and finally compresses the data with a projection layer, which
effectively solves the problem of the model dimension and latitude of the model. This
structure also saves controller computational resources without changing the number of
model dimensions. After replacing the convolution module with MobileNetV2 in the paper,
the floating point computation of the same image is reduced from 2.35 billion times to
1.28 billion times, which reduces the floating point computation by 45.53% without chang-
ing the number of feature maps and saves the computational resources of the controller of
the tractor. The number of layers of the MobileNetV2 network is shown in Table 1.

Table 1. MobileNetV2 network layer.

Input Operator t (Expansion
Factor)

c (Output
Channels) n (Repeats)

2242 × 3 conv2d - 32 1
1122 × 32 bottleneck 1 16 1
1122 × 16 bottleneck 6 24 2
562 × 24 bottleneck 6 32 3
282 × 32 bottleneck 6 64 4
142 × 64 bottleneck 6 96 3
142 × 96 bottleneck 6 160 3
72 × 160 bottleneck 6 320 1
72 × 320 conv2d 1 × 1 - 1280 1

72 × 1280 avgpool7 × 7 - - 1
1 × 1 × 1280 conv2d 1 × 1 - k -

1.3. Embedded Attention Mechanism

The YOLOv8 model has different utilization rates for different channels but the same
weights in the pooling process, resulting in computational loss and accuracy degradation.
To further improve the detection accuracy of unmanned tractor, the SE attention mechanism
is embedded in the YOLOv8 model. The SE attention mechanism consists of three parts,
namely, squeezing, excitation and combination, as shown in Figure 5. The compression
operation is a global average pooling [41] operation, which compressed the feature map
from W × H × C to a 1 × 1 × C vector map, and the excitation part consists of two
fully connected layers [42] and an activation function The two fully connected layers are
composed of two fully connected layers for the number of neurons to reduce the latitude
and then increase the dimension, and the activation function multiplies the channel weights
to complete the model excitation. The excitation part is formulated as follows.

Zc = Fsq(uc) =
1

HW∑H
i=1 ∑W

j=1uc(i, j) (4)

s = Fex(z, W) = δ(g(z, W)) (5)

The meanings of the letters in the formula are as follows: δ—ReLU function,
W1W2—two fully connected layers, z—combination operation.
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1.4. FPN Optimization

The PAnet [43] used in the neck network in YOLOv8 is the simplest bidirectional
feature fusion, and its edge-most output routes contribute less to the feature network,
which wastes the controller computational resources. In the paper, BiFPN is used to remove
the edge-most two fusion routes and connect them to other routes in order to realize a
higher-level feature fusion, and the routes are shown in Figure 6.
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The original feature fusion in YOLOv8 only superimposes feature maps, but different
feature maps have different resolutions, and their contributions to the output features are
different. The BiFPN feature fusion mechanism introduces different weighting coefficients
to the fusion routes of the feature maps according to the different resolutions, which is able
to better balance the feature information of different scales. The comparison of the three
weighting methods is as follows.

O = ∑i ωi · Ii (6)

O = ∑i
eωi

∑j eωj
· Ii (7)

O = ∑i
ωi

ϵ+ ∑i eωj
· Ii (8)

The weighting method of Equation (6) is to directly add a learnable weight, but the
weight is not limited, which may cause instability in training; the weighting method of
Equation (7) can scale the weight range to between 0 and 1, which is stable, but the training
is very slow; the weighting method of Equation (8) is similar to Softmax [44] that can scale
the range to between 0 and 1, and the training efficiency is high. In this paper, the weighting
method of Equation (8) is used to extract the layers 5, 7, and 11 of the backbone network
to the neck network, and compress and merge the number of its channels into the BiFPN
network for multi-scale feature fusion, and finally output to the detection end.

1.5. Add Binocular Ranging Mechanism

Binocular ranging uses the parallax principle to calculate the coordinates of the target
point in three-dimensional space and consequently the target distance. The principle is
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shown in Figure 7, and the obstacle distance Z can be obtained by only obtaining the
parallax information D (Xr − Xt).
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The steps of binocular ranging are as follows: firstly, the focal length, distortion
coefficient, rotation matrix and translation vector and other parameters of the camera are
obtained through calibration; then, the same field obstacle is photographed with the left
and right cameras, and thereafter the feature points are extracted from the left and right
images and matched to obtain the distance of the field obstacle relative to the tractor. The
binocular ranging effect of this paper is shown in Figure 8. The left side of the figure is
the main camera view, which shows the confidence level and obstacle distance; the right
side is the auxiliary camera view, which only shows the confidence level. All the following
sections use only the main camera viewpoint information to show the model effect.
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2. Model Training
2.1. Experimental Platform

The code optimization of the experiment is based on Python3.8 and the CUDA10.2
framework, and the model training is based on the Colab Pro+ platform of Google cloud
hard drive. The model training is completed by applying Google cloud GPU. The experi-
mental training batch size is Batch = 64, Momentum = 0.9, Learning Rate Initial Ir = 0.001,
and the number of training iterations Epoch = 500.

2.2. Experimental Data Set

In order to simulate the obstacle images in the inclined view of the tractor, this paper
uses a homemade dataset. Baidu unmanned vehicles were used to collect obstacle images
from farmland in Xin’an County, Luoyang City and Cuigou test field of China YTO Group,
and a total of 891 field obstacle images were collected to make the original dataset. Then,
add the image rotation function to the original dataset to obtain obstacle pictures with
different tilt angles for training, in order to simulate the obstacle perspective after the
tractor’s unilateral wheel is trapped under the real ploughing conditions. Afterwards, add
mirror reversal function to simulate taking pictures from different sides of an obstacle;



World Electr. Veh. J. 2024, 15, 104 8 of 14

add lighting to simulate the obstacle style under different sunlight; and build a dataset
of 3500 obstacle pictures. The dataset is randomly divided into training set, test set and
validation set according to the ratio of 7:2:1. Finally, Make sense was used to manually
annotate the dataset, and three categories of trees, pedestrians and tractors were set.

2.3. Experimental Results and Analysis

In the paper, four performance metrics—mAP (mean average precision), precision,
recall, and FPS (frames per second)—were used to evaluate the performance of the im-
proved algorithm.

AP = ∑n−1
i=1 (ri+1 − ri)Pinter(ri + 1) (9)

map =
∑k

i=1 APi

k
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

The meanings of the letters in the formulae are shown below: TP denotes the number
of positive categories judged correctly, FP denotes the number of positive categories judged
incorrectly, FN denotes a positive category judged as a negative category, and ri are the
recall values corresponding to the first interpolated value at the first interpolated value in
the precision interpolation segments arranged in ascending order. The overall accuracy of
all categories of data is synthesized into mAP values. The parameters of the trained model
are shown in Figure 9. The experimental results show that the improved YOLOv8 model
has a mAP value of 98.84%, a recall value of 95.81%, a precision value of 97.90%, and a
reduction in computation for the same image from 2.35 billion floating-point computations
to 1.28 billion computations, which improves the average detection precision by 2.34% and
reduces the amount of computation by 45.53%.
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2.4. Comparison Test

In order to verify the performance of the present model, a real-view comparison test is
carried out at the Cuigou test field of China YTO Group under the right-tilt 10◦ view angle
of an unmanned tractor. The present model is compared with the mainstream model, and
different algorithms are used to train the same field obstacle dataset. The detection accuracy
of the same live view obstacle is compared after the training is completed, and the results
are shown in Figure 10. The test groups (a), (b), (c) and (d) in the figure are the present
model, YOLOv8s, YOLOv7s and YOLOv5s models, respectively, and the results of the
comparison test can be obtained as follows: compared with the other models, the present
model has a low false-negative rate, high average confidence, and the confidence error of
the identification of multi-obstacle is within 10%. Compared with the original model, the
detection accuracy and robustness of the present model have been substantially improved.
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3. Real Vehicle Verification

In this paper, a robotic vehicle equipped with a mega2560 embedded microcontroller
and two 12 mm focal length cameras is used for the tests. The specific parameters of the
test equipment are shown in Table 2.

Table 2. Test platform parameters.

Device Name Deep Learning Model Robot (RobotCAR)

Development platform Arduino
Processor mega2560 andAVR 8bit microcontroller

Operating System
Programming Environment

Ubuntu20.04 LTS
Python3.8, Cuda11.4, Opencv4.1.1

3.1. Performance Validation under Ploughing Viewpoint

When ploughing with a tractor, the camera used for obstacle detection is often tilted,
typically about 10 degrees to the left or right. This model has been improved to address
the detection effect when tilted. We designed a control experiment to demonstrate that the
model performs similarly well under tilted viewing angles compared to normal viewing
angles. The detection results under the main camera view angle are shown in Figure 11,
and it can be seen from the comparison graph that the detection performance at the tilted
angle is comparable to that at the normal angle. This test result proves that even when the
tractor is tilted, the model can maintain sufficient detection accuracy.
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3.2. Recognition Results from Different Angles of Obstacles

The field environment is diverse and complex, with obstacles potentially appearing at
any angle within the field of view of the unmanned tractor. They may be facing away from
the camera or positioned sideways. The original model’s performance is unstable; when
obstacles appear with their backs facing the camera’s recognition range, the recognition con-
fidence decreases significantly. To verify that our model can accurately recognize obstacles
from any angle, we conducted dedicated experiments. Using the vehicle-mounted camera,
we captured images of obstacles from four different angles: frontal, frontal side, lateral, and
rear. These captured image samples were used as the test dataset for comparative analysis.
We then employed both the original YOLOv8 model and our improved model to identify
the obstacles in these images, corresponding to experiments (a) and (b) respectively, as
shown in Figure 12.
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From experiment (a), it is evident that the original YOLOv8 model achieves high
recognition accuracy of over 90% when identifying obstacles from the frontal, frontal side,
and lateral angles. However, when identifying obstacles from the rear angle, the recogni-
tion accuracy significantly drops to just 60%. Conversely, in experiment (b), our model
demonstrates excellent recognition performance from all angles, maintaining detection
accuracy of over 90% for each angle. This indicates that the improved model exhibits more
stable performance and better meets the requirements of the complex field environment.
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3.3. Dynamic Verification

While the tractor is in motion, obstacles also move within the camera’s field of view.
Moving obstacles can decrease detection accuracy. To verify whether recognition accuracy
is significantly affected during movement, we conducted dynamic validation experiments.
In the Ubuntu system, the camera of the unmanned vehicle is utilized to initiate obstacle
detection and ranging through commands. Images of the vehicle were captured while the
unmanned cart was controlled using a remote control handle to simulate the maximum
ploughing speed of the tractor. The main camera view is shown in Figure 13.
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The test results were that the model detection confidence remained above 90% even
when the robotic vehicle was in motion. This indicates that when the model is mounted on
an unmanned tractor in the future, it can maintain high detection accuracy even when the
tractor is ploughing forwards, and the model meets the requirement of real-time monitoring
of unmanned tractor operation under normal conditions.

4. Results

The enhancements proposed in this paper aimed to address critical challenges in ob-
stacle recognition for agricultural vehicles, particularly tractors operating under ploughing
conditions. The improved YOLOv8 model, augmented with novel techniques, demon-
strated significant advancements in accuracy, robustness, and computational efficiency.

1 Model Enhancements:

Tilted View Training Set: Introducing a specialized dataset for tilted view training
enabled the model to better detect obstacles even under challenging conditions, such as
when one side of the tractor’s wheels is stuck in soft soil after ploughing.

FunnelReLU Activation Function: Replacing the traditional SiLU activation function
with FunnelReLU significantly improved the model’s robustness, particularly in scenarios
with violent tractor shaking, resulting in a remarkable reduction in recognition errors for
tilted obstacles.

Attention Mechanism: Embedding an SE attention mechanism enhanced the utiliza-
tion of different channels in the model, further improving obstacle detection accuracy.

2 Lightweight Architecture:

MobileNetV2 and BiFPN Integration: By integrating MobileNetV2 into the backbone
network and BiFPN into the neck network, the model achieved substantial reductions
in computational complexity without compromising performance. This led to a 45.53%
reduction in model computation, consequently saving computational resources and hard-
ware costs.
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3 Real-Vehicle Validation:

High Detection Accuracy: Real-vehicle validation experiments demonstrated the
model’s ability to maintain high detection accuracy even when the tractor operated with a
tilted viewpoint.

Real-Time Performance: The model exhibited impressive real-time performance,
achieving a detection frame rate of 67FPS during simulations of maximum ploughing
speed. The average recognition accuracy surpassed 97%, with negligible error compared to
simulation results.

5. Discussion

The findings of this study underscore the transformative impact of the proposed
enhancements on agricultural vehicle assisted driving systems. Through a synergistic
integration of cutting-edge technologies, including deep learning, attention mechanisms,
and lightweight architectures, substantial progress has been made in bolstering the accuracy
and efficiency of obstacle-recognition algorithms.

1 Advancements in Challenging Environments:

The tailored training approach for tilted perspectives, coupled with the robust Fun-
nelReLU activation function, effectively mitigated recognition errors arising from adverse
conditions such as tilting and vehicle vibrations. Furthermore, the incorporation of at-
tention mechanisms facilitated nuanced feature extraction, thereby enhancing detection
accuracy across diverse environmental contexts.

2 Optimized Computational Efficiency:

The strategic adoption of MobileNetV2 and BiFPN modules not only alleviated com-
putational burdens but also optimized hardware resource utilization, rendering the model
more adaptable to resource-constrained deployment scenarios. The transition from LI-
DAR to binocular ranging not only reduced computational complexity but also minimized
hardware dependencies, offering a cost-effective solution for obstacle detection in agricul-
tural settings.

3 Real-World Deployment and Future Prospects:

During tractor farming operations, which typically take place on clear days, the
performance of cameras can be fully utilized, thus saving costs by relying solely on cameras
for ranging. However, in practical scenarios, we still encounter issues such as camera view
obstruction due to field dust and insufficient ranging precision. These situations require
the integration of additional sensors such as LiDAR for multisensor fusion. Future research
efforts will further refine the visual model and integrate other sensors to develop a more
comprehensive obstacle detection system.

In summary, the proposed enhancements represent significant strides in advanc-
ing the effectiveness and versatility of agricultural vehicle assisted driving systems. By
addressing critical challenges and harnessing state-of-the-art technologies, the model
holds immense promise for enhancing operational efficiency, safety, and productivity in
agricultural practices.
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