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Abstract: The efficient development of electric vehicles is essential to drive society towards sustain-
able development. Designing a lightweight frame is a key strategy to improve the economy and
environment, increase energy efficiency, and reduce carbon emissions. Taking an automatic loading
and unloading mixer truck as the research object, a force analysis of its frame was conducted under
six typical working conditions. A size optimization method based on a hybrid model of the Kriging
model and the analytic hierarchy process (AHP) is proposed. An approximate model of the mass
and maximum stress of the frame was established using the Kriging model, and the Kriging model
was optimized by using the multi-objective genetic optimization algorithm and the AHP method.
Meanwhile, topology optimization was introduced to improve the structural performance of the
frame and reduce its weight. The optimization results show that the overall weight of the frame
is reduced by 11.96% compared to the pre-optimization period, though it still meets the material
performance specifications. By comparing the iterative curves of the single Kriging model with those
of the AHP model, it can be seen that the initial optimization efficiency of the hybrid model is about
twice as much as that of the AHP model, and the final optimization result is improved by about
3.6% compared with the Kriging model. This validates the hybrid model as an effective tool for
the multi-objective optimization of electric vehicle frames, providing more efficient and accurate
optimization results for frame design.

Keywords: vehicle frame; size optimization; topological optimization; kriging model; analytic
hierarchy process

1. Introduction

A vehicle’s frame is the vehicle’s skeleton and support system, and it has a significant
effect on both performance and safety. The traditional method of designing frames is
primarily based on expertise and trial and error, so it is less effective and cannot provide an
optimal frame design. The application of finite element analysis (FEA) technology to the
design of the best vehicle frames has become a research hotspot with the advancement of
FEA technology. However, the current frame optimization design mainly focuses on size
optimization or topology optimization and ignores the method of combining the two, which
makes the frame optimization design process have certain limitations and shortcomings.
Thus, this study will investigate how to combine dimensional optimization and topology
optimization to optimize a mixer truck frame’s design and enhance the frame’s performance
and safety, all based on the ANSYS Workbench 2020R2 software.

Size optimization belongs to one kind of parametric optimization technique; it is a very
classical and frequently used structural optimization technique. It can reduce the system’s
overall weight and energy consumption and make the whole system more compact by
changing the size and shape of the parts and components in the system. For instance, it can

World Electr. Veh. J. 2024, 15, 107. https://doi.org/10.3390/wevj15030107 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj15030107
https://doi.org/10.3390/wevj15030107
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0009-0002-5516-0450
https://doi.org/10.3390/wevj15030107
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj15030107?type=check_update&version=2


World Electr. Veh. J. 2024, 15, 107 2 of 26

optimize the structure’s thickness, beam and rod cross sections, the moment of inertia, the
stiffness of elastic elements, and other parameters. At present, the main size optimization
techniques are the mathematical planning method and the optimality criterion method [1].
Sensitivity analysis is a highly effective method of performing size optimization for large
and complex engineering problems.

In academic research, topology optimization is a mathematical technique. The material
distribution within a designated area is optimized by taking into account specific loading
conditions, constraints, and performance metrics. Finding the best material distribution
path inside a predetermined design space is the main goal. This is carried out to satisfy sev-
eral performance requirements and produce the lightest design possible. Homogenization,
the variable thickness method, variable density method, level set method, evolutionary
structural optimization (ESO), and the independent continuous mapping method (ICM) are
currently widely used topology optimization techniques [2]. The variable density method,
which was developed from the basis of density-based topology optimization techniques, is
the most often used method. To obtain a more optimized result, the core concept is to use
different density parameters in different areas of the structure.

Size optimization and topology optimization have been widely researched in recent
years, with significant applications in engineering design, materials science, and other fields.
Abroad, the research and application of size optimization and topology optimization are
highly advanced. Currently, major foreign research institutions and scholars are employing
topology optimization and size optimization methods for the design and optimization of
aerospace structures, mechanical manufacturing, architectural structures, and automotive
engineering. This ongoing trend continually propels the application and development of
size optimization and topology optimization. Michell first proposed the concept of topology
optimization in truss theory in 1904 [3], and the optimal design of structural topology, based
on the homogenization theory published by Bendsoe and Kikuchi in 1988, opened a new
situation in the study of optimal designs for the topology of continuum structures [4]. Soon
after the homogenization theory was developed, Bendsoe introduced a density function
of continuous design variables, which is also referred to as Solid Isotropic Materials with
Penalties (SIMP) [5]; this allowed for the elimination of the discrete nature of the problem in
many ways. The evolutionary structural optimization method was proposed by Steven GP
and Xie YM in 1993 [6]. The intermediate density values in the SIMP model were properly
physically interpreted by Bendsoe and Sigmund in 1999. This meant that the stiffness that
could be obtained from the SIMP model could actually be realized as the stiffness of a
microstructure made up of the number of solid materials corresponding to the voids and the
corresponding densities. This demonstrated that density-based approaches have physical
significance [7]. Many academics have been researching topology optimization in various
domains in recent years. For instance, Cetin B. Dilgen et al. applied topology optimization
to fluid system turbulence in 2018 and introduced the use of the automatic differentiation
method for exact sensitivity in large-scale two- and three-dimensional turbulence topology
optimization problems. The findings demonstrated the significance of exact sensitivity
analysis and opened up new avenues for the design of turbulence-related large-scale multi-
physics field problems [8]. In order to achieve design results comparable to those obtained
using free-form topology optimization techniques, Julián A. Norato (2018) proposed a
continuum-based structural topology optimization method, which was demonstrated to
be effective by numerical examples [9]. In 2019, I. Sosnovik and I. Oseledets proposed a
neural network as an efficient tool for accelerating the topology optimization process that
significantly reduces the optimization time consumption [10]. Pedro Gomes and Rafael
Palacios (2020) investigated the use of topology optimization in the elastic and aerodynamic
design of flexible wings. They used a geometrically nonlinear finite element structural
solver in conjunction with a Reynolds-averaged Navier–Stokes finite volume solver [11].

The history of size optimization development can be traced back to the 1960s. With
the development of computer technology and finite element analysis methods, size op-
timization methods have been gradually introduced into the engineering field and have



World Electr. Veh. J. 2024, 15, 107 3 of 26

been widely applied and studied. In the late 1960s and early 1970s, the earliest size opti-
mization methods mainly used some direct optimization methods, such as the variable
load, stiffness matrix, direct deformation method, and so on. The main advantage of
these methods is that they are easy to understand and implement, but they are limited by
computational power and accuracy. By the mid-1970s, with the development of digital
computers and the application of the finite element method, size optimization methods
began to enter a new stage of theory and practical application. Currently, the majority
of size optimization techniques are based on finite element methods and are optimized
through mathematical planning techniques, like strength assumptions, as demonstrated
by Koiter [12]; optimization methods for elastic structures, as demonstrated by Pian and
Sumihara [13]; as well as feasible domain methods, as demonstrated by Rozvany [14].
After the 1980s, size optimization methods were further developed, and methods based
on variable transformation and sensitivity analysis appeared; these techniques include the
Lagrangian method, the proposed Newton method, the coefficient optimization method,
and others. The main advantages of these methods are their high efficiency and flexibility,
which can effectively solve some practical engineering problems. Also, there are some
important works in this phase, such as the finite element substructure and spatial lattice
grid methods proposed by Arora and Cheng [15], and the multi-objective optimization
methods proposed by Svanberg and Sobieszczanski-Sobieski et al. [16]. From the 1990s
to the present, size optimization methods have been widely used, especially in industry.
With the rapid development of computer technology, the speed of size optimization cal-
culation has been significantly improved. In addition, cross-research with the fields of
mechanics of materials, engineering mechanics, and computer science has also received
extensive attention. At this stage, the research focus shifted to multi-objective optimization,
structural optimization, optimal design, and multidisciplinary optimization. Meanwhile,
with the development of advanced computer technology and optimization algorithms, the
application prospect of size optimization will become broader and provide strong support
for practical engineering applications.

In addition, in recent years, electric vehicles, as part of renewable energy, have become
important components of energy sustainability. The rise of electric vehicles brings new
challenges and opportunities for energy management. In a multi-energy hybrid system,
more intelligent, flexible, and sustainable energy utilization can be achieved by effectively
integrating resources such as combined heat and power (CHP), green energy, fuel cells,
and plug-in electric vehicles (PEVs). Some advanced adaptive control strategies, such
as the proposed Optimal Self-Tuning Fractional Order Fuzzy Controller (OSTFOF), offer
new possibilities for the performance of electric vehicles in terms of resource savings.
This controller optimally tunes its parameters by means of a path-finding algorithm (PFA)
to adaptively obtain proportional, integral, and derivative gain values to account for
nonlinearities, such as governor dead zones and power generation rate constraints, in
a combined heat and power system. The simulation results show that the proposed
OSTFOF controller exhibits excellent performance metrics in various scenarios compared
to the conventional PI, PID, and FOPID controllers, and it provides strong support for the
sustainable development of electric vehicles in the energy system [17]. In addition, with
the wide application of electric vehicles, the bidirectional power control of EV aggregators
is not only regarded as an innovation, but also as an intelligent choice for distributed
energy storage. This control strategy not only flexibly adjusts the energy flow in the grid,
but also effectively reduces frequency and power fluctuations, providing a reliable and
effective solution for the stable operation of power systems [18]. Another way to save
energy is to rationally schedule the energy consumption of electric vehicles. In order to
explore the impact of electric vehicle charging/discharging decisions on energy scheduling,
the problem is modeled as a two-stage optimization problem. In the first stage, the main
demand of EV owners is introduced as the objective function; in the second stage, the
total energy cost and emission factor are considered as the main criteria. The decision
variables include the generation schedules of distributed generation (DG) technologies and
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the charging/discharging schedules of EVs, for which some effective modeling methods
are introduced for the uncertainty of these variables. The results of the study show that
it is possible to strike an effective balance between emission factors and system energy
costs, emphasizing the importance of this integrated energy dispatch framework [19]. From
an integrated perspective, electric vehicles play active roles in energy management and
resource utilization, contributing not only to the achievement of energy sustainability but
also to the construction of a more environmentally friendly and sustainable energy future.
This all-encompassing impact demonstrates the enormous potential of electric vehicles to
contribute to sustainable development.

Compared with foreign countries, domestic research on size optimization and topol-
ogy optimization has had a late start. However, with the rapid development of China’s
manufacturing industry in recent years, the application of size optimization and topol-
ogy optimization in engineering design and manufacturing has gradually increased, and
related research and application in China has also gradually emerged. Currently, some
domestic research institutions and universities have begun to carry out research on size
optimization and topology optimization, involving aerospace, automotive engineering,
building structures, and other fields. At the same time, some enterprises have begun to use
these methods for product design and manufacturing, which promotes the development of
size optimization and topology optimization technology. The development of domestic
topology optimization can be traced back to the late 1980s and early 1990s, when it was
mainly engaged in the research of structural topology design. In the late 1980s and early
1990s, this stage was mainly led by scholars at home and abroad, and the theoretical founda-
tion of structural topology optimization was gradually established, but it was mainly based
on the research of a two-dimensional model, which was relatively simple and rough. By
the early 2000s, a period of rapid development of topology optimization research began in
China. Drawing from the results of advanced research conducted abroad, domestic scholars
started conducting a great deal of research using techniques like the MMA method, SIMP
method, LP planning, etc. [20]. At this point, domestic researchers also started looking into
the use of topology optimization in engineering applications, including ship structures,
mechanical parts, automotive parts, and other areas. Between 2000 and 2010, researchers
in the country started using topology optimization for more intricate structural designs,
consisting of microscale, nonlinear, and multi-physics field optimization. Furthermore, a
few topology optimization programs, including TOGO and TOMO, started to surface in
China [21]. In China, topology optimization finally reached the stage of multidisciplinary
integration since 2010 [22]. This includes applications in the fields of construction, subter-
ranean engineering, electronic circuits, and machinery in addition to aerospace, aviation,
and other fields. Additionally, some new topology optimization methods, like Hybrid
Element Topology Optimization (HETOP) [23], have emerged in recent years, which are
expected to provide better solutions for more complex structural designs.

It is evident from the aforementioned analysis that most current research on vehicle
frame optimization is conducted in one of two directions: size optimization or topology
optimization. However, very few studies take into account both of these factors in their
entirety. Topology optimization focuses on the rationality of shape and the efficient use
of materials, yet it frequently encounters the issue of insufficient structural stiffness in
real-world engineering applications. Size optimization seeks structural compactness and
stiffness; nevertheless, pursuing only stiffness may result in an unneeded increase in weight.
Performance trade-offs can easily result from the two being optimized separately. To create
a lightweight vehicle frame that still maintains adequate stiffness and strength, this study
tries to investigate the natural fusion of size optimization and topology optimization. The
ultimate goal is to offer a more creative and effective solution for the long-term advancement
of automotive engineering. This paper’s primary research involves the following:

(1) An automatic loading and unloading mixer truck is used as an example to thor-
oughly examine a mixer truck’s overall load-bearing performance; to carry out a multi-case
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stress analysis and static finite element analysis; to identify the riskiest operating circum-
stances; and to study structural modal characteristics before vehicle frame optimization.

(2) A sensitivity analysis is used to filter out the important structural parameters
and design variables that significantly affect a vehicle’s frame weight; structural static
characteristics as well as structural modal characteristics are chosen. The Kriging method
is used to create an approximate model of the vehicle’s frame weight and maximum
stress. After that, the multi-objective genetic algorithm is combined with the hierarchical
analysis method to optimize the vehicle frame with the goals of minimum mass and
maximum stress.

(3) The size and topology optimization techniques are combined to fully optimize the
vehicle frame’s structural parameters. Ultimately, the optimized frame’s simulation and
experiments confirm its dependability under a range of operating conditions and show off
the frame’s outstanding performance under a load.

2. Optimization Strategy
2.1. Optimization Process

Firstly, this paper takes an automatic loading and unloading mixer truck frame as an
example; the primary loads of the mixer truck frame are obtained; and a 3D simulation
model is built in Solidworks 2021 software using the real model as a basis. The model is
then loaded into ANSYS Workbench for processing and simplification. Four representative
working conditions are chosen for this paper’s in-depth analysis of the mixer truck’s
operating conditions: (a) bucket raised static state; (b) bucket flat static state; (c) uphill
15 degrees; and (d) downhill 15 degrees. The force of the fully loaded mixing tank on the
frame of the aforementioned four working conditions is calculated based on the actual
load situation on the frame. The vehicle frame’s finite element model is then created in
the ANSYS Workbench 2020R2 software, and its force and deformation under various
working conditions are analyzed using finite elements to identify the working condition
with the greatest force and deformation. This information serves as the foundation for
the topology and size optimizations that follow. This paper first performs a rigorous
verification of the size optimization of a few vehicle frame segments. To determine the
final vehicle frame optimization scheme, the optimized vehicle frame is again put through
topology optimization after passing the verification. Figure 1 depicts the comprehensive
optimization technology route.
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2.2. Multi-Objective Vehicle Frame Size Optimization

As the complexity of engineering problems increases, the simulation model becomes
more complex and larger in scale, the time-consuming solution increases exponentially,
and it will consume a large number of resources to apply the multi-objective optimization
algorithms directly to the actual simulation model with physical significance, so there is an
urgent need to introduce efficient multi-objective optimization methods. The computational
results of the surrogate model are very close to the actual simulation model, and the solution
is less computationally intensive. The surrogate model is built using a data-driven bottom-
up approach. The following three steps are used to construct the surrogate model [24]:

(1) A suitable experimental design methodology is chosen to gather preliminary
sample points to build the surrogate model;

(2) An appropriate surrogate model or models are selected for use in approximating
the representation data;

(3) The constructed surrogate model or models are applied.
The Kriging model, Artificial Neural Networks (ANNs), Radial Basis Functions (RBFs),

Support Vector Machines (SVMs), Polynomial Regression models (PRG), and other surro-
gate models are more frequently used. The Kriging model has the following two character-
istics [25]: (1) high prediction accuracy and (2) the ability to provide estimates of prediction
accuracy. The Kriging model is becoming more and more valued in practical applications,
so the Kriging model is used for size optimization in this paper.

The Kriging model consists of two models, a parametric model, which is essentially a
regression analysis model, and a nonparametric model, which is essentially a stochastic
distribution with the following formula:

y(x) = f (x)β + z(x) (1)

where z(x) is a Gaussian stochastic function, and the more z(x) trends to 0, the smoother
the fitting curve is; y(x) is the function estimate of the unknown point; β is the regression
coefficient; and f (x) is a linear regression function that conforms to the expectation of the
global function, which is used to model the expectation function of the stochastic process,
usually using polynomials. The following characteristics of z(x) are as follows:

E[z(x)] = 0 (2)

Var[z(x)] = σ2 (3)

Cov
[
z(xi), z

(
xj
)]

= σ2R
[
R
(

xi, xj
)]

(4)

Assume that f (x) is the established estimator f̂ (x):

f̂ (x) = w(x)TY (5)

where w = (w1, w2 · · · , wn)
T is the vector of weighting coefficients to be solved; y =(

y1, y2, · · · , yn)T represents the known sample point data.
For f̂ (x) to achieve an unbiased estimation of f (x), it needs to be satisfied as follows:

E
[

f̂ (x)− f (x)
]
= E

[
wTY − f

]
= wTG − g = 0 (6)

where G =
(

g
(

x1), g
(
x2), · · · , g(xn)T

)
, and the above equation can be converted to

GTw(x) = g(x) (7)
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Next, the variance that results from estimating f (x) using f̂ (x) is as follows:

φ(x) = E
[(

f̂ (x)− f (x)
)2
]
= E

[(
wTZ − z

)2
]
= σ2

(
1 + wT Rw − 2wTr

)
(8)

where R =
[
Rij
]
=
[
R
(
c, xi, xj)], ( i, j = 1, 2, · · · , n); r =

(
R
(
c, x, x1), · · · , (R(c, x, xn))

T ;
and R

(
c, x, xi) is the correlation function determined using the kernel function as the

Gaussian function.

r
(
dj
)
= exp

(
1 −

d2
j

c2
j

)
(9)

where dj denotes the distance between the point to be measured and the sample point; cj is
the constant covariate of the kernel function in the jth direction of the sample point.

Since the Kriging response surface model requires the estimation variance to be
minimized, i.e., the weighting coefficients w are minimized, the final solution yields the
final results as follows:

w(x) = R−1
[

r(x)− G
(

GT R−1G
)−1(

GT R−1r(x)− g(x)
)]

(10)

f̂ (x) = g(x)β* + r(x)Tγ* (11)

where β* =
(
GT R−1G

)−1GT R−1Y, γ* = R−1(Y − Gβ*).
In size optimization, commonly used constraints include mandatory constraints and

feasible constraints. The mandatory constraints are the conditions that must be satisfied
by the design, such as the minimum size, the maximum size, and the maximum allowable
stress of the structure. The feasible constraints are the conditions that need to be satisfied
by the design but are allowed to be violated to a certain extent, for example, the range
limitations of the design variables, the range requirements of the natural frequency, etc.
The following represents the fundamental size optimization mathematical model:

min f (x)
s.t. ci(x) ≤ 0, i = 1, 2, · · · , m

hj(x) = 0, j = 1, 2, · · · , p
xmin ≤ x ≤ xmax

(12)

where f (x) is the optimization objective function, x is the vector of design variables, ci(x)
and hj(x) are the inequality constraint and equation constraint functions, respectively, and
xmin and xmax are the lower and upper bounds of the design variables, respectively.

2.3. Multi-Objective Vehicle Frame Topology Optimization

Rearranging the material’s arrangement in a structure is a technique known as topol-
ogy optimization. In topology optimization, a structure is usually viewed as a collection
of many small units called elements. These elements can be discrete or continuous, and
they can take on various shapes in various dimensions, including points, lines, surfaces,
and bodies. Finding the best possible structural arrangement to minimize the structure’s
qualitative metrics—such as volume, mass, stiffness, frequency, and so forth—is the aim of
topology optimization. Therefore, the problem of topology optimization can be viewed as
a topology design problem with the goal of determining the ideal topology. The following
mathematical formula can be used to express the topology optimization goal:
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ρ = (ρ1, ρ2, ρ3 · · · , ρn) ∈ C

min m =
n
∑

i=1
ρiVi

s.t. S ≤ 235 Mpa
G ≤ 0.001175

0 ≤ ρmin ≤ ρi ≤ 1 i = 1, 2, · · · , n

(13)

where ρ is the design variable; ρmin is the minimum density; ρi is the relative density; Vi
is the relative volume; m is the objective function, i.e., the overall mass of the mixer truck
frame; S and G are the stresses and strain to which the frame is subjected, respectively; and
C is the topology-optimized design domain of the frame.

3. Automatic Loading and Unloading Mixer Truck Structure and Force Analysis
3.1. Main Structure of Automatic Loading and Unloading Mixer Trucks

Automatic loading and unloading mixer trucks have four wheels and are capable
of handling a wide range of challenging road conditions. They are also well suited for
construction projects in rural areas, as their sturdy intersection-style bodies can solve
water-related issues without requiring the worker to search for a power source. The main
components of the entire truck are the water tank, bucket, chassis, upper and lower frames,
cab, and mixing tank. The actual diagram of a concrete mixer truck is shown in Figure 2.
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3.2. Distribution of Main Loads

The main part of the mixer truck frame is mainly composed of the upper frame
(bearing the mixing cylinder) and the lower frame. The hydraulic cylinder and its pin serve
as the connecting elements between the two frames. The frame primarily supports the
weight of the bucket, the driver’s cabin, the mixing cylinder, and the concrete. The total
loads of the truck are displayed in Table 1 below.

Table 1. Main loads of mixer truck.

Serial Number Load Name Load Size/N

1 Concrete 70,560
2 Empty mixing drum (including its accessories, etc.) 8820
3 Driver’s cabin 7840
4 Bucket and its contents 9800
5 Water tank 7056

3.3. Analysis of Forces on Mixer Truck

As seen in the mixer truck force sketch in Figure 3, the moment equilibrium method is
used to calculate the force of the mixing tank pallet of the frame to simplify the analysis of
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the four typical working conditions of uphill and downhill in fully loaded work, bucket
lifting, and leveling in the stationary state. It is obtained from ΣFx = 0, ΣFy = 0, ΣFz = 0:

FAx + MAx + MAysinθ − NBsinα = 0 (14)

FAy + MAycosθ + NBcosα = 0 (15)

FAz + MAz + FBZ = 0 (16)

Taking the moment ΣMAy = 0 for the Y-axis force at frame A yields

−MAycosθl1 + NBcosα(l1 + l2) = 0 (17)

Taking the moment ΣMAz = 0 for the Z-axis force at frame A yields

MAzl1 + FBz(l1 + l2) = 0 (18)

In the above equation, FBy = NBcosα, FBx = NBsinα, M is the mass of the mixing
cylinder when it is fully loaded, l1 =1308 mm, l2 =1425 mm, Ax is the gravitational
acceleration parallel to the X-axis, Ay is the gravitational acceleration parallel to the Y-axis,
and Az is the parallel Z-axis of the gravitational acceleration; θ = 0◦ when moving at
a uniform speed on level ground, θ = −15◦ when moving uphill, and θ = 15◦ when
moving downhill. When the bucket is lifting up the material, the foremost end of the
bucket coincides with the frame, and the distance between the foremost end of the bucket
and the frame connection can be obtained as l3 = 0 mm; the whole torque reaches the
maximum when the bucket is placing the shoveling material flatly, and the distance between
the bucket and the frame connection can be obtained as l3 = 2300 mm, and then two
torques to the frame connections on both sides can be calculated, namely, the torque
MC = 22.54 × 106 N·mm and the two vertical downward forces Fcy = 4900 N, and the rest
of the forces on the frame are the same as those in Equations (14)–(18).
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4. A Performance Analysis of the Vehicle Frame before Optimization
4.1. Finite Element Modeling
4.1.1. Simplified Model and Material Setup

While creating the three-dimensional digital model of the vehicle frame, it is possible
to reasonably simplify the structure of the frame, because it has more intricate features, in
accordance with the real circumstances. After modeling the frame individually according
to the mixer truck in kind, a three-dimensional model, shown in Figure 4, is created with a
total length of 2700 mm, a width of 1000 mm, and a mass of 1292.8 Kg, mainly composed of
the upper frame and lower frame (including the cab). The upper frame mainly consists of
two left and right tank arms and mixing tank pallets, and the lower frame mainly consists
of cab pallets and turntable pallets. Q235b and 45 steel make up the majority of the frame’s
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materials, including the tank arm, reducer pallet, and other components. The material
of 45 steel is used for the hydraulic cylinders and pins; Table 2 below lists the material
property values for this material.
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Table 2. Material setting.

Material Elastic Modulus Yield Stress Density Poisson’s Ratio

Q235b 200 GPa 235 MPa 7850 kg·m−3 0.3
45 Steel 209 GPa 350 MPa 7890 kg·m−3 0.269

4.1.2. Mesh Generation and Mesh Validation

In this paper, a tetrahedral mesh was used to mesh the frame, generating 294,094 nodes
and 150,012 finite elements. First, a default division was applied to the frame, generating
approximately 60,000 finite elements. Mesh independence validation was performed
to avoid a large impact of mesh sparsity on the computational results and to avoid an
excessive consumption of computational time. Seven sets of meshes with different sparsity
levels of nearly 60,000, 80,000, 90,000, 120,000, 140,000, 155,000, and 160,000 were created
for validation in the mesh division, as shown in Figure 5a. The maximum stress of the
frame is presented with the number of meshes, and after the sixth set, the deviation of
the mesh calculation is less than 5%, which has less influence on the calculation results.
Therefore, the sixth set of meshes, i.e., around 155,000 finite elements, was considered
relatively appropriate.
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Next, the mesh quality was checked, as shown in Figure 5b. The results show that the
number of mesh quality greater than 0.5 accounts for 95% of the total number of meshes,
and most of them are concentrated around 0.8. There are very few mesh qualities lower
than 0.5. This shows that the mesh quality is qualified.
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4.1.3. Setting of Contact Conditions, Loads, and Restraints

After importing the frame into ANSYS for meshing, the contact setup for each com-
ponent of the frame is started. Firstly, the components connected at the hinge points are
connected by friction, e.g., the connection between the upper frame and the lower frame.
In addition, the connection of the hydraulic cylinder also involves friction connection. The
other remaining parts are bound connections. The next step is to set the constraints of
the frame; since only the upper part of the mixer truck is analyzed, the part of its lower
frame in contact with the pallet shaft is set as Fixed support, and finally, the loads of the
frame are set, as shown in Table 1. The frame is mainly subjected to the forces of concrete,
mixing cylinder, cab, and bucket, so the final settings of the contact conditions, loads, and
constraints of the frame are shown in Figure 6.
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4.2. Strength Analysis of Frame under Different Working Conditions

Four typical working conditions were chosen for the static strength analysis. According
to GB/T 26408-2011 [26], the concrete mixer truck must undergo a climbing test, in which
the mixing drum must be filled to the designated capacity with concrete, the mixer truck’s
discharge port must face the direction of the downhill slope through a slope of at least 14%,
and the concrete must not overflow. Therefore, the selected working conditions are a mixer
truck at rest with the bucket raised; a mixer truck at rest with the bucket flat; and 15 degrees
uphill and 15 degrees downhill. After importing the aforementioned finite element model
into ANSYS, the maximum stress cloud of the frame is obtained, and it is displayed in
Figure 7. The maximum stress is found when the bucket is placed flat at the stationary
state in working condition b, according to the stress cloud analysis of these four working
conditions. The front end of the mixing tank pallet bears the majority of the larger stresses
in the arm portion of the frame. Thus, the maximum stress value when the bucket is placed
flat in condition b is considered to construct the Kriging model.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 12 of 27 
 

4.2. Strength Analysis of Frame under Different Working Conditions 
Four typical working conditions were chosen for the static strength analysis. Accord-

ing to GB/T 26408-2011 [26], the concrete mixer truck must undergo a climbing test, in 
which the mixing drum must be filled to the designated capacity with concrete, the mixer 
truck’s discharge port must face the direction of the downhill slope through a slope of at 
least 14%, and the concrete must not overflow. Therefore, the selected working conditions 
are a mixer truck at rest with the bucket raised; a mixer truck at rest with the bucket flat; 
and 15 degrees uphill and 15 degrees downhill. After importing the aforementioned finite 
element model into ANSYS, the maximum stress cloud of the frame is obtained, and it is 
displayed in Figure 7. The maximum stress is found when the bucket is placed flat at the 
stationary state in working condition b, according to the stress cloud analysis of these four 
working conditions. The front end of the mixing tank pallet bears the majority of the larger 
stresses in the arm portion of the frame. Thus, the maximum stress value when the bucket 
is placed flat in condition b is considered to construct the Kriging model. 

 
Figure 7. Maximum stress diagrams for each working condition of the frame. 

4.3. Frame Modal Analysis 
When the mixer truck is working, its frame will be subjected to a variety of external 

excitation frequencies; if the external excitation frequency is close to the frequency of the 
frame itself, it will trigger the resonance phenomenon, resulting in the deformation of the 
frame, and even causing damage to occur. For this reason, it is important to confirm the 
frame’s dynamic characteristics as well as whether they remain reasonable following fur-
ther optimization. The following are common guidelines for assessing the frame when 
using the modal analysis method [27]: 

(1) The value of the intrinsic frequency of the low-order modes of the vehicle frame 
should be lower than the operating frequency of the engine when idle to avoid the overall 
resonance phenomenon; 

(2) The elastic mode frequency of the vehicle frame should try to avoid the frequency 
so that the engine often works; 

(3) The vibration pattern of the vehicle frame should be as smooth as possible to avoid 
sudden changes. 

The mixer truck uses a four-cylinder engine with a rated power of 85 Kw, and its 
frequency is about 25 Hz at when the engine is idle and 70 Hz at a common speed. 
Through the first 15 orders of the frame modal analysis, as shown in Table 3, 1–6 orders 
are rigid body modes, the frequency of the first 10 orders are lower than the frequency of 
the engine when it is idle, and the frequency of the last 5 orders are also lower than the 
frequency of the engine when in common use. From Table 3, it can be seen that the frame 

Figure 7. Maximum stress diagrams for each working condition of the frame.



World Electr. Veh. J. 2024, 15, 107 12 of 26

4.3. Frame Modal Analysis

When the mixer truck is working, its frame will be subjected to a variety of external
excitation frequencies; if the external excitation frequency is close to the frequency of the
frame itself, it will trigger the resonance phenomenon, resulting in the deformation of
the frame, and even causing damage to occur. For this reason, it is important to confirm
the frame’s dynamic characteristics as well as whether they remain reasonable following
further optimization. The following are common guidelines for assessing the frame when
using the modal analysis method [27]:

(1) The value of the intrinsic frequency of the low-order modes of the vehicle frame
should be lower than the operating frequency of the engine when idle to avoid the overall
resonance phenomenon;

(2) The elastic mode frequency of the vehicle frame should try to avoid the frequency
so that the engine often works;

(3) The vibration pattern of the vehicle frame should be as smooth as possible to avoid
sudden changes.

The mixer truck uses a four-cylinder engine with a rated power of 85 Kw, and its
frequency is about 25 Hz at when the engine is idle and 70 Hz at a common speed. Through
the first 15 orders of the frame modal analysis, as shown in Table 3, 1–6 orders are rigid
body modes, the frequency of the first 10 orders are lower than the frequency of the engine
when it is idle, and the frequency of the last 5 orders are also lower than the frequency
of the engine when in common use. From Table 3, it can be seen that the frame of each
order of the frequency change is stable, and there is no prominent phenomenon. Based on
the above analysis, the design of the frame is reasonable and meets the requirements of
the vehicle.

Table 3. Fifteenth-order modal analysis of frame.

Ordinal Number Frequency/Hz

1~6 0
7 8.94
8 16.7
9 19.5
10 23.2
11 25.2
12 27.8
13 30.3
14 32.5
15 39.8

5. Mixer Vehicle Frame Size Optimization
5.1. Selection of Design Variables

The choice of suitable design variables is an important stage in the lightweight frame
design process, and it has a direct impact on the effectiveness and performance of the
finished design. Eight design variables were chosen in total: P1 and P2 denote the frame’s
left and right tank arms; P3 and P4 denote the exterior frame’s left and right reinforcing
plates; P5 and P6 denote the wheel carrier pallets and reducer pallets, respectively; and
P7 and P8 denote the interior frame’s left and right reinforcing plates. The sensitivity
analysis, as illustrated in Figure 8, revealed that the primary four design variables—P1, P2,
P3, and P4—have a greater impact on the major performance metrics, including the weight,
the frame’s deformation, maximum stress, and strain. As a result, when optimizing the
lightweight design of the frame, the main attention and resources should be focused on
these design variables to ensure that the final design solution can reduce the weight while
maintaining the structural strength and performance of the frame.
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Overall, the upper and lower limits of the design variables P1–P4 were set to ±15% of
the original parameters because of the more significant influence that the frame bracket
arms and external reinforcement plates have on the frame. Subsequently, according to the
manufacturer’s requirements and the actual situation, the specific variation ranges of these
four design variables were determined, as detailed in Table 4.

Table 4. Vehicle frame initial design variables.

Initializing Variable Size Variation Range

P1 25 20~27
P2 25 20~27
P3 25 23~27
P4 25 23~27

5.2. Latin Hypercube Experimental Design

It is necessary to choose reasonable experimental design methods before establishing
the Kriging model. Typical methods include the Latin Hypercubic Design of Experiments
(LHD), the Full Factorial Design of Experiments (FFD), the Orthogonal Design of Experi-
ments (OD), the Uniform Design of Experiments (UD), etc. [28]. These points should reflect
the characteristics of the design space as much as possible, as this is related to the accuracy
of the approximate model. Unlike random sampling, Latin Hypercubic Sampling (LHS),
a kind of stratified random sampling, can guarantee the full coverage of each variable’s
range by optimizing the stratification of each marginal distribution. It can sample from
the distributional intervals of the variables with efficiency. Consequently, as illustrated in
Figure 9, 25 sample points are chosen using Latin Hypercubic Sampling in this work to
obtain two-dimensional sampling results.
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5.3. The Construction of the Kriging Model

The above sample values are given to the frame’s finite element model for calculation,
and the output values are obtained. The 25 sample points obtained above are used as the
initial training samples, and another 10 sample points are extracted to test the Kriging
model. The Kriging model is constructed using Matlab2018a’s Dace toolbox. The sample
and output values mentioned above are brought into the program for calculation, and
the resulting prediction plots of the maximum stress and frame weight are displayed in
Figures 10 and 11, respectively.
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5.4. Accuracy Evaluation of Kriging Model

An additional 10 sample points from the Kriging model prediction result values and
the actual result values were taken to test the surrogate model’s accuracy. The approxima-
tion model can be tested by the coefficient of determination, R2, the expression of which is
shown in Equation (19).

R2 = 1 − ∑i(yi − ŷi)
2

∑i(yi − yi)
2 (19)

where yi is the calculated value of the sample point; ŷi is the predicted value of the model;
and yi is the mean value.

The coefficient of determination, R2, has a size ranging from 0 to 1. The model is
more accurate at representing the real value when the R2 value is closer to 1. Through the
examination of the 10 sample points, the Kriging models of the frame weight (R2 = 0.9999)
and the frame maximum stress (R2 = 0.9809) are obtained. The coefficient of determination
of this surrogate model is close to 1, indicating that the frame model has a high fitting
accuracy, and both meet the accuracy requirements for constructing the surrogate model in
the project. Figure 11 displays the error analysis of the Kriging model for both the frame
mass and the maximum stress of the frame.

6. Multi-Objective Optimization

Following a thorough analysis of the frame’s overall mass parameter and maximum
stress parameter, multi-objective optimization is performed for the bracket arms and
reinforcing plates on both sides of the frame. The optimization model can be characterized
as follows, with the minimum mass of the frame and the maximum stress of the frame not
exceeding the yield strength of the material serving as the optimization objectives.

f ind : P = (P1, P2, P3, · · · , Pi)
Min : {m(x), σ(x)}

s.t.σ ≤ 235 Mpa
PL ≤ P ≤ PU

(20)

where P—the frame design variable;
m(x)—the overall weight of the frame;
σ(x)—the maximum stress of the frame;
PL, PU—the upper and lower limit values of the design variables.
A general multi-objective optimization problem’s solution set is typically the Pareto

optimal solution set or the set of non-inferior solutions. MOGA is a fast non-dominated
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sorting technique that is a hybrid version of the NSGA-II algorithm based on the Control
Elite strategy. It supports a wide range of input parameter types.

The initial sample count is set to 2000, and the maximum number of iterations is set to
200. The Pareto front can be obtained by solving using MOGA, as shown in Figure 12, and
the five candidate analyses obtained by the optimization calculation are shown in Table 5.
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Table 5. Multi-objective optimization results.

Variables Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

P1/mm 20.021 20.501 21.035 22.028 22.528
P2/mm 20.021 20.501 21.035 22.028 22.528
P3/mm 23.345 23.109 24.107 24.513 25.013
P4/mm 23.345 23.109 24.107 24.513 25.013

Frame weight/Kg 1214.4 1219 1232 1248 1257
Maximum stress of frame/MPa 177.07 176.48 175.87 173.53 169.19

7. Optimal Solution of Frame Structure Parameters
7.1. Hierarchical Structure Model Establishment

As illustrated in Figure 13, the objective layer, criterion layer, and scheme layer com-
prise the hierarchical model to optimize the structural parameters of the automatic loading
and unloading mixer truck’s frame. The four optimization objectives—the frame mass,
maximum stress, maximum strain, and first-order inherent frequency of the frame—make
up the criterion layer; the five groups of optimization schemes produced by the multi-
objective genetic algorithm comprise the scheme layer. The total objective layer is the
optimal design scheme of the frame’s structural parameters.
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7.2. Priority Matrix Construction of Scheme Layer

The scheme layer is constructed under the premise of meeting the strength and
dynamic characteristics of the frame of the automatic loading and unloading mixer truck.
In other words, the larger the inverse of the frame mass, the better. Equation (21) displays
the mass inverse matrix Nm of the six groups of optimization schemes that are obtained
through optimization.

Nm =

(
0.0008235, 0.0008203, 0.0008117,

0.0008013, 0.0007955

)
(21)

By comparing the elements of the mass inverse matrix Nm shown in Equation (21) two
by two, the matrix Wm is obtained, as shown in Equation (22).

Wm =


1 1.0039 1.0145

0.9961 1 1.0106
0.9857 0.9895 1

1.0277 1.0352
1.0237 1.0312
1.0130 1.0204

0.9730 0.9768 0.9872
0.9660 0.9698 0.9800

1 1.0073
0.9928 1

 (22)

Summing the data of the columns of the matrix Wm shown in Equation (22) yields the
matrix Qm, as shown in Equation (23).

Qm = (4.9208, 4.9400, 4.9923, 5.0572, 5.0941) (23)

The data in each column of matrix Wm are divided by the data in the corresponding
column of matrix Qm, and the quotient obtained is summed and averaged to obtain the
prioritization matrix Pm of the frame quality, as shown in Equation (24).

Pm = (0.9972, 1.0010, 1.0121, 1.0406, 1.0572) (24)

Similarly, the priority matrices Pσ, Pε, and Pf 1 of the maximum stress and maximum
strain of the frame with respect to the first-order intrinsic frequency can be obtained as
shown in Equation (25) to Equation (27).

Pσ = (0.9979, 0.9973, 0.9970, 1.0001, 1.0134) (25)

Pε = (1.0208, 0.9997, 0.9988, 0.9919, 0.9768) (26)

Pf 1 = (0.2130, 0.2092, 0.2026, 0.1961, 0.1952) (27)

The final prioritization matrix P for the scenario layer is obtained as shown in
Equation (28).

P =
[

Pm, Pσ, Pε, Pf 1

]T
(28)

7.3. Judgment Matrix Construction of Criterion Layer

The “1–9 scale method” is utilized to establish the judgment matrix of the criterion
layer. Reducing the mass of the frame is the main goal when optimizing its structural
parameters; for this reason, the mass of the frame, its maximum stress, maximum strain,
and first-order intrinsic frequency are taken as 5, 3, and 3, respectively. The dynamic
characteristics of the entire machine are directly affected by the maximum strain of the
frame and the first-order intrinsic frequency of the frame. For this reason, the maximum
strain of the frame, the frame of the first-order intrinsic frequency of the frame, and
the frame of the maximum stress of the corresponding scale are taken as 1/3 and 1/3,
respectively. The maximum strain of the frame and the frame of the first-order intrinsic
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frequency are taken as 1, which can be used to obtain the judgment matrix I, as shown in
Equation (29).

I =


1 5

0.2 1
3 3

0.333 0.333
0.333 3
0.333 3

1 1
1 1

 (29)

The maximum characteristic root λmax = 4.043 of the judgment matrix I and its
corresponding regularized eigenvector W, i.e., the weight matrix W, can be derived.

W = (0.5194, 0.7887, 0.2009, 0.2009) (30)

7.4. Consistency Test for Judgment Matrices

According to Equation (31), the consistency index CI of the judgment matrix I can be
calculated as 0.014. The closer the value of the consistency index CI is to 0, the better the
consistency of the judgment matrix I is.

CI =
λmax − n

n − 1
(31)

where n—the judgment matrix dimension;
λmax—the judgment matrix I maximum characteristic root.
To be able to accurately evaluate the consistency of the judgment matrix, the mean

random consistency index RI is introduced, and according to n = 4, it can be seen that
RI = 0.882. According to Equation (32), the judgment according to the consistency ratio,
CR, is calculated and judged.

CR =
CI
RI

(32)

The above yields CR = 0.016; since CR < 0.1, the consistency of the judgment matrix
I is satisfied.

7.5. Optimal Solution Determination

Multiplying the priority matrix P at the scheme level with the judgment matrix W at the
criterion level yields the judging criteria priority matrix A for the five optimization schemes.

A = W × P = (1.58383306, 1.5533799, 1.56793571, 1.55285983, 1.54935792) (33)

According to the calculation results of Equation (33), it can be concluded that the
priorities of the five design schemes for optimizing the structural parameters of the mixer
truck frame are, in order, Scheme 1, Scheme 3, Scheme 2, Scheme 4, and Scheme 5. Therefore,
Scheme 1 is selected as the optimal design scheme, and the weights, maximum stresses,
safety factors, maximum strains, and first-order intrinsic frequencies of the frames before
and after optimization are shown in Table 6.

Table 6. Comparison of results before and after frame size optimization.

Variables Pre-Optimization Post-Optimization Rate of Change/%

Frame weight/kg 1292.8 1214.4 −6.06
Maximum stress/MPa 158.28 177.07 +11.87

Safety factor 1.48 1.33 −10.14
Maximum strain 0.00068332 0.00086195 +26.14

First natural frequency/Hz 8.9373 9.1682 +2.58

As can be seen from Table 6, the weight of the frame after size optimization is reduced
from 1292.8 kg to 1214.4 kg, which is a 6.06% reduction; the maximum stress of the frame
is increased from 158.28 Mpa to 177.07 Mpa, which is an 11.87% reduction, but it is still
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in the permissible stress of the frame within 235 Mpa; the minimum safety factor of the
frame is reduced from 1.48 to 1.33, which is a 10.14% reduction; the maximum strain of
the frame is increased from 0.00068332 to 0.00086195, which is a 26.14% increase; and the
first-order intrinsic frequency of the frame is increased from 8.94 Hz to 9.08 Hz, which is
a 1.57% increase. Since the maximum strain was 0.00086195, which increased by 26.14%,
the frame’s first-order intrinsic frequency increased from 8.9373 Hz to 9.1682 Hz, which
is a 2.58% increase. It is clear that the frame’s structural parameters have been optimized
to ensure that the maximum stress it can withstand falls within the structure’s allowable
stress range, reduces the mass, and enhances the frame’s structural modal characteristics
by raising the low-order intrinsic frequency.

7.6. Comparison of Optimization Methods

Therefore, the performance evaluation of the Kriging + AHP model was further
deepened by considering the whole optimization process. Compared with the single
Kriging surrogate model and the AHP model, the hybrid Kriging + AHP model exhibits
higher efficiency and accuracy in optimization, as shown in Figure 14. The figure illustrates
the iterative curves of the three models for frame weight, where the green curve represents
the Kriging + AHP model, the orange curve represents the AHP model alone, and the red
curve represents the Kriging model alone. It is observed that the AHP model is relatively
slower in the first five iterations, but its optimization results are better; on the contrary,
the Kriging model is faster in the first five iterations, but its final optimization results are
relatively worse.
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The hybrid Kriging + AHP model incorporates the advantages of both, which not
only shows faster speed in the first five steps of iteration, but also shows that the final
optimization results are reasonable. By calculation, it can be concluded that the first five
steps of the iteration hybrid model has approximately doubled the optimization efficiency
compared to the AHP model, and the accuracy of the final optimization result is improved
by 3.6% for the hybrid model compared to the Kriging model. Therefore, this proves that
the hybrid Kriging + AHP model cleverly combines the advantages of both, guiding the
optimization process in a more efficient and accurate manner, ensuring more desirable
results throughout the iterations. This further solidifies the excellence of the Kriging + AHP
model in optimization.

8. Topology Optimization of Mixer Truck Frame

Through the above optimization of the frame size, the reduction in the thickness of the
frame bracket arm is realized. However, the frame structure obtained by size optimization
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only reduces the thickness of some parts in the frame and cannot be used as the result of
the final design. Therefore, it is also necessary to carry out topology optimization on the
structure based on the frame size optimization.

Topology optimization can further optimize the structure of the frame and find the
optimal material distribution scheme in the optimization space of uniform materials. The
scheme is reflected as a “maximum stiffness” design in topology optimization. On the
basis of size optimization, it is made more lightweight with higher strength and better
stiffness while reducing material waste and manufacturing costs. In addition, topology
optimization can also reduce noise and vibration and improve the comfort and stability of
the frame, thereby improving the performance and safety of the vehicle. After considering
the structural performance requirements, weight optimization manufacturing feasibility,
cost, etc., this paper uses three schemes for topology optimization; compares the material
density change thresholds of 0.2, 0.4, and 0.5; and then selects the best among them. The
division results of the frame optimization design domain are shown in Figure 15, where
the tank arm on both sides of the frame is the design domain, and the rest of the area is the
non-design domain.
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The topology optimization results for setting the material density change thresholds
to 0.2, 0.4, and 0.5 are shown in Figures 16–18. Considering the feasibility and performance
of the frame, the topology optimization with a threshold of 0.4 results in a balance between
feasibility and performance. Lower thresholds may lead to excessive material removal,
resulting in structural fragility or instability, while higher thresholds may retain too much
material, limiting performance gains. Selecting a threshold of 0.4 can achieve a higher level
of optimization performance while maintaining structural feasibility.
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According to the topology optimization results with a threshold of 0.4, and considering
the processing property of the frame, the optimized area is reasonably removed, and
the frame structure of the automatic loading and unloading mixer truck after topology
optimization is obtained, as shown in Figure 19. The comparison reveals that the topology-
optimized frame structure has achieved weight reduction by digging some polygonal holes
in the non-assembled areas. After the optimization, the bracket arm on both sides of the



World Electr. Veh. J. 2024, 15, 107 21 of 26

frame is reduced by 76.207 Kg compared with that before optimization, and the overall
weight of the frame is reduced by 11.96% compared with that before optimization.
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After the optimization of the frame of the first 15 orders of modes, shown in Table 7, it
can be seen that 1~6 orders are also rigid body modes, the frequency of the first 10 orders is
lower than the frequency of the engine idling, and the frequency of the last 5 orders is also
lower than the frequency of the engine that commonly used. Additionally, it can be seen in
Table 7 that the frequency of the frame of the various orders of changes in the stability of
the phenomenon does not have prominence. Based on the above analysis, the design of the
frame is reasonable and meets the requirements of the vehicle.

Table 7. Fifteenth-order modal analysis of optimized frame.

Ordinal Number Frequency/Hz

1~6 0
7 9.17
8 16.9
9 19.8
10 23.7
11 25.3
12 28.0
13 30.9
14 40.4
15 44.4
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After size optimization and topology optimization, the overall optimized frame per-
formance was significantly changed, as shown in Table 8, where the weight, maximum
stress, factor of safety, maximum strain, and first-order intrinsic frequency of the frame
were again changed.

Table 8. Comparison of results before and after frame topology optimization.

Variables Pre-Optimization Post-Optimization Rate of Change/%

Frame weight/kg 1214.4 1138.2 −6.27
Maximum stress/MPa 177.07 183.39 +3.57

Safety factor 1.33 1.28 −3.76
Maximum strain 0.00086195 0.00092352 +7.14

First natural frequency/Hz 9.08 9.17 +0.99

By comparing the data in Table 8, it can be seen that the topology optimization had
a significant impact on the performance of the frame. After size optimization, the total
weight of the frame was reduced from 1214.4 kg to 1138.2 kg, which is a 6.27% reduction. In
addition, the maximum stress of the frame increased from 177.07 Mpa to 183.39 Mpa, which
is a 3.57% increase, but it still stays within the permissible stress of the frame, which is not
more than 235 Mpa. The minimum safety factor of the frame also decreased slightly, from
1.33 to 1.28, which is a 3.76% decrease. Meanwhile, the maximum strain of the frame is
increased from 0.00086195 to 0.00092352 after topology optimization, which is a significant
increase of 7.14%. In terms of the structural dynamic characteristics, the first-order intrinsic
frequency of the frame is slightly increased from 9.08 Hz before optimization to 9.17 Hz,
which is an increase of 0.99%.

The results of this series of optimizations show that the structure of the frame is
effectively improved through topology optimization. The maximum stress is still within
the allowable stress range of the structure, the mass is reduced, and the dynamic response
of the structure is also improved. This not only provides a feasible way to improve the
performance of the vehicle, but also provides a useful reference for the optimization of the
structure of similar electric vehicles in the design stage.

The optimized frame was assembled to the mixer truck and tested again for working
condition b, or bucket lift. Figure 20a presents the results of the size-optimized test,
representing the scenario where the mixer truck is on a 15-degree slope with the bucket
in a flat position. The optimized chassis demonstrated excellent performance under this
condition, showing no signs of bending or fracture.
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Additionally, the independent test depicted in Figure 20b involves rotating the upper
part of the mixer truck by 90 degrees with the bucket in a flat position, and similarly, no
failure was observed. Meanwhile, Figure 20c illustrates the comprehensive test of the mixer
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truck chassis after size and topology optimizations, simulating the scenario where the
bucket is full and in a flat position during operation. In this comprehensive test, neither
structural nor material failure occurred, laying a solid foundation for the reliability of
future lightweight electric chassis. These test results strongly validate the credibility of our
optimization strategy, providing robust support for future chassis design.

9. Conclusions

Taking the frame of the automatic loading and unloading mixer truck as the research
example, this paper proposes the design optimization of the structural parameters of the
frame based on the combination of the Kriging model and hierarchical analysis method,
and on this basis, the material distribution of the frame is optimized by using topology
optimization, which provides an efficient optimization design method to make the frame
of the electric vehicle lightweight. The following conclusions can be drawn:

(1) On the basis of the in-depth analysis of the overall load-bearing performance of the
automatic loading and unloading mixer truck, the frame was subjected to a multi-case stress
analysis and static finite element analysis so as to identify the most dangerous working
conditions. Secondly, the structural modal characteristics of the frame were studied before
optimization, which paved the way for the subsequent refined size optimization and
optimization strategy with topological features.

(2) In order to improve the efficiency and accuracy of the optimization of the frame’s
structural parameters, the structural parameters that have significant influences on the
frame’s weight, structural static characteristics, and structural modal characteristics are
screened out as design variables through a sensitivity analysis. An approximate model of
the frame’s weight and maximum stress is constructed by using the Kriging model, and a
hybrid model based on the combination of the Kriging model and hierarchical analysis is
used to optimize the frame with the objectives of a minimum frame mass and maximum
stress. By comparing the iterative curves of the hybrid model and the single model in
terms of the frame’s weight, it can be concluded that the initial optimization efficiency of
the hybrid model is about double compared with that of the AHP model, and the final
optimization result of the hybrid model is about 3.6% higher compared with that of the
Kriging model, which proves that this method can be used as an effective tool for the
multi-objective optimization of electric vehicle frames and can provide higher efficiency
and accuracy.

(3) The structural parameters of the frame are comprehensively improved by inte-
grating the two methods of size optimization and topology optimization. This integrated
optimization method significantly improves the optimization efficiency and accuracy. The
results show that during the size optimization stage, the thickness of the key components of
the frame is reduced by 78.4 Kg, and although the maximum stress of the frame rises from
152.28 MPa to 177.07 MPa, it is still within the allowable stress range (235 MPa). The correct-
ness of the size optimization was verified in subsequent frame experiments. Subsequently,
through topology optimization, the weight of the bracket arms on both sides of the frame
was reduced by 76.2 Kg. The maximum stress of the frame increased from 177.07 MPa to
183.39 MPa, which, again, did not exceed the allowable stress of the material. Through
the field experiments of the frame under working condition b, it was found that the frame
shows good performance under load conditions, which further verifies its reliability under
actual working conditions. In summary, this method not only provides a new idea for
the optimization design of electric vehicle components, but also has a wide application
potential and provides a useful reference for engineering practice and technical research in
the field of electric vehicles.
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Abbreviations
The following abbreviations are used in this manuscript:

AHP Analytic Hierarchy Process
FEA Finite Element Analysis
ESO Evolutionary Structural Optimization
ICM Independent Continuous Mapping
SIMP Solid Isotropic Materials with Penalties
CHP Combined Heat and Power
PEVs Plug-in Electric Vehicles
OSTFOF Optimal Self-Tuning Fractional Order Fuzzy
PFA Path-finding Algorithm
PI Proportional Integral
PID Proportion Integration Differentiation
FOPID Fractional Order PID
DG Distributed Generation
EVs Electric Vehicles
MMA Method of Moving Asymptotes
LP Linear Programming
HETOP Hybrid Element Topology Optimization
ANN Artificial Neural Network
RBF Radial Basis Functions
SVM Support Vector Machine
PRG Polynomial Regression
LHD Latin Hypercubic Design
FFD Full Factorial Design
OD Orthogonal Design
UD Uniform Design
LHS Latin Hypercubic Sampling
MOGA Multi-Objective Genetic Algorithm
NSGA-II Non-Dominated Sorting Genetic Algorithm II
CI Consistency Index
RI Random Consistency Index
CR Consistency Ratio
Variable Description
z(x) Gaussian stochastic function
y(x) function estimate of the unknown point
f (x) linear regression function
β regression coefficient
f̂ (x) estimate of f (x)
w = (w1, w2 · · · , wn)

T vector of weighting coefficients to be solved

y =
(
y1, y2, · · · , yn)T known sample point data

R =
[

Rij

]
=
[

R
(

c, xi, xj
)]

, (i, j = 1, 2, · · · , n) correlation function using the kernel function as

Gaussian function

r =
(

R
(
c, x, x1), · · · , (R(c, x, xn))

T , R
(

c, x, xi
)

correlation function using the kernel function as

Gaussian function
dj distance between the point to be measured and the

sample point
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cj constant covariate of the kernel function in the
jth direction of the sample point

w weighting coefficients
x vector of design variables
ci(x) inequality constraint
hj(x) equation constraint functions
xmin lower limit of design variable
xmax upper limit of design variables
ρ design variable
ρmin minimum density
ρi relative density
Vi relative volume
m objective function
S stresses
G deformations
C topology-optimized design domain of the frame
M mass of the mixing cylinder when it is fully

loaded
Ax gravitational acceleration parallel to the X-axis
Ay gravitational acceleration parallel to the Y-axis
Az parallel Z-axis of the gravitational acceleration
l distance
θ angle
MC torque
F force
yi calculated value of the sample point
ŷi predicted value of the model
yi mean value
P frame design variable
m(x) overall weight of the frame
σ(x) maximum stress of the frame
PL, PU upper and lower limit values of design variables
Nm mass inverse matrix
n judgment matrix dimension
λmax judgment matrix I maximum characteristic root
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