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Abstract: To ensure the precise dimensioning and effective testing of drivetrain components, it is
crucial to have a thorough understanding of customer requirements, with a particular emphasis on
customer stress on these components. An accurate interpretation of customer data is essential for
determining representative customer requirements, such as load collectives. The automobile industry
has faced challenges in analyzing large amounts of customer driving data to obtain representative
load collectives as target values in durability design. However, due to technical limitations and cost
constraints, collecting data from a large sample size is not feasible. The ongoing digitalization of the
automotive industry, driven by an increasing number of connected vehicles, enhances data-based and
customer-oriented development. This paper investigates representative customer load collectives
using cloud data from over 40,000 customer vehicles to lay the groundwork for realizing robust
requirement engineering. A systematic method for analyzing big data on the cloud was introduced.
The derived component-specific damage distribution from these collectives adopts a unique approach,
utilizing the 1% vehicle term instead of the common 1% customer term to represent typical customer
stress. This study shows that the driven mileage and the number of vehicles are crucial factors in
1% vehicle analysis. An analysis of the characteristics of the 1% vehicle is conducted, followed by
an exploration to determine the required vehicle quantity for obtaining stable results. The shape
parameter of the damage distribution determines the necessary number of vehicles for a reliable
conclusion. Additionally, a comparative analysis of market-specific customer requirements between
the US and Europe is presented, and real usage differences in customer operations are explained
using an operating point frequency heatmap. The information presented in this paper provides
valuable input for optimizing durability design and conducting efficient, customer-oriented tests,
resulting in significant reductions in development time and costs.

Keywords: battery electric vehicle drivetrain; durability; damage distribution; 1% vehicle; market-
specific requirements

1. Introduction

The battery electric vehicle (BEV) has become a central focus in automotive industry de-
velopment. Electric vehicles are considered an excellent alternative to internal combustion
engine vehicles (ICEVs) due to their unique properties. These include lower well-to-wheel
(WTW) costs [1], zero local emissions, higher powertrain efficiency, and better driving
performance. Automobile manufacturers strive to deliver top-tier products with innovative
features to meet customer demands and enhance overall customer experience. At the same
time, the industry aims to streamline development processes, reduce time and costs, and se-
cure a more significant market share in an intensely competitive environment. It is crucial to
design the drivetrain with a focus on efficiency and durability from a customer perspective
to gain a comprehensive understanding of real-world vehicle usage. This approach ensures
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customer satisfaction by preventing the pitfalls of undersizing or oversizing components. A
design and testing strategy grounded in customer data is an efficient method for balancing
customer expectations and design standards. Concurrently, the ongoing digitalization in
the automotive industry has led to an increasing number of connected vehicles capable of
cloud communication, which facilitates the wireless collection of customer driving data.
Cloud data analytics is a versatile tool that offers multifaceted applications in achieving
data-driven development objectives. Innovations such as digital twin technology and
predictive maintenance, enabled by the intelligent monitoring of component conditions,
become viable possibilities. Figure 1 presents a schematic overview of the main pillars
guiding the utilization of powertrain data. The development trajectory of the drivetrain
is envisioned to be holistic, systematic, and inherently customer-oriented, as introduced
in [2]. This statement reflects the industry’s dedication to meeting changing demands and
adopting innovative technologies.
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Figure 1. Future of powertrain data.

In recent years, the focus of further BEV drivetrain development has been on batteries,
energy management strategies, control methods, and cost analysis. [3–6] The development
of drivetrain durability presents new challenges due to the growing number and complex-
ity of electrical components. The lifetime of the drivetrain, a complex system comprising
multiple subsystems and components, is determined by the lifetime of each individual
component. The components can be divided into two subsystems: firstly, electrical sys-
tems, including the battery, power electronics, and electric machine (EM); and secondly,
mechanical systems, such as the transmission, differential, drive shaft, or cardan shaft.
Electrical components are primarily affected by electrical stress, such as changes in voltage
or current. Additionally, temperature (both ambient and operating) plays a crucial role
in the aging of electrical components due to thermal stress. Related research has been
carried out for traction battery durability [7,8], EM durability [9–11], power electronics [12],
and the electric system [13]. The mechanical components in electric vehicles are subjected
to more critical working conditions than those in conventional vehicles with multi-stage
transmissions. This is due to EM properties such as the high-frequency current [14–16],
higher speed range, and recuperation. Recuperation with high negative torque, for exam-
ple, leads to additional stress on torque transmission components such as gears, shafts,
and cardan shafts. The authors of [17] demonstrate an innovative approach by combining
load spectrum calculation and condition monitoring to improve the precision of lifetime
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prediction for gearboxes in BEV. A digital twin is considered a tool that enables the further
optimization of the efficiency and reliability of BEVs and offers a high reliability design for
powertrains. [18] Common norms, such as those for EM [19,20] and gear [21,22] develop-
ment, are also used to achieve a robust design. Previous testing strategies must be adapted
to address the new challenges of drivetrain testing and testing technology [23].

A crucial use of customer data is in durability design, which requires determining
representative customer load collectives, or load spectrums, to ensure component strength
for a defined desired lifetime. Representative customer load collectives are typically
defined as load collectives that cause damage or stress to one or more customer vehicles,
exceeding the load collective experienced by the remaining 99% of customers. The term
‘1% customer’ is often used to refer to this definition, which can be obtained by analyzing
the statistical distribution of customer loads, provided that sufficient data are available.
Acknowledging the ‘1% customer’ is a fundamental task in durability design. Load spectra
can typically be derived directly from customer-related measurements, often collected using
dataloggers [24–26]. However, conducting measurements with a large sample size can be
costly. Additionally, the load spectrum of an individual customer vehicle or a small pool
of test samples may not provide a representative reference load, particularly in the mass-
produced passenger car field. This is due to the significant variation in customer driving
behavior, which is the main cause of component damage, and the driving environment,
which cannot be adequately described with a small amount of data. Onboard classification
with aggregated data was frequently utilized, particularly in chassis and body durability
analysis [27–32]. These data are classified and stored in vehicle control units and then
retrieved through wireless communication or by the workshop. This method of data
collection has great potential for acquiring data from a large number of customer vehicles.
However, the depth of information is abstracted due to the classification, resulting in a loss
of time series.

Several approaches exist for simulating representative customer load collectives, such
as the 3D method (3D: driver, driven vehicle, and driving environment) developed by
the Institute of Automotive Engineering at the Technical University of Braunschweig.
This method, which was first introduced in [33,34], provides a detailed and practical
description of customer usage. It was used to determine representative load collectives for
gears and bearings in gearbox development. Its function and application were expanded
to systematically, virtually, and holistically develop and design drivetrain and chassis
components, considering representative customer use or collectives [35–40]. Representative
load collectives are obtained via simulation, using a comprehensive database that identifies
the typical driver, driving environment, and vehicle combinations (also known as parameter
space). The first step in building the 3D database is to measure the target vehicle in the
target market. At the same time, the necessary parameters for the target components are
selected based on requirements. The measurement data are processed to characterize the
3D parameter space and generate statistics for the simulation. The load collectives of the
combination with the most intensive loads are then simulated for the representative load
collectives. This allows for obtaining component-specific representative load collectives.
Refer to [41] for more information on this method. The Fraunhofer Institute for Industrial
Mathematics has developed a method for simulating representative customer collectives
using the Monte Carlo method [42–44]. By calculating the total damage to individual users,
the most critical combination of load cases for a user population can be identified. The
simulation requires systematic measurement as a foundation.

The introduction indicates that there has been limited research on customer-oriented
durability development in BEV drivetrains, especially regarding mechanical components.
Investigations into durability design based on representative load collectives are often
restricted by sample size and rely on simulation. Therefore, it is necessary to use new
technology to conduct big data durability analysis. The digitalization of the automotive
industry has made it possible to collect online data from connected vehicles. This wireless
collection of customer data with customer content enables the analysis of customer usage
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of vehicles and their components. This paper investigates representative customer load
collectives using cloud data obtained from over 30,000 customer vehicles. It introduces a
systematic analysis method for cloud data and applies it to derive load collectives for each
vehicle. Damage is calculated using these load collectives and component-specific Wöhler
parameters, leading to the establishment of statistical damage distribution. A groundbreak-
ing approach is introduced by defining the 1% vehicle as a benchmark for representative
load collectives, diverging from the conventional 1% customer definition. The analysis
reveals two important factors: driven mileage and vehicle quantity, shedding light on their
impact on the 1% vehicle and its associated damage. This study also includes a comparative
analysis at both the component and vehicle levels, highlighting typical properties of the
1% vehicle. This paper also includes an investigation to determine the necessary quantity
of vehicles for a meaningful statement in durability analysis, which is dependent on the
shape parameter of the distribution. Additionally, it presents a comparative examination of
market-specific customer requirements between the US and Europe. This paper presents a
novel method for conducting durability analysis in drivetrain development. The results
obtained from representative samples can be used as design standards and to optimize
durability design, as well as to conduct efficient and customer-oriented tests. Furthermore,
the method and results provide a basis for implementing innovative functions, such as
predictive maintenance.

2. Technologies for Data Collection in Customer Vehicles

Various technologies exist for collecting driving data. A review of traditional data
collection methods was presented by [32]. Online data collection has become increas-
ingly popular due to its advantages in sample size, configurability, processability, and
efficiency [45]. Wireless data collection and transfer are also suitable for mass-produced
vehicles. Figure 2 illustrates the general functional principle of online data collection. Typi-
cally, a central control unit communicates with a cloud server and multiple electronic control
units (ECUs). The system can receive signals from a controller area network (CAN-Bus) or
other bus systems and can send the signals to the cloud via telemetry. This configuration
allows for defining the considered vehicles, signals, and frequency for raw data collection,
providing flexibility for multi-purpose data collection.
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Vehicles equipped with wireless communication functions (over-the-air function, OTA-
Function) collect data in two main ways: raw data as time series and onboard aggregated
data, as shown in Figure 3. The raw signals, or signals after simple preprocessing, can be
uploaded to a data lake via telemetry as time series and evaluated using cloud analytics
tools. The signals must always be collected with a timestamp for each sample. This data
collection method provides a high level of information, which can be used, for example, to
describe driving operations. However, it can result in large amounts of data and incur costs
for transfer, storage, and computing resources. Therefore, due to technical and economic
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limitations, the data frequency transferred is usually lower than the original frequency.
Low-frequency data can still be utilized for various research purposes. The significance
level of low-frequency data in the development of drivetrain durability was investigated
in [45]. Data collected in this manner were used as a database for this paper. Raw data can
also be aggregated on board using various preprocessing, identification, classification, or
calculation methods, similar to the onboard collection function. The choice of classification
method and signals depends on the use case. The results of these online classifications,
which capture the most frequent data, will be sent to the cloud. The results are easily
usable for further analysis in the backend. This online data collection method allows for
the gathering of anonymous driving data with the customer’s consent. These data can be
linked to each vehicle, but the corresponding interpretation, including information about
the driver, driving behavior, and driving environment, is only allowed within the scope of
the General Data Protection Regulation (GDPR) law.
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3. Drivetrain Durability Design

The primary objective of durability design is to ensure the operational reliability of
the product, including vehicles, systems, and components, to prevent failure during their
intended lifetime. Drivetrain durability development is based on research into structural
durability, as introduced in [46–48]. In [49], the authors present special considerations for
analyzing drivetrain durability, including fundamental notices and statements about the
damage mechanisms of mechanical components, as well as component-specific calculations
in design. This study also outlines the procedure for reliability analysis and measures to
increase reliability, such as processing methods in production and typical durability testing
possibilities. Durability refers to a component’s ability to withstand various mechanical
loads, such as cyclic or sudden loads. Additionally, the load on the electric drivetrain can
be either electrical or thermal.

Figure 4 illustrates the relationship between customer stress and component strength
in durability design. Both distribution frequency and stress are represented logarithmically,
with frequency on the Y-axis and stress on the X-axis. The variation on the customer stress
side is caused by diverse types of vehicle use. Customer stress distribution is dependent on
driving behavior, the driven vehicle, and the driving environment [41]. Component strength
variation is primarily due to inhomogeneities in material properties and manufacturing
influences. To ensure a technically safe design, it is necessary to guarantee that the required
component strength, with its known distribution, is sufficiently distant from or has little
overlap with the stress experienced during customer operation. This often requires the
component to endure stress corresponding to the 1% quantile in customer operation with
a probability of 99.9%. In this context, the term ‘1% customer’ is often used to refer to a
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customer who experiences damage or stress higher than the remaining 99% of customers.
In the German automobile industry, it is expected that the drivetrain should be able to
withstand a mileage of at least 300,000 km without failure, even for the 1% of customers
who exert the most stress on the product [50–52]. This expected target mileage nowadays
depends on the intended application of the vehicle. For example, for a BEV as a small-city
vehicle (often a second car), the target mileage can be set at 150,000 km [53]. However, for
taxi use or ridepooling, the target mileage is often up to 600,000 km. Meeting requirements
and market-specific design philosophy are both important factors. Therefore, a market-
specific analysis of driving behavior and resulting customer collectives is a prerequisite.
To design drivetrain components or systems without flaws and oversizing, it is necessary
to determine the representative 1% customer based on knowledge of customer demands
derived from customer usage data.
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Figure 5 illustrates the process for optimizing a drivetrain durability design based on
customer data. The first step is to evaluate customer data to obtain real-life vehicle usage
in the form of load collectives. Simultaneously, the actual requirements in development
must be analyzed, including design and testing standards, based on the experience of
previous vehicles. This approach should approximate real customer usage. After comparing
customer requirements with design standards, it is then possible to identify optimization
potential and define new target requirements. These target requirements can be used as
design and test specifications. Furthermore, it is possible to make an objective comparison
between different markets and products.

World Electr. Veh. J. 2024, 15, x F� R PEER REVIEW 6 of 21 
 

distribution, is sufficiently distant from or has little overlap with the stress experienced 
during customer operation. This often requires the component to endure stress 
corresponding to the 1% quantile in customer operation with a probability of 99.9%. In 
this context, the term ‘1% customer’ is often used to refer to a customer who experiences 
damage or stress higher than the remaining 99% of customers. In the German automobile 
industry, it is expected that the drivetrain should be able to withstand a mileage of at least 
300,000 km without failure, even for the 1% of customers who exert the most stress on the 
product [50–52]. This expected target mileage nowadays depends on the intended 
application of the vehicle. For example, for a BEV as a small-city vehicle (often a second 
car), the target mileage can be set at 150,000 km [53]. However, for taxi use or ridepooling, 
the target mileage is often up to 600,000 km. Meeting requirements and market-specific 
design philosophy are both important factors. Therefore, a market-specific analysis of 
driving behavior and resulting customer collectives is a prerequisite. To design drivetrain 
components or systems without flaws and oversizing, it is necessary to determine the 
representative 1% customer based on knowledge of customer demands derived from 
customer usage data. 

 
Figure 4. Customer stress and component strength. 

Figure 5 illustrates the process for optimizing a drivetrain durability design based on 
customer data. The first step is to evaluate customer data to obtain real-life vehicle usage 
in the form of load collectives. Simultaneously, the actual requirements in development 
must be analyzed, including design and testing standards, based on the experience of 
previous vehicles. This approach should approximate real customer usage. After 
comparing customer requirements with design standards, it is then possible to identify 
optimization potential and define new target requirements. These target requirements can 
be used as design and test specifications. Furthermore, it is possible to make an objective 
comparison between different markets and products. 

 
Figure 5. � ptimization based on customer requirements. 

In the entire process, it is important to first create a clear overview of the damage 
mechanisms of the respective components. The service lifetime of the drivetrain, a 

Fr
eq

ue
nc

y

Customer stress Component strength

Figure 5. Optimization based on customer requirements.

In the entire process, it is important to first create a clear overview of the damage
mechanisms of the respective components. The service lifetime of the drivetrain, a complex
system consisting of numerous components and subsystems, is determined by the lifetime
of each individual component. Several commonly used classification methods exist for
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obtaining mechanical, electrical, and thermal load collectives from driving data. This
investigation focuses solely on rollover classification, which is illustrated in Figure 6.
Rollover classification is typically used for rotating components such as gears, bearings,
and shafts. Rollover classification necessitates a load signal, such as torque, in specific
classes, as well as a rotational speed signal. It explains how many rotations a component
has undergone due to the torque within a defined time interval, ∆t. To determine the
number of rotations based on the measured rotation speed, it should be divided by the
sampling time. The rollover number for a certain torque class, i, can be calculated using the
following equation for all speed samples within this load class:

ni = ∑
Speedi

60
·∆t (1)
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To estimate the damage and corresponding lifetime, linear damage accumulation is
performed using the Wöhler line [54] and load collectives [55,56]. Figure 7 displays an
exemplary double logarithmic Wöhler line and a load collective. LD and ND represent the
load class and the number of load or load cycles of fatigue strength range, respectively.
Li denotes the load of one load class, while Ni and ni are the corresponding load counts
that occur on the Wöhler line and in operation. Component-specific considerations are
necessary when evaluating collectives with Wöhler parameters, such as the inclination of
the Wöhler line or fatigue strength.
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The exponent k determines the inclination of the Wöhler line, which can be described
by the following equation:

Ni = ND ∗
(

Li
LD

)−k
(2)

The cumulative damage D can be calculated with the following equation according to
linear damage accumulation [53,54]:

D = ∑
i

ni
Ni

= ∑
i

ni
ND

∗
(

LD
Li

)−k
(3)

4. Investigation of 1% Vehicle

Small amounts of data are insufficient to adequately describe representative customer
collectives. To systematically collect and analyze data, it is necessary to first define the
required signals. To interpret customer driving behavior, it is important to consider the
accelerator pedal position, brake pedal position, recuperation level, selected driving mode,
and vehicle speed, with simultaneous acceleration and data fusion. These can provide
descriptive driver statistics, although individual driver identification is not possible. To
reconstruct driving conditions, various signals such as environmental temperature and
slope are required. Signals such as rotation speed and torque (EM/Wheel), temperature
(EM/Power electronics/Battery/Oil), voltage, and current (EM/Power electronics/Battery)
from the components can be directly processed to determine damage or stress.

Each active vehicle can save collected data for a defined duration or mileage as a data
package. This interval is referred to as a trip, which is the basic unit for further analysis.
Figure 8 illustrates that each data package contains time series and statistical information,
including frequency distributions, operation points, and load collective. By creating a data
matrix for each trip and each available vehicle in the market, a complete description of
component usage can be established. Combining all trips with a long enough duration of
one vehicle into a single package allows for a comprehensive analysis of component usage.
With enough data from multiple vehicles, it is possible to derive the distribution of damage
and identify critical situations, such as the top 1% load collectives. Typically, a vehicle is
used by multiple drivers. It is not feasible to directly identify individual drivers through
existing cloud data. Therefore, the vehicle is a more appropriate unit for describing vehicle
usage and its collectives, rather than the driver. As a result, the ‘1% customer’ term can be
revised to the more reasonable ‘1% vehicle’. This revised term maintains the same technical
meaning and content; 1% vehicles are those with damage higher than 99% of the remaining
vehicles. Similar definitions, such as 5% and 10% vehicles, can also be made. The damage
mechanisms of the components are different, leading to component-specific 1% vehicles.
Additionally, the 1% vehicle is market-specific and model-specific due to differences in
usage.
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Figure 8. Data analysis for 1% customer collectives.
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For this investigation, an electric SUV was chosen. This SUV has two versions in
Europe: a basic version with less power and battery capacity, which serves as the reference
vehicle, and a performance version with more power and battery capacity, which is the
main focus of this paper. In the US, only the performance version of the car is available.
The drivetrain and its components are identical between the EU and US versions. All
vehicles are equipped with an all-wheel drive, consisting of a primary EM on the rear axle
and a secondary EM on the front axle. Each shaft is equipped with a single-speed gearbox
specifically designed for the EM.

A database of 10,812 performance vehicles and 14,066 basic vehicles in Europe, as well
as 15,508 vehicles in the US, was used to evaluate driving data in the backend. Figure 9
displays the probability distribution of annual mileage for these vehicles. To ensure a
fair comparison, the driven mileage of each vehicle was scaled to the same period due to
varying measurement durations. It is worth noting that vehicles with an annual mileage
exceeding 60,000 km are uncommon. To ensure accuracy, the figure limits annual mileage
to 60,000 km. The majority of vehicles in Europe (blue for performance and green for
basic) have an annual mileage between 6000 km and 18,000 km. The average mileage
is approximately 11,000 km, with a median mileage of about 10,000 km. According to
the German Federal Motor Transport Authority, the average annual mileage per car in
2020 was approximately 13,323 km [57]. By contrast, US customers have a higher annual
mileage. The average mileage is approximately 14,000 km. The median mileage is similar
to Europe at 12,000 km. According to [58], the average mileage for electric cars in the
US is approximately 11,400 km, while electric SUVs have an average mileage of around
16,400 km. Annual mileage depends on various factors, such as usage area, scenarios,
vehicle type, and the drivetrain. The basic version of performance vehicles in Europe
generally has a lower annual mileage due to a smaller battery and shorter operating range.
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Figure 9. Annual mileage distribution in Europe and the US.

To conduct an analysis of the 1% vehicle, the data for each vehicle were classified
to create load collectives. These collectives were then scaled to a standard mileage of
300,000 km for comparison. Using these collectives, the damage to each component was
calculated based on component-specific Wöhler parameters. The components selected for
analysis were the gear with tooth root and tooth flank, bearing, and shaft on both the rear
and front axles. The classification of the shaft was based on the wheel torque and wheel
speed, while the torque and speed of the EM were used for the other components. After
damage calculation, statistical damage distribution could be determined to identify the 1%
vehicle. Annual mileage was used as a selection criterion to choose effective vehicles. The
minimum annual mileage threshold affects the number of effective vehicles, which is a key
factor in determining the 1% vehicle. Finally, only the effective vehicles should be analyzed
to determine the 1% vehicle.



World Electr. Veh. J. 2024, 15, 112 10 of 21

Figure 10 shows the damage distributions after filtering with 12,000 km for the gear
tooth flank on the front axle. The right part of the figure shows a typical damage distribution
graph with the damage as the logarithmic X-axis and the frequency as the Y-axis, similar
to a normal distribution. Distribution fitter functions can be used to obtain distribution
parameters such as scale and shape parameters of the Weibull distribution. Percentiles can
be calculated to determine the damage of the 1% vehicle based on this distribution and
its positioning.
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Figure 10. Distribution of damage among vehicles fitted with Weibull or Gaussian distribution
(red lines).

Figure 11a illustrates the impact of driven mileage on the 1% vehicle and its damage to
the tooth flank on the front axle. The damage of the 1% vehicle with almost all the vehicles
(selection criteria: mileage greater than 0 km) is significantly higher than that of the other
annual mileages due to the possible special driving situations, such as test drives, which
often involve high loads to detect vehicle performance limits. As previously mentioned
in [45], drivers typically require an adaptation phase to become accustomed to driving
a new vehicle. During this period, the collected data on damages may not accurately
reflect normal driving behavior. Additionally, seasonal influences may also impact the
data collected. Therefore, the information on damage from these vehicles is not statistically
stable and cannot be used for further analysis. This impact can be mitigated by increasing
the distribution density, which compensates for the increased number of vehicles analyzed.
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Figure 11. Impact of mileage on the 1% vehicle of the tooth flank. (a) Impact of mileage on the 1%
vehicle of tooth flank on front axle; (b) Impact of mileage on the 1% vehicle of tooth flank on the
rear axle.

When using annual mileage of 6000 km, 12,000 km, and 18,000 km as selection criteria,
the damages of the 1% vehicle remain at a similar level. However, if the vehicle amount
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is reduced due to a higher mileage demand, the damage of the 1% vehicle decreases,
particularly in Europe. This is because the number of selected vehicles falls below a certain
threshold. After selecting European vehicles with an annual mileage of at least 24,000 km,
there are fewer than 600 vehicles remaining, which can lead to unreasonable statements.

Another reason for the lower tooth flank damage in vehicles with higher annual
mileage (over 40,000 km per year) could be attributed to the frequency of highway driving,
which typically involves lower torque demand. This relationship is illustrated in Figure 12.
This figure indicates all the vehicles in the EU and the US with a driven mileage of over
6000 km and up to 60,000 km. This figure shows that the high damage vehicles are the
ones with lower annual mileage. This can be due to driving maneuvers, such as more city
driving with acceleration and deceleration. It is more likely that vehicles with a low annual
mileage are driven in an urban scenario with many start/stop maneuvers. When the vehicle
shows a higher annual mileage, such as for vehicles with more use on the highway, the
damage remains low because of driving maneuvers with lower torque. During a start/stop
maneuver in city driving, the torque is much higher compared to when the power reaches
the power hyperbola.
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Figure 12. Relationship between tooth flank damage and annual mileage with an annual mileage of
more than 6000 km.

When comparing the damage of the 1% vehicle in the EU to that of the 1% vehicle in
the US, it is evident that the damage in the US is significantly lower, at approximately 74.9%
of the damage in Europe. This suggests that the customer requirements for the tooth flank of
the front axle in Europe are higher than those in the US. When analyzing vehicles in Europe
and the US, combining them into one database can reduce the damage caused by the 1%
vehicle due to the lowering effect of the US vehicles. However, in Figure 11a, where there
are more vehicles at the lines of the 1% and 5% vehicles in the US, the decrease is not as clear.
The damage caused by the 1% or 5% vehicle remains almost constant. Using 18,000 km
filtering as an example, the damage caused by 5% of vehicles in Europe is approximately
41.1% of that caused by 1% of vehicles. The same ratio applies to the US, at about 41.2%.
The damage caused by the basic version’s 1% vehicles, represented by the green point in
this figure, is almost at the same level as the damage caused by 10% performance vehicles
in Europe. This provides evidence for the design philosophy of differential treatment. Thus,
the basic version was not specially analyzed in this paper further.

Figure 11b displays the 1% vehicle damages of the tooth flank on the rear axle in
relation to the driven mileage. The line trend is similar to that of Figure 11a. The vehicle
is driven by two axles due to the all-wheel drive being applied by the defined torque
distribution map. The primary torque source is responsible for the majority of the wheel
torque. It is worth noting that the 1% vehicle damage in the US is 87.4% compared to
Europe, which is attributed to different driving behaviors. The 5% and 10% vehicles are in
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the same position at 12,000 km, indicating similar customer requirements. The tooth root
results are comparable due to the similar Wöhler inclination. Therefore, the results are not
presented separately in this paper.

Figure 13a displays the 1% vehicle damage of the bearing on the front axle in relation
to the driven mileage. Despite different Wöhler parameters, the 1% vehicle damage in
the US is 95.4%, almost identical to that in Europe. Figure 13b illustrates the 1% vehicle
damage of the bearing on the rear axle. The 1% vehicle damage in the US is 115.3%, higher
than the value in Europe. The stability of the damage line course in Europe is primarily
influenced by the driven mileage.
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Figure 13. Impact of mileage on the 1% vehicle of the bearing. (a) Impact of mileage on the 1%
vehicle of the bearing on the front axle; (b) Impact of mileage on the 1% vehicle of the bearing on the
rear axle.

Figure 14 presents the damages of the front and rear shafts, which are derived from
the wheel speed and shaft torque. The difference between the EU and US is not significant,
especially for the rear axle after 12,000 km. It is important to note that the relationship
between shaft damage and all-wheel drive strategy is dependent.
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Figure 14. Impact of mileage on the 1% vehicle of shafts.

Typically, one vehicle at the 1% vehicle position with its collectives can be found.
However, to reduce randomness in customer usage, it is recommended to select several
vehicles closest to the 1% vehicle (99th percentile) to build the overall collective. For
instance, the target can be defined as four vehicles from both sides of the 1% vehicle
position, including the exact 1% vehicle. Alternatively, more vehicles can be considered,
or only vehicles from the right side of the 1% vehicle position. However, if the vehicles
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only come from one side, it may lead to undersizing or oversizing. Figure 15 illustrates
an example of 1% vehicle collective of the tooth flank. The five collectives differ due to
their driving behaviors. The red vehicle is driven with more maximum torque and less
medium load range compared to the other vehicles. The damage is almost the same for all
the collective forms. The black line represents the collective with average values for each
torque class, defined as the 1% vehicle collective.
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Figure 15. An example of 1% vehicle collective from five vehicles.

The results in this section indicate that the mileage driven and the number of vehicles
are two factors that determine the 1% vehicle. It is important to note that the 1% vehicle is
specific to each component and requires separate consideration.

5. Comparison between Component Level and Vehicle Level

There is often a debate about whether to target the collective at the component or
vehicle level for drivetrain or vehicle testing in the development of durability. Previous
studies [32,59] have made initial attempts at total vehicle and chassis development in this
direction. To increase objectivity, other signals or parameters such as vehicle speed, acceler-
ation, or acceleration/weight ratio, which can be transformed into component collectives,
can be used for collectives at the vehicle level. The first approach at the component level
results in precise component dimensioning and testing. In order to combine collectives
for different components, a method is introduced in [35] that uses collectives as a subset
when they do not have a cross point in their collectives, and overlapping collectives when
they do have a cross point. However, this method requires comprehensive knowledge of
each component, which may require more effort. The second approach at the vehicle level
focuses on the vehicle or system. The implementation, especially in optimizing the testing
cycle, is more straightforward. However, there is a risk of undersizing several components.

In terms of durability design for all-wheel vehicles, it is important to discuss the design
of components on both the front and rear axles, taking into account specific customer
requirements or worst-case scenarios at the vehicle level. Therefore, it is necessary to
identify any discrepancies in the design from various perspectives. To clarify, this section
investigates the 1% vehicle and analyzes its total wheel torque and wheel speed at the
vehicle level. The fictitious Wöhler inclination 5, typically used in analyzing components
with unknown Wöhler parameters, is used to calculate the damage at the vehicle level. The
fatigue strength is based on a number of loads of 107. This approach generates lines of
fictitious damage at the vehicle level, as shown in Figure 16. The impact of driven mileage
and vehicle quantity can be directly observed.
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Figure 16. Impact of mileage on the 1% vehicle at the vehicle level.

The vehicles in Europe are used as an example of this explanation. In total, there are
approximately 4000 effective vehicles that meet the 12,000 km filtering criteria. The basic
requirement in design is that undersizing should be obviated. The vehicle closest to the 1%
position at vehicle level, along with several other nearby vehicles, may not be stationary
for each component of the 1% vehicle without undersizing. To clarify, we analyzed vehicles
to the right of the 1% position at the vehicle level, whose mean is already less than the 1%
vehicle. This can reduce the likelihood of damage to their components being lower than
the damage to the 1% vehicle, thus potentially preventing undersizing.

The ratios of damage between the components of vehicles at the vehicle level and the
1% component-specific damage are calculated, as shown in Figure 17. Values over 1 indicate
damages that are higher than the 1% value. In Figure 17a, only 0.5% of the total vehicles
on the right side of the 1% vehicle position were selected to build the overall collective,
ensuring that the design of all components meets the basic goal without undersizing.
However, this results in an approximately 10% oversizing of the bearing on the front axle
and the gear and bearing on the rear axle. The number of vehicles is a key factor that affects
the statement in this section. By applying a filtering criterion of 18,000 km, only about
1600 vehicles remain. The same analysis was conducted on these vehicles, and the results
are presented in Figure 17b. In this case, only 0.4% of the total vehicles on the right side of
the 1% vehicle position were selected to build the overall collective. Therefore, the design
of all components can meet the basic goal without undersizing. When the total number
of vehicles is lower, the damage curves become more sensitive to changes in position and
vehicle count. If slight oversizing is accepted in design, such as the pink line in Figure 17,
the 1% vehicle at the vehicle level can also be used for component dimensioning. This
can significantly reduce development time and costs. However, this statement depends
on various factors, such as the number of vehicles or market-specific damage distribution.
Additionally, the statement is only valid for all-wheel drive vehicles with permanent torque
distribution between the front and rear axles.

To explain the results in Figure 17, the peculiarity of damage distribution through a
sensitivity analysis was investigated, using the tooth flank of the front axle as an example.
Each vehicle in the cloud was originally numbered in order. To create Figure 18, the
damages of effective vehicles, after applying a filtering criterion of 12,000 km, are ordered
numerically. Most vehicles only have low damage values until approximately the 4000th
vehicle. The position of the 1% vehicle is indicated by the red line in the breakover region.
This figure displays several data points adjacent to the 1% distribution. The number of
vehicles on the right side of the 1% position depends on the total number of vehicles,
which corresponds to the lines in the figures in part 4. The curve after the 1% line rises
significantly, indicating the line’s sensitivity. In Figure 18a, a change of only 0.1% from 99.1%
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or 88.9% results in a 3.2% increase or decrease in damage. The position is altered across four
vehicles, but the change rate remains stable. A 0.5% change results in a significantly higher
increase of 18.94% compared to a decrease of 11.65%, as indicated by the damage curve
line progression. The distribution density decreases as the number of vehicles decreases, as
shown in Figure 18b. A 0.1% change results in a shift of only two vehicles. There are few
vehicles to the right of the 1% vehicle position. A 0.5% change leads to a 25.56% increase.
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Figure 17. Ratio to the 1% vehicle damage with different vehicle amounts. (a) Ratio to the 1% vehicle
damage with different vehicle amounts from right side of the 1% position—EU, 12,000 km as filtering;
(b) ratio to the 1% vehicle damage with different vehicle amounts from the right side of the 1%
position—EU, 18,000 km as filtering.
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Figure 18. Damages arranged in order of numerical size. (a) Sensitivity of the damage curve with
12,000 km filtering; (b) sensitivity of the damage curve with 18,000 km filtering.

Table 1 provides an overview of the ratios of different percentages in comparison to
the 1% vehicle damage for each component and at the vehicle level. The percentages are
determined based on the distribution specific to each component.
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Table 1. Damage ratio compared to the 1% vehicle damage of each component and at the vehicle level.

Percent 2% 5% 10% 50%

Front-Tooth Flank 72.4% 43.5% 28.4% 5.4%
Front-Tooth Root 72.2% 45.3% 29.7% 5.9%

Front-Bearing 80.8% 57.3% 41.8% 12.4%
Front-Shaft 72.9% 47.0% 31.3% 6.7%

Rear-Tooth Flank 79.0% 52.7% 38.5% 13.5%
Rear-Tooth Root 75.7% 54.7% 40.8% 15.5%

Rear-Bearing 88.0% 74.8% 65.1% 39.8%
Rear-Shaft 77.7% 58.0% 44.9% 19.1%

Vehicle level 70.9% 47.7% 32.2% 8.9%

6. Investigation of Needed Vehicle Quantity

As previously mentioned, the number of vehicles is a crucial factor in the analysis. To
determine the sensitivity of this statement to the number of vehicles, the same investigation
was conducted with a larger sample size. Specifically, the number of vehicles in Europe
was increased to over 26,000, and in the USA, it was increased to about 22,000. Figure 19
illustrates that with a larger number of vehicles, the damage estimated for the 1% vehicle
was similar to that of the 6000 km, 12,000 km, and 18,000 km scenarios because the initial
vehicle number provided a significant level of statement validity. As the number of vehicles
increased, the results for Europe when filtering with 24,000 km or 30,000 km were more
reasonable. In the United States, the line position remained nearly unchanged. For annual
mileages exceeding 18,000 km, the damage of the 1% vehicle was even more reasonable
due to the increase in vehicle numbers.
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Figure 19. Impact of mileage on the 1% vehicle of the tooth flank on the front axle with additional vehicles.

In the study of the 1% vehicle, an important question arises: how many vehicles are
required to provide a stable statement about the damage caused by the 1% vehicle? To
answer this question, another investigation was conducted, as shown in Figure 20. The
figure was drawn by selecting 100 to 10,000 random effective vehicles from those available
in Europe. The damage caused by the 1% vehicle was calculated and illustrated on a
chart for each iteration with varying amounts of random vehicles. The 10,000 iterations
conducted in this investigation demonstrate the variance of the damage caused by the 1%
vehicle with different vehicle amounts. The damage’s 5–95% confidence interval (shown
as boxes) should fall within the 90–110% range of the target damage, which is defined as
the damage caused by the 1% vehicle, considering all available vehicles. In Europe, this
translates to 4000 effective vehicles covering more than 12,000 km. According to the given
probability distribution in Figure 8, a minimum of 10,000 vehicles should be defined for
investigating the 1% vehicle. The required number of vehicles depends on the distribution’s
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standard deviation, shape parameter, and possible spread. It is important to maintain a
balanced and objective approach, avoiding biased language and subjective evaluations.
Despite the number of vehicles available in the market, approximately 4000 vehicles are
still required due to the unique damage distribution with its shape parameter.
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7. Market-Specific Requirements

As discussed in part 4 of this paper, the requirements for several components in the
US are lower than those in Europe. Figure 21 compares the requirements for bearing, gear
tooth flank, gear tooth root, and shaft between the 1% vehicle in the USA and the EU.
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Figure 21. Market-specific customer requirements. (a) Market-specific customer requirements for
components of the front axle; (b) Market-specific customer requirements for components of the
rear axle.

In this figure, the damage caused by the 1% vehicle in the EU is higher than in the
US below the red line. Due to different component-specific Wöhler parameters, for the
bearing on the front axle, the damage of the 1% vehicle is precisely on the line, which is
equivalent to that of the US, as shown in Figure 21a. On the other hand, for the bearing
on the rear axle, the situation is reversed. Generally, the 5% vehicle requirements show a
smaller difference between Europe and the USA.

The behavior of customers while driving is the primary cause of varying loads on
vehicles and their components. Figure 22 displays a differential chart of the operating point
frequency of customers in the EU and the USA. Customers in the EU dominate in the high
acceleration and high-speed areas. The high acceleration area also typically results in high
loads on the drivetrain. Due to torque distribution, when high torque is required, more
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torque is delivered from the front axle, resulting in a higher load on the front axle in the
EU compared to the US. This causes a higher rate of vehicle damage for EU customers.
However, in the middle acceleration area, which is significant for bearing damage, US
customers drive more frequently. Therefore, the rate of bearing damage for 1% of vehicles
is nearly the same for both the EU and the USA.
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8. Conclusions

The derivation of load collectives being representative for customer data regarding
durability design is a core issue in drivetrain development. This is the basis for the precise
dimensioning and effective testing of drivetrain components. This study introduces a new
method to obtain customer driving data by using online data collection. Driving data are
collected from the vehicle and then sent to the cloud. This advanced technology not only
facilitates robust data collection but also enables the analysis of extensive customer datasets
in the cloud, establishing a fundamental framework for customer-centric development.

The procedure for systematically analyzing component design, with the trip as the
basic unit, was defined based on the presented data matrix, taking into account the amount
of data in the backend. By analyzing time series and statistical data, the lifetime usage
of each component and vehicle can be determined for a sufficient amount of data. By
comparing all vehicles, the distribution of damage can be determined to identify the
top 1% load collectives. For the specific context of drivetrain durability design, the ‘1%
vehicle’ instead of the commonly used ‘1% customer’, as defined, serves as a representative
embodiment of customer requirements.

This paper investigates the performance and basic versions of an electric SUV in the
EU and US. The database includes a total of 24,878 vehicles in the EU and 15,508 vehicles in
the US, with only the performance version available in the US. We conducted a statistical
plausibility check of the annual mileage data and derived collectives of the vehicles, which
were then scaled to a standard mileage of 300,000 km for comparison. Statistical distribution
was used to calculate the damage to the tooth root and tooth flank, bearing, and shaft on
both the rear and front axles caused by those collectives. The derivation of 1% vehicles that
are specific to components, models, and markets is a crucial aspect of our methodology.

The filtering criteria for selecting effective vehicles was based on driven mileage in
order to avoid special driving situations that could excessively influence the 1% vehicle
without being representative in the long term. The key parameters for understanding the
1% vehicle in this analysis are the number of vehicles and the driven mileage, which were
determined by analyzing the damage lines with different filtering criteria. In the compari-
son between component level and vehicle level, the aim was to discover whether the 1%
vehicle at the vehicle level was suitable for a description of representative component usage.
The results show that the 1% vehicle at the vehicle level could also be used for component
dimensioning in this investigation, if slight oversizing is accepted in the design. An investi-
gation into the required number of vehicles indicates that a minimum of 10,000 vehicles is
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necessary to ensure statistical robustness. This corresponds to approximately 4000 efficient
vehicles with an annual mileage of 12,000 km. Additionally, a comparative analysis of
driving behavior between European and American customers was conducted to clarify
market-specific loads on drivetrain components.

This paper analyzes customer data to identify representative customer requirements
for design. However, the number of vehicles analyzed is limited compared to the number
of vehicles sold on the market. To make a more stable statement, more vehicles need to
be analyzed. To trace the source and understand 1% vehicles, additional analysis should
be conducted on each vehicle closest to the 1% vehicle line. It is important to understand
customer driving behavior and to reconstruct driving situations. In this paper, only one
vehicle type was analyzed. To ensure a general common design standard or to identify
special requirements, it is necessary to analyze more vehicle types. Another important
investigation that should be conducted concerns the relationship between mechanical and
electric components, as their damage mechanisms differ. Therefore, the 1% vehicles may be
completely different regarding electric components.

In the future, we suggest a paradigm shift towards comprehensive data collection
that continuously includes all markets and models. This approach aims to enhance data-
driven development by emphasizing a customer-centric philosophy. We recommend
systematically adjusting drivetrain component requirements to align with customer needs.
This ensures a thorough understanding of real-world usage patterns, ultimately improving
the efficiency and effectiveness of drivetrain development processes.
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