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Abstract: This article provides a comprehensive overview of state-of-the-art techniques for detecting
and diagnosing stator winding inter-turn short faults (ITSFs) in permanent-magnet synchronous
motors (PMSMs) for electric vehicles (EVs). The review focuses on the following three main categories
of diagnostic approaches: motor model-based, signal processing-based, and artificial intelligence
(AI)-based fault detection and diagnosis methods. Motor model-based methods utilize motor state
estimation and motor parameter estimation as the primary strategies for ITSF diagnosis. Signal
processing-based techniques extract fault signatures from motor measured data across time, frequency,
or time-frequency domains. In contrast, AI-based methods automatically extract higher-order fault
signatures from large volumes of preprocessed data, thereby enhancing the effectiveness of fault
diagnosis. The strengths and limitations of each approach are thoroughly examined, providing
valuable insights into the advancements in ITSF detection and diagnosis techniques for PMSMs in
EV applications. The emphasis is placed on the application of signal processing methods and deep
learning techniques in the diagnosis of ITSF in PMSMs in EV applications.

Keywords: artificial intelligence (AI); electric vehicles; fault detection and diagnosis; inter-turn short
fault (ITSF); PMSM; signal processing

1. Introduction

Electric vehicles (EVs) are attracting more and more attention in transportation due
to enhanced performance, safety, and reduced environmental impacts. In particular, per-
manent magnet synchronous motors (PMSM) are applied widely as traction motors in
EVs because of their high efficiency and power density. The healthy operation of the
traction motor is crucial for the proper functioning of an EV. Since EV motors run in a
harsh environment and complicated operating conditions, the stator winding insulation
exhibits a higher failure rate [1]. This fault can lead to a catastrophic accident; therefore,
timely identification and diagnosis of insulation faults for traction PMSMs are extremely
important to ensure the safe operation of EVs.

It is reported that inter-turn short faults (ITSF) account for 21% of all motor faults [2],
which can lead to reduced motor efficiency and power output and even catastrophic failure.
The majority of ITSFs originate in winding faults, which are caused by insulation malfunc-
tions [3], but rapidly evolve into more severe failures that substantially impact motors. On
the one hand, short-circuit paths in the motor can lead to a decline in its performance. These
paths allow currents to bypass the normal winding segments [4], leading to reduced output
power and efficiency. For PMSMs, this type of fault can generate a magnetic field with a
higher intensity than the coercivity of the magnets, leading to permanent demagnetization
and machine damage. On the other hand, ITSFs cause excessive temperature rises in the
motor. Excessive heat can accelerate the aging and embrittlement of insulation materials,
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potentially leading to burnouts and exacerbating the short-circuit phenomenon [5]. Fur-
thermore, ITSFs increase motor noise and vibration. The presence of short-circuit paths
introduces additional electromagnetic forces and vibrational forces in the motor, resulting
in abnormal sounds and vibrations [6]. This not only adds to the noise pollution in the
working environment but also risks loosening and damaging other components, further
exacerbating the development of faults.

The impacts and losses caused by stator winding short circuits in electric motors are
extremely severe [7]. Therefore, timely diagnosis and repair of these faults are crucial to
ensure the safe operation and prolongation of the motor’s lifespan.

By conducting regular motor inspections, tests, and maintenance, as well as imple-
menting appropriate insulation protection measures, the occurrence of stator winding
short-circuit faults can be minimized. This comprehensive approach not only enhances
the reliability of electric motors but also ensures their optimal performance and extends
their lifespan [8]. Many approaches have been proposed to diagnosis and detect ITSFs, and
these methods can be categorized into three types, as follows: model-based fault diagnosis
methods; signal processing-based fault diagnosis methods; and artificial intelligence-based
fault diagnosis methods. The concept of ITSF diagnosis is visually represented in Figure 1.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 2 of 29 
 

temperature rises in the motor. Excessive heat can accelerate the aging and embrittlement 
of insulation materials, potentially leading to burnouts and exacerbating the short-circuit 
phenomenon [5]. Furthermore, ITSFs increase motor noise and vibration. The presence of 
short-circuit paths introduces additional electromagnetic forces and vibrational forces in 
the motor, resulting in abnormal sounds and vibrations [6]. This not only adds to the noise 
pollution in the working environment but also risks loosening and damaging other com-
ponents, further exacerbating the development of faults. 

The impacts and losses caused by stator winding short circuits in electric motors are 
extremely severe [7]. Therefore, timely diagnosis and repair of these faults are crucial to 
ensure the safe operation and prolongation of the motor’s lifespan. 

By conducting regular motor inspections, tests, and maintenance, as well as imple-
menting appropriate insulation protection measures, the occurrence of stator winding 
short-circuit faults can be minimized. This comprehensive approach not only enhances 
the reliability of electric motors but also ensures their optimal performance and extends 
their lifespan [8]. Many approaches have been proposed to diagnosis and detect ITSFs, 
and these methods can be categorized into three types, as follows: model-based fault di-
agnosis methods; signal processing-based fault diagnosis methods; and artificial intelli-
gence-based fault diagnosis methods. The concept of ITSF diagnosis is visually repre-
sented in Figure 1. 

Data

Input

Signal
processing

Check consistence with 
Signal Pattern ClassifierA great deal of 

Online data

Check consistence 
with Model

Residual 
classifier

Small amount of Online data

Huge amount of 
Historic data Check consistence with

Neural Network Model

Check consistence  
with KB Classifier

Knowledge Base(KB) Search EngineTraining
&Learning

Output

ITSF

 
Figure 1. Data flow of ITSF diagnosis. 

Figure 1 illustrates the upper section, which outlines model-based fault diagnosis 
methods that rely on a limited amount of online data for fault detection and diagnosis 
purposes. Parametric mathematical models can be derived, either through fundamental 
principles or by utilizing system identification techniques. The data-processing engine 
takes input–output data from the system and uses it to compare the measured data with 
the predictions of the model. This process produces residuals, which represent the differ-
ences between the observed and predicted values. Following that, a residual classifier or 
classifier is utilized to assess the residuals and detect the occurrence of faults. This classi-
fier plays a crucial role in determining the potential type of fault that might be present in 
the system. Ideally, a well-designed model-based fault diagnosis method is primarily sen-
sitive to system faults, while being relatively insensitive to disturbances or deviations in 
the system inputs. This ensures that it can accurately identify and diagnose actual faults 
in the system without being significantly affected by external factors or non-fault-related 
changes in the system inputs. 

Figure 1. Data flow of ITSF diagnosis.

Figure 1 illustrates the upper section, which outlines model-based fault diagnosis
methods that rely on a limited amount of online data for fault detection and diagnosis
purposes. Parametric mathematical models can be derived, either through fundamental
principles or by utilizing system identification techniques. The data-processing engine
takes input–output data from the system and uses it to compare the measured data with the
predictions of the model. This process produces residuals, which represent the differences
between the observed and predicted values. Following that, a residual classifier or classifier
is utilized to assess the residuals and detect the occurrence of faults. This classifier plays a
crucial role in determining the potential type of fault that might be present in the system.
Ideally, a well-designed model-based fault diagnosis method is primarily sensitive to
system faults, while being relatively insensitive to disturbances or deviations in the system
inputs. This ensures that it can accurately identify and diagnose actual faults in the system
without being significantly affected by external factors or non-fault-related changes in the
system inputs.

The middle section of Figure 1 presents the block diagram representing signal-based
fault diagnosis methods. Signal-based fault diagnosis methods revolve around the association
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between faults and signal patterns. These techniques capitalize on the fact that faults in a
system tend to have a direct impact on output variables. Consequently, most signal-based
fault diagnosis methods leverage sampled signals of these output variables instead of
relying on intricate dynamic input–output models of the system. By scrutinizing these
signals, these methods can adeptly detect and diagnose faults, eliminating the necessity for
comprehensive system modeling. This characteristic proves to be advantageous in complex
industrial processes or machine systems, where obtaining precise input–output models is
often unattainable and estimating their parameters is difficult.

In cases where a process is too excessively intricate to be accurately modeled ana-
lytically and traditional signal analysis approaches do not provide definitive diagnoses,
artificial intelligence-based fault diagnosis methods come into play. These methods typi-
cally involve utilizing extensive historical data to train models and make accurate predic-
tions regarding system faults. This leads to artificial intelligence AI -based fault diagnosis
methods, as depicted in the bottom section of Figure 1. Such methods rely on mining
implicit knowledge from extensive historical data using machine learning techniques. Once
knowledge is derived from historical data, it is utilized to create a knowledge base that
represents the implicit dependencies among system variables. Subsequently, the consis-
tency between recent data and the knowledge base is examined. Finally, a classifier is
employed to make the ultimate decision based on the available information. In recent years,
deep neural networks have emerged as the most popular intelligent approach. Neural
networks possess advantages such as learning complex features, strong robustness, han-
dling large-scale and high-dimensional data, and generalization capabilities in diagnosing
ITSFs in PMSMs. Leveraging the powerful capabilities of neural networks can improve
the accuracy and efficiency of motor fault diagnosis, ensuring the safe operation of motors.
The above three approaches for PMSM ITSF diagnosis are comprehensively reviewed in
the following sections.

2. Motor Model-Based Approach to Fault Diagnosis

The model-based fault diagnosis method is one of the fault diagnosis methods pro-
posed decades ago. It requires a more accurate mathematical model of the PMSMs, and
its advantage is that the internal state of the system and the influence of the fault on the
machine can be unveiled. The framework of model-based diagnosis is shown in Figure 2.
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With a loss in generality, the system model can be expressed in a general state–space
model [9]:

yk = F(uk, xk, dk, fk, θ) (1)

where the k subscript represents the time indicator, xk is a state vector, uk is the input, dk
represents modeling errors, measurement noise, and external interference, fk indicates the
possible faults to be detected, θ is a system parameter.

Examining changes in state variables and model parameter outputs provides a means
to assess the presence of faults, as faults typically result in observable variations in these
quantities. Based on (1), the model-based fault diagnosis method utilizes input data to
generate estimates for outputs, parameters, and states. These estimates are obtained
through the implementation of the method. As shown in Figure 2, fault diagnosis will
be conducted by examining the resulting residuals between these estimates and their
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expected values. The model-based fault diagnosis approach can be classified into two main
categories: state estimation and parameter estimation.

2.1. State Estimation Method

The method of state estimation is the process of comparing the system state estimated
by the state observer with the actual signal detected by the system and using the generated
residual signal as the basis for fault diagnosis. In addition, the state estimation method
can also obtain the fault severity and fault location by analyzing and evaluating the fault
residual signal.

Due to its simplicity, traceability, and robustness, the Kalman filter (KF) has been
proven to be the optimal solution for state estimation in linear dynamic systems. The state
observer of KF is: { .

x(t) = A · x(t) + B · u(t) + v(t) + w(t)
.
y(t) = C · x(t) + v(t)

(2)

where x(t) and u(t) are respectively the state and input control, v(t) is noise measurement,
w(t) is an external disturbance vector. A , B and C are, respectively, the state transition
matrix, control input matrix and state observation matrix.

The health model of the Kalman filter is used to estimate the residual voltage drop
of the rotor reference DQ axis under an ITSF [10]. This observer avoids the use of voltage
sensors but does not reduce the diagnostic accuracy of the ITSF. Ali performed KF observa-
tions on the current and voltage signals respectively [11], using the residual signal as the
fault detection index; this method was robust against different fault resistances. However,
linear KF cannot be used for systems with significant nonlinearity. Since most systems
are nonlinear, suboptimal state estimation techniques can be employed. The extended
Kalman filter (EKF) is one of these suboptimal techniques [12], where the measurement and
system model equations are linearized, enabling the application of the linear Kalman filter
algorithm. Nonetheless, the linearization in EKF may introduce instability to the method,
particularly when dealing with extremely nonlinear systems. To overcome the limitations
of EKF, the unscented Kalman filter (UKF) was proposed in [13]. The UKF employs a set of
sigma points to estimate the propagation of the mean and covariance matrix [14]. EKF and
UKF were used to detect the percentage and location of faults [15]. Another difference in
the method is that the ratio of short-circuit turns is used as the state estimator.

The ITSF diagnosis method based on the Luenberger state observer and current second-
order harmonics was established in [16]. The advantage of this method is the ability to
assess the severity of failures, as well as the efficiency with which failures can be detected
at an early stage and under various operating conditions. A high-order sliding mode
observer was used to estimate the rotor flux and three-phase stator current in the fault
state [17]. By comparing the measured and estimated values of stator three-phase currents,
a fault detection method was designed. This comparison produces a set of residuals
that are sensitive to failure. The analysis of these residual signals can be used to detect
the damage of the stator windings. An equivalent model of the single-phase interturn
fault motor served as the observer [18], where the error between the measured current
and the estimated current were corrected as the core of the fault severity estimator. A
sufficiently accurate model is established to determine the variation of different variables in
the motor under this fault condition, and then the residual generated by the sliding mode
observer is used to detect the ITSF. In another study, a PMSM model of single-phase short-
circuit fault is established, and a sliding mode observer is developed to extract voltage
disturbance information from the derived equivalent control signal to detect interturn
faults [19]. However, the Luenberger observer is sensitive to changes in motor parameters.

Table 1 compares the advantages and disadvantages of the existing state estimation
methods. The state estimation method has the advantages of early fault detection, non-
invasiveness, real-time and multiple fault detection. However, it also has disadvantages
such as a dependence on sensors, difficulty in parameter modeling, complex data process-
ing, and false positives and false negatives.
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Table 1. Summary of existing state estimation methods for ITSF diagnosis.

Reference Year Method Advantages Disadvantages

[10–15] 2019, 2022, 2023,
2023, 2023, 2020 Kalman filter

High sensitivity for
fault diagnosis

High model robustness

High demands for
model parameters

Inapplicable to
nonlinear systems

[16] 2021 Luenberger observer
Applicable to faults

under different
working conditions

Complicated calculation

[17] 2017 High order sliding model Applicable to nonlinear system System instability
caused by friction

[18] 2019 New equivalent model High efficiency in diagnosis High sensitivity to noise

[19] 2020 Sliding mode observer Strong interference
suppression capabilities

Complexity in
model parameters

2.2. Parameter Estimation Method

The principle of the parameter estimation method is to select the key parameters of
the system for online identification and compare the estimated value with the parameters
under the normal system to achieve fault diagnosis. Since some parameters of the machine
are changed because of ITSFs, the fault diagnosis can be carried out by identifying these
parameters online. When ITSFs occur, the stator three-phase winding is asymmetrical, so
that the stator resistance value of the motor changes. An ITSF is judged by identifying
the three-phase stator resistance change, but judging only the parameter change is not
enough to accurately judge the fault, because the winding temperature rise and other
factors also cause the same impact, and the parameter estimation method ca not be limited
to identifying the parameters. It is also necessary to further distinguish between parameter
changes due to faults and parameter changes due to factors such as temperature rise.

Since ITSFs result in asymmetrical stator winding, the parameters of PMSMs, such as
resistance, back electromotive force (BEMF), self and mutual inductance and impedance,
have a substantial impact on the sensitivity of the system, leading to undesirable changes.
The occurrence and severity of faults can be diagnosed by observing these parameters
during operation [20].

On the other hand, due to a counter-magnetic field generated at the short-circuited
turns of the faulty phase, the ITSF directly affects the magnetic flux distribution. As a
result, electrical parameters such as self and mutual inductance can change dramatically.
In one study, the disparity in inductance increment between normal and faulty motors was
employed for ITSF diagnosis [21]. A modeling method for the analysis and modeling of the
magnetic characteristics of motors based on fault impedance was proposed. Based on the
established model, analysis was conducted on the input phase current, fault/cycle current,
magnetic flux distribution, BEMF, torque density, and motor performance. In addition,
the input impedance served as the indicator for evaluating ITSFs [22]. In another study,
different modes of impedance change were observed as a result of the impacts of ITSFs [23].
In order to investigate ITSFs, a dynamic model of PMSM was established using a theoretical
method [24]. Additionally, a magnetic permeability network was utilized for the study of
ITSFs [25].

An open-loop BEMF estimation method based on physical principle is proposed [26],
which is suitable for any anti-electromotive force waveform of PMSMs. The non-stationary
and nonlinear behavior of machine performance measurement will limit the use of many
methods, but this method is not limited by buffering, and can determine the intensity and
index of fault phase in real time. By evaluating the reconfiguration of the BEMF coefficient
as a function of the ITSF of a typical progressive failure of the motor [27], this BEMF
signal is extremely sensitive to the failure mode and appropriately insensitive to other
external factors.
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The HF signal injection method for fault detection is insensitive to the machine’s
working condition, ensuring fault sensitivity under light load and low speed [28]. However,
when the PMSM operates with high fundamental frequency, conventional methods can
easily detect the distinct fault signatures induced by ITSF.

By estimating the parameters of the motor, potential faults can be detected early, and
more comprehensive and accurate information can be provided to diagnose faults. In
addition, the parameter estimation method has strong real-time and adaptability, and can
dynamically diagnose the fault during the operation of the motor. The pros and cons of
each parameter estimation method are summarized as shown in the Table 2.

Table 2. Summary of existing parameter estimation methods for ITSF diagnosis.

Reference Year Method Advantages Disadvantages

[21] 2015 Incremental inductance
calculation High sensitivity for fault diagnosis High measurement

accuracy required

[22] 2014 Faulty impedance-
based model Effective for early-stage faults Sensitive to noise

[23] 2016 Equivalent circuit Superior to fault localization Complicated calculation

[24] 2012 Winding distributions and
leakage flux-based model High accuracy in fault diagnosis Sensitive to system faults

[25] 2012 Magnetic permeability
network

High accuracy in fault diagnosis
with low CPU times

Complications in the
diagnosis process

[26,27] 2013,2021 Physics-based
BEMF estimator

Applicable to any PMSM with any
BEMF waveform

Vulnerable to internal
motor faults

[28] 2021 High-frequency signal
injection

Accurate identification of ITSF in
multiple phases

Prone to the influence of
other signals

However, the parameter estimation method also has some of the following shortcomings:

1. In the process of parameter estimation, a large amount of sensor data needs to be
obtained, and complex calculations and analysis are carried out, which requires
significant hardware and algorithms;

2. The parameter estimation method is subject to the accuracy of the motor model and
the satisfaction of the assumptions. If the model is not accurate or the assumptions
are not valid, it may lead to the deviation of the parameter estimation results;

3. The parameter estimation method is sensitive to noise and interference, which may
affect the stability and accuracy of the system;

4. Parameter estimation methods usually require a long training time and a large amount
of sample data, which may have certain limitations for fault diagnosis scenarios with
high real-time requirements.

3. Signal Processing-Based Diagnostic Methods

The fault diagnosis method of ITSF based on signal processing is to analyze physical
quantities, such as stator current, stator voltage, vibration or noise, power, magnetic flux,
impedance, torque, temperature, speed, acceleration, etc., and use the analysis methods
in the time domain, frequency domain and time-frequency domain to extract the fault
signatures from the sampled signal.

As shown in Figure 3, the diagnostic framework based on signal processing shows that
the causes of motor turn-to-turn short-circuit faults include aging or damaged insulation,
strong voltage impulses, foreign matter entering the windings, gear or bearing faults,
overload or overheating, etc. The signals extracted in the motor with these problems are
abnormal, and this is the most important part of the method; the selection of appropriate
signal processing methods can efficiently extract fault features. Sometimes, it is also
important to consider some prior knowledge to enhance diagnostic accuracy.
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3.1. Signal Processing Methods

Signal processing techniques facilitate the extraction of distinctive features associ-
ated with a particular type of failure. Categorically, these methods can be classified into
three groups: time-domain techniques, frequency-domain techniques, and time-frequency
domain techniques. These are shown in Figure 4.
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Statistical analysis plays a central role in the time-domain approach. These methods
utilize specific signal parameters for analysis and assessment such as principal component
analysis [29], peak [30], root mean square or mean [31], peak factor [32], and kurtosis [33].
Compared with the frequency domain and time-frequency domain methods, the accuracy
and feasibility of using the time-domain method for the diagnosis of ITSF are low; thus, the
time-domain method has seldom been applied to diagnose motor faults in recent years,
and only some of them are combined with other intelligent methods.

Currently, the frequency-domain and time-frequency domain methods are extensively
utilized in the diagnosis of PMSMs, representing the most prevalent approaches in this
field. FFT is widely employed for the frequency-domain analysis of stator current or me-
chanical vibrations, making it one of the most commonly used methods in this context. The
technique known as motor current signature analysis (MCSA) refers to the analysis of the
amplitudes of components in the current spectrum [34–36]. The extended Park’s vector
approach(EPVA) method, is used in the analysis of stator phase currents [37,38]. Due to the
limitations of FFTs, such as the need for signal stationarity and long measurement times,
there has been a growing preference for advanced signal processing methods based on
higher order statistics (HOS) in recent years. These HOS-based techniques offer improved
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performance and have gained in popularity in various applications [39]. Spectral enve-
lope [40] and cepstrum analysis [41] play a significant role in PMSM diagnostics, especially
when it comes to situations where detecting mechanical damage. and vibration processing
is not possible due to the limitations of the frequency method and information on the
moment of failure cannot be obtained.

Time-frequency domain methods, such as STFT, CWT and HHT, are increasingly being
used for fault diagnosis. However, it is important to understand their limitations in order
to properly apply these methods.

STFT segments the signal into time intervals using a window of a specific type and
length, and then applies Fourier transform (FT) to analyze each segment [42–44]. It is
crucial to choose the appropriate window size that matches the frequency characteristics
of the fault, which may not be known in advance. Hence, there is a trade-off between
temporal and frequency resolution, where a longer window yields an improved frequency
resolution while a shorter window provides an enhanced temporal resolution. STFT is
particularly well-suited for low-dynamic non-stationary signals, where a longer window
can approximate stationarity and yield better results.

For high-dynamic PMSM drives, multi-resolution signal processing methods, like
wavelet transform, can provide improved outcomes. CWT offers uniform resolution in
both the temporal and frequency domains [45–48]. However, its application requires
that suitable parameters be determined, particularly with respect to the basic wavelet
function, which governs consistent resolution across the complete frequency range. One
drawback of wavelet analysis is its non-adaptive nature. On the other hand, DWT ex-
tracts a specific frequency range through continuous high-frequency and low-frequency
filtering, based on the targeted damage component [49–51]. Consequently, CWT has a
significantly longer computation time compared to DWT, making it favorable for detecting
slow-moving failures.

To summarize, time-frequency domain methods have their limitations, and choosing
the appropriate method depends on the dynamic characteristics and specific requirements
of the system under consideration. Understanding these limitations helps when selecting
the most suitable approach for effective fault diagnosis.

Nonlinear time-frequency distribution methods, such as WVD [52–55] or CWD [56,57],
are employed for fault diagnosis. Unlike linear methods that break down the signal into
its constituent components, nonlinear time-frequency distribution decomposes the sig-
nal into the frequency and time domains based on energy distribution. The Cohen class
encompasses various distributions with distinct characteristics obtained through a speci-
fied kernel function. These distributions also offer high resolution since they utilize the
entire signal within each frequency range to obtain energy. However, these approaches en-
counter challenges arising from the interplay between pairs of time-frequency components,
which can result in pronounced cross-terms and negative power signal values in certain
frequency bands. The presence of aliasing issues can also arise when applying WVD to
discrete signals.

WVD is used to detect whether there are short circuits between turns and coils of the
motor, and to track the evolution of high and low frequencies of the analyzed signal [54].
WVD adds time information of PMSM on the basis of FFT, and can track high-frequency
and quantitative defects well with sufficient time resolution. However, the cross term
inherent in WVD can mean problems, mainly in the case of fewer early turns of the short
circuit, CWD is needed [57].

Another transformation used for analyzing time-frequency energy is HHT [58,59]. It
was originally designed for pure sinusoidal signals with a zero-reference level but has been
modified for non-stationary signals. HHT employs the empirical mode decomposition
(EMD) method to decompose the input time-domain signal into a finite number of pure
oscillation functions called intrinsic mode functions (IMFs), followed by the application
of Hilbert transform (HT). This transformation provides information in both the time
and frequency domains, resembling the Fourier transform. Unlike the Fourier transform,
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HHT adapts to the signal characteristics and does not require prior knowledge of fault
frequencies. Additionally, it eliminates unwanted frequencies and focuses on the specific
characteristic frequencies of the faults. Consequently, HHT has been widely utilized in
transient signal analysis.

To sum up, nonlinear time-frequency distribution methods, such as WVD and CWD,
provide high-resolution results but may encounter challenges like severe cross-terms and
aliasing. On the other hand, HHT, employing EMD and HT, offers adaptability, locality,
and the ability to identify characteristic fault frequencies without distortion caused by
frequency component interactions. As a result, HHT has found significant applications
in transient signal analysis in recent years. The advantages and disadvantages of existing
signal processing methods are outlined in Table 3.

Table 3. Summary of existing signal processing methods for ITSF diagnosis.

Reference Year Method Advantages Disadvantages

[29] 2021 PCA Dimensionality reduction
Reducing redundancy

Information loss
Sensitive to outliers

[30] 2024 Peak Simple and intuitive Dependence on system models
[31] 2021 RMS Highlight global information Limited applicability

[32] 2007 Peak factor Strong intuitiveness Difficulty in parameter selection
Susceptibility to noise

[33] 2022 Kurtosis Effective in outlier detection Poor interpretability

[34–36] 2021/2010/
2017 MCSA No additional sensors required

Effective for early-stage faults
Dependence on experience

Sensitive to external influences

[37,38] 2014/2019 EPVA Wide applicability
Sensitive to signals

Difficulties in data acquisition
Possibility of misjudgment

[39] 2018 HOS Higher signal resolution
Nonlinear feature analysis

Difficulty in data processing
Limitations in application scope

[40] 2020 Envelope Accurate identification of
low-intensity faults Low diagnostic accuracy

[41] 2011 Cepstrum High spectral resolution
Strong noise resistance

Complex data processing
Challenges in parameter selection

[42–44] 2022/2016/
2021 STFT Adjustable time-

frequency resolution
Fixed window size

Spectral leakage

[45–48] 2012/2020/
2023/2010 CWT Multiscale analysis Difficulty for wavelet basis selection

[49–51] 2017/2017/
2016 DWT Multiresolution analysis Difficulty in selecting the

mother wavelet

[52–55] 2020/2021/
2009/2019 WVD Strong anti-interference capability Cross-term interference

Boundary effects

[56,57] 2016/2016 CWD An effective approach for global
time-frequency representation High computational complexity

[58,59] 2015/2011 HHT
Suitability for nonlinear and

non-stationary signals
High resolution and accuracy

Mode mixing issue
Highly affected by noise

3.2. Application of Signal Processing Methods

With a relatively mature signal processing method, it is necessary to consider another
equally important factor, the choice of signal. In these analyzable signals, current and
voltage measurements are non-intrusive and easy to capture directly from the PMSMs’
own current/voltage sensor. Conversely, other signals are intrusive, requiring additional
sensors to obtain the required signals. Therefore, current and voltage are the two non-
intrusive signals most frequently selected. The following will be a detailed introduction to
the diagnosis methods of current, voltage, vibration, and magnetic flux.
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3.2.1. Diagnostic Method Based on Stator Current Signal

MCSA is one of the most commonly used techniques to monitor the operating state of
PMSMs. By defining different failure modes under steady-state and transient conditions, it
is applied to the short-circuit fault detection of PMSMs.

The influence of ITSF faults on the stator current and electromagnetic torque of axial
flux PMSMs was studied. Results of the study showed that the stator current harmonics
caused by the short-circuit fault have a pattern as shown in (3) [60]:

f ITSC = fs

(
n ± 2k + 1

p

)
(3)

where p is the number of pole pairs, n = 1, 3, 5, · · · and k is an integer number.
In ITSF fault detection for PMSMs, various methods have been used to analyze the

motor currents. These methods offer advantages such as ease of implementation and
independence from the winding topology. One common approach is the frequency analysis
of motor currents using single-component discrete Fourier transforms [61], which can be
easily implemented in motor drive systems without requiring excessive instruction cycles.
This method can detect certain fault features such as the third harmonic of the phase current
and the second harmonic of the Q-axis current [62].

Studies have shown that the occurrence of ITSF faults induces the 9th current har-
monics in the fault phase, and these harmonics remain unchanged regardless of the fault
level [63]. Additionally, ITSF faults excite second-order harmonics in the q-axis current,
which can be utilized for detection [64,65]. The root mean square value of the fault phase
current increases with higher fault levels [66,67]. Various methods, such as MCSA and
EPVA, have been proposed for ITSF fault detection, focusing on fault components, such as
the second harmonic component of the q-axis current, and utilizing the park transform of
the stator current [68].

Alam obtained the phase current data of the four-phase motor, using Parker transform
to determine the fault characteristics [69], and determined the fault type by analyzing its
amplitude. Fonseca performed a spatial complex transformation of the switching signal
and the current signal [70], used the transformed signal as the fault indication signal, and
verified it on an 8-6 pole switched reluctance motor model. K.-H. Kim proposed a method
to monitor the second-order harmonic component of a Q-axis current through harmonic
analysis [71], aiming at the detection problem of short-circuit faults in the stator windings of
PMSMs. The scheme does not require any additional hardware; as long as the steady-state
condition is met, the fault can be effectively detected during operation.

To summarize, ITSF fault detection methods for PMSMs often involve motor current
characterization using frequency analysis or time-frequency analysis techniques. These
approaches offer different advantages in terms of implementation ease and response time.
Additionally, wavelet transform has been used to analyze transient states and study the
influence of transient voltage on the stator current.

3.2.2. Diagnostic Method Based on Stator Voltage Signal

The diagnostic methods for ITSF in PMSM based on stator voltage and stator cur-
rent aim to extract characteristic signals that can identify these faults. By analyzing and
processing the stator voltage, the presence of ITSF can be determined.

The severity of an ITSF is assessed based on various indicators derived from the
phase voltage or DQ-axis voltage. For example, the amplitude of the negative sequence
component of the phase voltage is used as an indicator [72], while changes in the amplitude
and phase of the DQ-axis voltage are employed to detect ITSFs [73]. Harmonics at twice the
angular velocity frequency of the DQ-axis voltage are utilized to detect ITSFs, as described
in [74,75].

One advantage of the methods relying on driver voltage and winding current is
their applicability to general-purpose PMSM drives. However, a disadvantage is that the
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frequency characteristics of the current and voltage can be affected by motor speed, torque,
and the control algorithm of the driver.

Another fault indicator used is the imbalance of the reference phase voltage, which is
regulated by the controller to compensate for the asymmetric fault effect. New metrics and
analysis techniques have been proposed to improve the detection and troubleshooting of
ITSFs based on changes in the reference voltage [76,77].

It should be noted that voltage characterization faces challenges related to sensing
through low-pass filters and isolation elements. Detecting fault features with limited-
resolution ADCs in three-phase systems can be challenging due to the typically small fault
signatures compared to the output voltage. Symmetrical component analysis is commonly
employed for ITSF detection, with zero-sequence voltage components (ZSVC) [78] used as
indicators in star-connected systems; zero-sequence current components (ZSCC) [79] are
preferred in delta-connected windings.

The PMSM ITSF diagnosis methods based on stator voltage offer the advantages of non-
intrusiveness and cost-saving since no additional hardware overhead is required. However,
their diagnostic accuracy can be influenced by harmonics, load variations, operating speed,
and motor temperature in the drive system. Consequently, fault diagnosis accuracy may
fluctuate significantly under various operational states of the motor.

3.2.3. Diagnostic Method Based on Vibration Signals

ITSFs lead to an increase in the magnetic pull force, which in turn increases the
magnetic stress acting on the stator. The magnetic stress is proportional to the square of the
magnetic flux density. Therefore, any change in the magnetic flux density is reflected in
the vibration signal of the motor. By analyzing the vibration signal using FFT or arbitrary
time-frequency analysis methods, fault-signature signals can be extracted for fault detection
and separation. The spectrum analysis method, based on vibration signals, is used to detect
the vibration frequency of the motor for fault diagnosis. It is very similar to stator current
spectroscopy. Different types of faults will produce vibrations of different frequencies, and
the fault of the motor can be diagnosed through vibration signal spectrum analysis, and
even the fault location of the motor can be located.

A fault diagnosis model for ITSFs based on vibration-current fusion was proposed,
and the correlation characteristics between current square and shaft radial vibrations were
analyzed using Pearson’s correlation coefficient [21].

A weak correlation between the square of the excitation current and the vibration
signal during the early defect was amplified in study [80], and the co-gain residuals
were further calculated by combining the residuals between the measured and predicted
excitation currents; an early warning signal was issued when the co-gain residuals exceed
the threshold. In another study, the air gap magnetic flux density and total force density
were used to diagnose the frequency index of the ITSF of the synchronous generator in the
winding field [81].

Classical continuous wavelet transform is used to analyze the vibration signal. Al-
though the use of vibrations in fault detection is a current diagnostic technique for electrical
machines, the exploitation of the harmonic components requires significant calculation
time. The continuous wavelet transform of the vibration signal in the event of an ITSF
shows its limitations.

3.2.4. Fault Localization Method Based on Characteristics of the Motor Magnetic Field

In no-load conditions, a stray flux can detect faults more effectively than stator cur-
rent [82]. What is more, the stray magnetic communication signal can provide information
about the location of the fault [83].

An analytical model for computing BEMF in the air-gap search coil was developed [84].
This model utilizes geometric and circuit parameters, rotor speed, three-phase currents,
and the magnetization coefficient as inputs. By combining the measured BEMF data with
the model data, demagnetization faults can be identified. The accuracy of this method
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largely depends on a precise motor model. A technique for detecting ITSF using the stray
magnetic field of a small-sized tunnel reluctance sensor was introduced in [85], which
allows for easier installation and replacement of the motor stator outside the yoke while
the PMSM remains operational. It enables accurate detection of the location of the ITSF.
A partition analysis model was developed for PMSMs under demagnetization faults, and
used to investigate the impacts of the quantity and placement of permanent magnets on
motor performance [86].

Moreover, a stator detection coil system was proposed and its ability to detect ITSFs
in PMSMs was verified [87]. The relationship between fault severity and the amplitude
of the detection signal was also investigated. To address location-related issues, a dual
probe coil system was proposed to effectively detect faults without signal-size dependence.
Power-density spectrum analysis of the probe coil signal after stator turn short-circuit faults
revealed clear fault characteristics, particularly when the number of faults was small [88].

In addition, there are a variety of motor ITSF diagnosis methods, such as the partial
discharge method [89], instantaneous power decomposition method [90], negative sequence
impedance method [91], torque harmonic component method [92], etc., which have been
applied to a certain extent.

3.3. Fault Feature Extraction of Non-Stationary Information

Traditional fault diagnosis methods for PMSMs are applicable to the fault diagnosis
of EV traction motors under certain operating scenarios such as constant speed cruising.
However, under variable operating conditions, such as acceleration and deceleration, these
methods may not work. Due to the complex and variable operating conditions of EV motors,
signals obtained for diagnosis are often non-stationary. Analyzing signals solely in the time
domain or frequency domain cannot capture the signal’s time-frequency non-stationary
characteristics. For non-stationary signal processing, methods such as time-frequency
domain analysis and order tracking are primarily used. Discrete wavelet transform was
employed to extract non-stationary current fault features in motors [93]. An early ITSF
diagnosis method based on the Goerges phenomenon for extracting magnetic flux features
was developed [94]. A dynamic Bayesian network-based method was used to diagnose
non-stationary and intermittent faults in motor systems [95]. The use of short-frequency
Fourier transform (SFFT) for motor fault diagnosis in non-stationary states was shown to
enhance computational efficiency [96]. An adaptive window short-time esprit (AWSTE)
method for diagnosing rotor faults in transiently operating motors was developed [97].
An instantaneous frequency estimation order tracking method was proposed to extract
instantaneous frequencies related to bearing faults for identifying bearing fault types [98].

4. Artificial Intelligence-Based Fault Diagnosis Methods

The application of artificial intelligence (AI) methods in machine fault diagnosis is an
emerging and promising field. With the help of technologies, such as machine learning,
pattern recognition and deep learning, AI methods can realize real-time diagnosis and
accurate prediction of motor faults by learning features and patterns from a large amount
of sampled data. AI methods have developed rapidly in the past decade, as shown in
Figure 5, from the original qualitative methods based on symbolic reasoning to quantitative
methods based on machine learning algorithms [9].

Qualitative methods include fault tree (FT), signature diagram (SD) and expert system
(ES). FT is a logistic causal tree that propagates the main event (failure) from the bottom to
the top event (symptom). It is used in [99] for fault diagnosis with high accuracy. SG is a
directed arc graph from the Cause node to the Result node, and these arcs are represented
by positive or negative signs. In fault diagnosis, it can be used to detect the amount of
abnormal states [100]. ES is usually a tailor-made system that encompasses depth but
expertise in a narrow area. The expert system is actually a rule-based system that presents a
person’s expertise in the form of a set of rules. The combination of expert systems with other
diagnostic methods can make motor diagnostics more efficient [101]. These qualitative
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methods are more based on the experience accumulated in actual motor fault diagnosis, to
make a judgment on whether the fault is faulty. Accuracy is difficult to guarantee, and it is
generally necessary to combine other diagnostic methods to improve the accuracy.
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Today, due to the exponential growth in computing power, computational intelligence
has become the most attractive AI technology. Machine learning is a powerful approach
for extracting insights from vast amounts of empirical data, albeit at the cost of significant
computational resources. Applying machine learning to detect and diagnose faults from
data is simple and does not require explicit models. Shallow neural networks mainly
include logistic regression [102], support vector machines (SVM) [103], random forest [104],
the k-nearest neighbor algorithm [105], and naive Bayes [106], which can adaptively learn
features without necessitating the creation of a precise mathematical model, thereby re-
ducing the uncertainty and intricacy associated with human involvement. Nevertheless,
conventional shallow neural networks have limitations, including gradient vanishing, over-
fitting, susceptibility to local minima, and the requirement for substantial prior information,
all of which diminish the efficacy of fault diagnosis. The method of deep learning can
solve these problems easily. It brings the following advantages to motor fault diagnosis:
(1) processing larger amounts of data; (2) faster diagnosis; (3) greater robustness; (4) more
advanced automatic feature learning; and (5) end-to-end learning (predictions are made
directly from raw input data).

An essential aspect of EV motor fault diagnosis is the analysis of extensive real-time
data streams. With the development of networked technologies, such as the Industrial
Internet of Things (IIoT) and cyber–physical systems, it is easier to obtain large amounts
of operational-status data flow in real time. For example, large-scale data-processing
technologies, such as cloud computing and digital twins, have made AI’s fault diagnosis
methods more mature, making it easy to carry out real-time fault prediction and diagnosis.
AI approaches can ensure the normal functioning of the motor and avoid impacting vehicle
performance through a series of measures during real-time fault diagnosis. Initially, the
neural network autonomously acquires profound abstract features from extensive input
data in a hierarchical manner. Subsequently, the network is trained based on the correlation
between feature attributes and fault patterns. Ultimately, the trained network is employed
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for diagnosing faults in new monitoring data. Some deep hierarchical networks can even
directly process source data as input for real-time monitoring [107].

A deep learning algorithm utilizing efficient convolutional neural networks (ECNNs)
was designed to run on edge-computing nodes for real-time motor fault diagnosis and
dynamic control [108]. A new three-phase architecture utilizing deep learning was pro-
posed for real-time monitoring [109]. The model is end-to-end adaptable and processes
data sequentially. A real-time fault diagnostic method using data collected from multiple
sensors was also developed [110]. The method is based on a multi-sensor convolutional
neural network (MS-CNN) that incorporates feature extraction, sensor selection, and fault
diagnosis into an end-to-end model. A compact adaptive 1D CNN classifier was used for
real-time fault diagnosis [111] that can obtain source data directly as input and effectively
learn the optimal features through appropriate training. A dual-flow feature fusion convo-
lutional neural network (TSFFCNN) was proposed for real-time fault diagnosis utilizing a
dual-channel network model constructed with 1D-CNN and 2D-CNN [112].

4.1. Application of Convolutional Neural Network (CNN)

CNNs possess local receptive fields and weight-sharing properties, leading to a de-
creased number of network parameters and mitigating overfitting to some extent. Therefore,
it is the neural network most commonly considered in the field of motor fault diagnosis.
In Figure 6, the specific steps of CNN for motor fault diagnosis are shown on the left,
and include:

• Capturing the time domain or frequency domain signal of the motor in normal and
abnormal conditions using sensors;

• Preprocessing the signal and divide the signal into a training set and a test set;
• Using the received data to determine the model construction of CNN;
• Initializing the parameters of the CNN network, train it using the labeled training set

through supervised learning, and iteratively update the network parameters until the
maximum number of iterations is achieved;

• Using the trained CNN model to troubleshoot the test set.
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On the right side of Figure 6 is the model construction of CNN. The preprocessed data
first enters the convolutional layer for preliminary feature extraction, and the activation
function is used to perform nonlinear transformation of the output after the convolution
operation. The purpose of the activation function is to introduce nonlinearity so that
the model can learn more complex feature representations. Commonly used activation
functions include ReLU, sigmoid, and tanh. The sigmoid function and tanh function are
saturated nonlinear functions, which are mostly used in traditional CNNs, while the unsat-
urated nonlinear function ReLU can effectively improve CNN network performance [113];
therefore, among the current diagnostic methods, the ReLU activation function is the most
widely used. Features are transformed nonlinearly into a pooling layer, which is used
to reduce the size of the feature map and help to extract the most important features. It
does this by performing an aggregation operation, such as maximum pooling or average
pooling, within a local area. In some cases, you the activation layer can be omitted and
the output of the convolutional layer can be connected directly to the pooling layer. This
usually occurs in the early layers of the network, or during some specific tasks. However,
in most cases, the use of activation functions can increase the nonlinearity of the model and
improve the expressiveness and performance of the model.

The convolutional layer, activation layer, and pooling layer form a module, which
is equivalent to a specific feature extraction of the signal. Therefore, the operation of the
above modules will be repeated, and the features will become more and more accurate with
each convolution operation. However, too many convolutions will lead to data overfitting;
therefore the appropriate number of convolutions is very important, and experiments have
proved that the effect is generally best using 6–7 convolutions.

The extracted features will enter the fully connected layer, which flattens the input
high-dimensional feature vectors into one-dimensional vectors, performs matrix multipli-
cation operations with the weight matrix, and then obtains the final classification output
result through the nonlinear transformation of the activation function. In the latest CNN
architectures, such as ResNet, Inception, etc., the use of the fully connected layer has been
reduced or even completely removed. This is because the fully connected layer has a
large number of parameters, which can lead to overfitting and the layer cannot handle
variable-sized inputs. Instead, these architectures typically use global average pooling or
other techniques to convert convolutional feature maps into fixed-length vectors that can
then be used directly for classification or regression tasks. This reduces model complexity,
reduces the number of parameters, and improves the generalization ability of the model.

The fundamental role of CNN is to extract advanced features from the input signal
through convolution operations. These networks lack predefined architectures, parameter
selection methods, or specific rules governing the quantity of convolutional layers. The
architecture of a CNN should be viewed as the evolution of features that are refined with
each additional convolutional layer. When introducing the application of CNNs in the
diagnostic process, the initial layer can be perceived as filtering out fundamental features
such as maximum or minimum values. The following convolution operation enables the
detection of more complex features, such as the range between the minimum and maximum
values. Hence, the configuration of the network will rely on the nature of the input data and
the tasks carried out by the CNN. To identify intricate features, a framework comprising
multiple layer sets is employed. The network’s capability to recognize features is connected
to the mechanism, through which it develops generalized abilities.

Motor fault detection can benefit from the consideration of local correlation in early
data, as demonstrated in [114]. CNN models that utilize the original current signal exhibit
higher accuracy and shorter training times when classifying ITSF levels [115]. Proper
adjustments to the form and size of input signals can enhance diagnostic effectiveness
during classification and in the assessment of injury severity [116]. Moreover, novel feature
extraction techniques using FOP-CNN can be applied to signals from vibration sensors and
thermocouples, expanding the scope of time-series applications [117].
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In the context of fault diagnosis, sequence data can be converted into grayscale im-
ages and classified using EWT and deep CNN models, resulting in satisfactory diagnostic
results [118]. N-LSTM, a multiscale convolutional neural network combined with long
short-term memory, allows for the direct processing of raw data without preprocess-
ing [119]. By utilizing multiscale convolutional neural networks, fault information from
multiple components and time scales of vibrational signals can be effectively learned [120].
Additionally, the CNN model structure incorporating global average pooling techniques
and support vector machines enables the extraction of representative features and fault
classification [121].

A diagnostic framework known as DTS-CNN is built upon the features of motor
vibration signals [122]. It introduces an offset before the convolutional layer, which captures
the correlations between signals at various time intervals within periodic mechanical
signals. This approach overcomes the limitations of standard neural networks, making
it particularly suitable for modern PMSMs operating in non-stationary environments.
Another study demonstrates the conversion of time series data into two-dimensional
images, leveraging the feature extraction capabilities of CNN for failure-mode classification
and severity recognition [123]. The superior accuracy of CNN in extracting features from
such two-dimensional images is verified.

Table 4 presents a summary of the strengths and weaknesses of existing CNN methods.
In summary, motor fault detection methods benefit from considering local correlations in
early data and utilizing the original current signal. Adjusting the form and size of input
signals can improve diagnostic effectiveness.

Table 4. Summary of existing CNN for ITSF diagnosis.

Reference Year Learning Method Advantages Accuracy

[114] 2018 1D-CNN Features are not manually selected instead the models learn features
through training. 99%

[115] 2020 2D-CNN The classification of ITSF level is performed with higher accuracy and
shorter training. 97.75%

[116] 2020 CNN-1,2 It has the ability to detect even individual shorted turns (incipient faults). 99.3%
[117] 2020 FOP-CNN FOP-CNN can predict all motor fault conditions satisfactorily. 92.37%

[118] 2019 EWT-CNN The model learns the position and scale of different structures
in the image data. 97.37%

[119] 2021 MCNN The network accepts raw data input, which can detect roller bearing
status in real time. 98.46%

[120] 2020 MBSCNN The MBSCNN can fuse rich and complementary features from the
multiple signal components and time scales. 93.97%

[121] 2019 CNN-SVM The CNN-SVM can effectively reduce the CNN’s model parameter
quantity and diagnosis time. 98.97%

[122] 2017 DTS-CNN It solves the inapplicability of CNN for mechanical periodic signal. 99.9%

[123] 2022 HCNN-SVM This methodology combines diagnosis and severity evaluation in one
single framework. 99.88%

The parameter-sharing feature of CNN improves its processing ability for high-
dimensional input data. For 2-D image data, parameter sharing can capture similar feature
patterns at different locations, thereby improving the generalization ability of the model.

4.2. Application of Recurrent Neural Network (RNN)

RNN is a neural network model that is good at processing time series, and has the
characteristics of fast convergence, high accuracy, and high stability. When it comes to
defect diagnosis, RNNs are particularly well-suited for complex devices or systems.

A typical RNN has the problem of vanishing gradients or exploding gradients, which
makes it unusable with information from the past; therefore, a long short-term memory
neural network (LSTM) is proposed to solve this problem, as it solves the gradient problem
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and has advantages in processing data with strong correlation with time series. LSTM is
widely used in the field of fault diagnosis.

Figure 7 shows the core memory block of LSTM, which mainly contains three gates
(forget gate, input gate, output gate) and a memory unit (cell).
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The forgetting gate controls whether to retain previous memory information to the
current moment in order to filter out unimportant information. The gradient vanishing
problem in traditional RNNs is avoided, allowing the network to better capture long-
term dependencies:

ft = σ(W f · [ht−1, xt] + b f ) (4)

where W∗, b∗ are each gate’s input weights and bias respectively (∗ can be f ,i, c or o), σ and
tanh are nonlinear functions and “·” means matrix multiplication. ht−1 is the last output
and xt is the latest input.

The memory gate controls how the current input is combined with the previous
memory to update the memory state at the current moment through (4). With the ability
to selectively update memories, the memory state can be flexibly adjusted based on the
importance of the current input. It can effectively deal with the noise and redundant
information in the sequence data and improve the robustness and generalization ability of
the model:

it = σ(Wi · [ht−1, xt] + bi) (5)

C̃t = tanh · (Wc · [ht−1, xt] + bc) (6)

ftin = it · C̃t (7)

The output gate via (5)–(7) controls how the memory state of the current moment
is output to the next moment or used for final prediction. It has the ability to selectively
output memories and can flexibly adjust the output information according to the needs of
the current task. It provides a mechanism to balance memory and forgotten information
and improves the model’s attention to important information in the sequence data.

The memory unit is capable of storing the input of the current moment, the memory of
the past moment, and the output of the previous moment, and combines this information
to form a new memory state Ct. The memory information is further processed through (10)
to become the output ht.

ot = σ(Wo · [ht−1, xt] + bo) (8)

Ct = ft · Ct−1 + it · C̃t (9)

ht = ot · tanh(Ct) (10)

Since the special LSTM in RNN is more often used for motor fault diagnosis, we built
a fault diagnosis framework based on LSTM. As shown in Figure 8, the core is the choice of
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the number of layers of LSTM cells. If the data volume is small or the data characteristics are
simple, the shallower LSTM network may be sufficient, while for larger or more complex
datasets, the number of layers of LSTM cells needs to be increased. LSTM networks require
more computing resources and longer training times. Therefore, it is necessary to judge
the suitability of the number of layers of LSTM units through a performance evaluation
of the verification set and the test set, and according to the accuracy and generalization
ability of the model. Sometimes increasing the number of layers does not necessarily lead
to significant performance improvements and may even lead to overfitting.
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To estimate the ITSF of PMSMs, a medium network is employed within an encoder–
decoder structure featuring an attention mechanism [124]. In this approach, the encoder
employs a bidirectional LSTM, which consists of two LSTMs working in opposite direc-
tions to extract both forward and backward dependencies. The network obtains inputs
such as raw values of negative sequence current, positive sequence current (calculated
from the stator three-phase current), and rotational speed. However, the fault indicator,
despite indicating fault severity and achieving high estimation accuracy, is not utilized for
automatic fault detection and classification.

The LSTM method is used for predicting output variables, and the fault state is
diagnosed by comparing true and predicted probability distributions. Model training
utilizes 128 monitoring variables, with wind speed and active power selected as input
variables for temperature and pressure predictions. This method achieves 92% accuracy in
detecting generator winding faults, surpassing other advanced methods [125].

Building upon the LSTM network, the EMD signal-processing tool is employed to
extract representative features, enabling the detection of various stator short-circuit faults,
even in the presence of a single short turn, with an accuracy of approximately 95% [126].

Compared to LSTMs, features extracted by CNN, exhibit greater robustness, achieving
an accuracy rate of 98% (compared to LSTMs’ 88% accuracy) [127]. This can be attributed
to the fact that CNNs can be stacked into deep models, which has proven to be a robust
method. Additionally, CNNs resemble feedforward neural networks with stacked multi-
layer perceptrons, minimizing the need for data pre-processing. On the other hand, LSTMs
leverage their internal memory to process inputs for arbitrary sequences.

The output of a CNN is considered a feature map [128], serving as the input for
LSTM and GRU models for classification. Experimental results demonstrate that the
mixed 1DCNN-LSTM and mixed 1DCNN-GRU models provide better early diagnosis
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effectiveness. Among various LSTM variants, the one-way variant of the LSTM neural
network proves to be the best classifier for low-severity ITSFs, offering the highest test
accuracy of 99.08% with the fewest trainable parameters [129].

A hybrid structure combining a two-dimensional convolutional neural network
(2DCNN) and long short-term memory/gated recurrent unit (LSTM/GRU), referred to as
FDS, is proposed as a relatively lightweight planar diagnostic structure. Its applicability in
fault diagnosis and in the severity evaluation of industrial drive systems under frequency
conversion and load change conditions was experimentally demonstrated in [130].

In another study [131], a motor defect detection method based on LSTM was proposed.
Real-time prediction of the three-phase current value at the next sampling moment was
employed, capturing the three-phase current value and phase angle information from
previous sampling data for real-time motor observation. The benefits and drawbacks of
existing RNN methods are compiled in Table 5.

Table 5. Summary of existing RNN for ITSF diagnosis.

Reference Year Learning Method Advantages Accuracy

[124] 2020 AB-RNN The AB-RNN diagnoses the fault even under untrained operating
points and fault conditions.

Displayed by
fault indicator

[125] 2022 LSTM-KLD It can analyze operating conditions automatically and detect both
alarms and faults simultaneously. 94%

[126] 2023 EMD-LSTM A new method can effectively detect the ITSF in its incipient stages. 94.59%

[127] 2020 CNN-LSTM The network can learn the features automatically under different
load variations, voltage imbalances. 98%

[128] 2021 LSTM&GRU This model can effectively diagnose, isolate, and identify
early ITSF. 99.89%

[129] 2022 ULSTM The model is sensitive to finding faults of very low severity. 99.08%
[130] 2022 LSTM&GRU It is effective and robust for early ITSF detection and its severity. 96.9%

[131] 2018 LSTM The predicted error is not affected by torque fluctuations. Displayed by
fault indicator

RNNs can effectively store and transmit contextual information through structures
such as memory recurrent units (LSTMs) or gated recurrent units (GRUs). In the process
of motor fault diagnosis, contextual information is very important in order to understand
the current state, judge anomalies, and predict fault development trends. The memory
mechanism of the RNN allows the model to make better use of previous information
for troubleshooting.

However, RNNs also have some limitations and challenges, such as gradient van-
ishing and explosion problems, low computational efficiency, and possible difficulties
in processing long sequences. In addition, choosing the appropriate RNN structure and
hyperparameter settings is also an important factor affecting its performance.

4.3. Application of Self-Encoding Network (AE)

The shallow network includes the original autoencoder network and its evolved
sparse autoencoder network and denoising autoencoder network. In practice, they are
often stacked in deeply stacked AE. Due to their advantages, stacked auto-coding networks
are popular. The ability to understand the attributes of data is a concern for many experts
and scholars. A deep sparse autoencoder network was used to detect ITSF defects in
PMSMs. Negative sequence current and torque signals made up the sample. To increase
the sample size and create a training set, a generative adversarial network (GAN) was used.
In the classification test, the sparse autoencoder network generated by sample training was
used, and the experiment showed that the classification accuracy reached 99.4% [132].

Variables such as the type, activation function and depth of the autoencoder [133],
the sparsity of the sparse autoencoder, the number of features and the pooling strategy
were studied, and the optimal solution for the detection of turn-to-turn faults was found by
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combining the channel selection of the ITSF detection, the timespan of the input signal and
the signal sampling frequency, and the overall recognition accuracy reached 99.5%.

AE is unique in that it can learn low-dimensional representations of the input data,
which can be used for data reconstruction and visualization. By compressing the original
data into a lower-dimensional space and then performing decoding operations, samples
that are similar to the original data can be reconstructed. This helps to better understand
the structure, distribution, and characteristics of the data, and can help to identify and
visualize failure modes.

However, AE also has some limitations, such as the potential for difficulty in modeling
complex patterns, potential overfitting problems, and limited use of label information. In
addition, when designing an autoencoder, choosing the right architecture, loss function,
and hyperparameter settings can also have an impact on its performance.

4.4. Application of Generative Adversarial Network (GAN)

CGAN is used to enhance the joint features of ITSF and enrich the training set, thus
overcoming the shortcomings of insufficient network training based on deep learning.
At the same time, the noise injection strategy is introduced to expand the diversity of
fault samples and enhance the sparse representation of the network. Finally, the OSAE is
optimized to achieve the purpose of efficient and accurate diagnosis of ITSF faults.

The negative sequence current and torque characteristic signals of PMSMs are collected,
and the sample data are extended by using the generative adversarial network and the
network. A variety of training sets are constructed, and the sparse autoencoder network is
combined to achieve efficient and accurate fault feature classification and identification.
Experimental results showed that the accuracy of the method can reach 99% [134].

What makes GANs unique is that new sample data can be synthesized by generating
models. In motor fault diagnosis, if the annotated fault data are relatively small, the use of
GAN can generate more synthetic data to increase the size and diversity of the training set.
This helps to improve the generalization ability of the model and allows for effective data
augmentation and sample generation when real failure data are lacking.

However, GANs still face some challenges in the field of motor fault diagnosis, such
as training stability, mode diversity, and the quality of the generated samples.

4.5. Challenges and Future Work

While deep learning algorithms have yielded promising results in solving the feature
extraction problem, they often require expertise in constructing neural network structures
and selecting appropriate hyperparameters to achieve the desired outcomes. However, di-
agnosing faults using deep learning is generally considered less complex due to its reliance
on supervised learning, which involves matching input data to corresponding outputs.
Consequently, there is a need to explore more intelligent systems capable of detecting fail-
ures solely based on raw data, eliminating the requirement for feature extraction expertise
or optimal hyperparameter selection.

5. Prospects for the Development of Diagnostic Technology

The following are some viewpoints on the future development prospects of ITSF
diagnosis technology:

• Promoting continuous development and innovation in sensor technology, including
vibration sensors, temperature sensors, current sensors, etc., enables the acquisition of
more precise and diverse motor operation data, facilitating the design and optimization
of feature extraction and diagnostic algorithms for PMSMs;

• Investigating future research prospects for identifying EV motor faults through an
AI-based onboard diagnostic system poses a formidable challenge;

• Integrating multiple data sources (such as vibration, sound, current, etc.) for data
fusion and comprehensive analysis can enhance the diagnostic accuracy of ITSF.
Through the amalgamation of data from various sensors, a more thorough and
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dependable fault signature can be derived, thereby enhancing the robustness and
reliability of diagnostics;

• Detecting faults in EV motors during operation in real-time without employing com-
plex signal decomposition methods remains a challenging task;

• Diagnosing hybrid simultaneous faults in EV motors is also a focus of research;
• Monitoring the motor’s condition and providing early warning of failures when EVs

operate under complex conditions is of paramount importance.
Figure 9 shows the breakthrough points in the field of EV motor fault diagnosis.
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6. Conclusions

This paper provides a comprehensive review of the state-of-the-art techniques for
detecting and diagnosing stator ITSFs in the PMSMs used in electric vehicles EVs. The
existing diagnostic techniques were classified into the following three categories: motor
model-based; signal processing; and AI. The capabilities and limitations of these technolo-
gies were thoroughly discussed. Model-based motor fault diagnosis methods exhibit high
accuracy and interpretability; however, limitations exist, particularly under conditions in
which there are complex faults or inaccurate models. Signal processing-based approaches
offer advantages, such as broad applicability and precise diagnostic outcomes, but are also
constrained by a reliance on feature extraction and their susceptibility to noise interference.
In contrast, AI-based diagnostic methods boast characteristics such as high precision, auto-
matic processing, and strong adaptability, making them the most promising method for
development in current times. Finally, the research prospects and future challenges of EV
motor fault diagnosis were discussed.
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