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Abstract: Background: Various MRI markers—including midbrain and pons areas (Marea, Parea) and
volumes (Mvol, Pvol), ratios (M/Parea, M/Pvol), and composite markers (magnetic resonance imaging
Parkinsonism Indices 1,2; MRPI 1,2)—have been proposed as imaging markers of Richardson’s
syndrome (RS) and multiple system atrophy–Parkinsonism (MSA-P). A systematic review/meta-
analysis of relevant studies aiming to compare the diagnostic accuracy of these imaging markers
is lacking. Methods: Pubmed and Scopus were searched for studies with >10 patients (RS, MSA-
P or CBS) and >10 controls with data on Marea, Parea, Mvol, Pvol, M/Parea, M/Pvol, MRPI 1, and
MRPI 2. Cohen’s d, as a measure of effect size, was calculated for all markers in RS, MSA-P,
and CBS. Results: Twenty-five studies on RS, five studies on MSA-P, and four studies on CBS
were included. Midbrain area provided the greatest effect size for differentiating RS from controls
(Cohen’s d = −3.10; p < 0.001), followed by M/Parea and MRPI 1. MSA-P had decreased midbrain
and pontine areas. Included studies exhibited high heterogeneity, whereas publication bias was low.
Conclusions: Midbrain area is the optimal MRI marker for RS, and pons area is optimal for MSA-P.
M/Parea and MRPIs produce smaller effect sizes for differentiating RS from controls.

Keywords: Richardson’s syndrome; progressive supranuclear palsy; multiple system atrophy;
corticobasal syndrome; planimetry; volumetry; midbrain; pons; magnetic resonance Parkinsonism
index; systematic review; meta-analysis

1. Introduction

Atypical Parkinsonian disorders (APD) is a term used to describe three rare neurode-
generative Parkinsonian disorders, namely progressive supranuclear palsy (PSP), multiple
system atrophy (MSA), and corticobasal syndrome (CBS) [1–3]. PSP exhibits significant
phenomenological heterogeneity, with Richardson’s syndrome (RS) being the most com-
mon syndrome, characterized by supranuclear gaze palsy and early postural instability.
MSA presents with two distinct syndromes, with predominant parkinsonian (MSA-P) or
cerebellar (MSA-C) symptomatology. Despite the presence of distinct clinical features in
RS, MSA-P, and CBS, misdiagnosis is common, particularly at early disease stages and in
oligosymptomatic cases [4,5].

In an effort to support a timely and accurate diagnosis, multiple imaging markers
have been implemented. These morphometric MRI markers focus on the relatively se-
lective midbrain and superior cerebellar peduncle (SCP) atrophy in RS, as evidenced by
neuropathological studies [6]. Likewise, MSA (predominantly MSA-C and to a lesser
extent MSA-P) is characterized by relatively selective pontine and middle cerebellar pe-
duncle (MCP) atrophy [7]. Multiple studies have examined the diagnostic accuracy of
diverse morphometric brainstem MRI markers, including linear distances, surfaces and
volumes of the midbrain, the pons, SCPs, and MCPs [8–11]. Additionally, composite MRI
markers, such as the magnetic resonance Parkinsonism indices 1 and 2 (MRPI 1 and 2)
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have been introduced in an effort to increase discriminative power by combining multiple
morphometrical measurements [12,13].

Despite the abundance of relevant studies, significant differences between studies
in study designs, cohort characteristics, and imaging markers implemented have re-
sulted in discrepant results regarding the diagnostic accuracy of these MRI markers in
different APDs.

The present systematic review and meta-analysis aims to present data regarding MRI
brainstem imaging markers in RS, MSA-P, and CBS in a systematic and comprehensive
manner. The primary aim of this study was to compare the diagnostic accuracy of the most
commonly applied MRI markers in cohorts of RS, MSA-P, and CBS, with a particular focus
on planimetric and volumetric markers of midbrain and pons as well as composite MRI
markers (MRPI 1 and 2).

2. Materials and Methods

The present study was performed according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement. The study protocol was
registered in the International Prospective Register for systematic reviews (PROSPERO; ID:
CRD42023475739) [14]. No institutional board review approval was obtained since only
previously published data were utilized.

2.1. Literature Search Strategy

PubMed and Scopus were searched from database inception to 15 October 2023
by three researchers independently (M.-E.B., I.K., and N.G.). In cases of disagreement
regarding the eligibility of a study, these issues were discussed by all researchers and were
included only after a consensus was reached. An additional manual search was performed
on all included studies regarding: (a) all references of included studies; (b) all citations of
these studies; (c) relevant studies (from PubMed). In cases of full text unavailability, the
corresponding authors of papers were contacted in an effort to retrieve full texts.

The search strategy applied was: (MRI OR magnetic resonance OR brainstem OR
midbrain OR pons OR cerebellar peduncle OR volume OR volumetry OR surface OR area
OR planimetry OR distance OR diameter OR width) AND (CBD OR CBS OR corticobasal
OR extrapyramidal OR gait apraxia OR MSA or multiple system atrophy OR parkinsonian
OR parkinsonism OR PGAF or PSP or Richardson or supranuclear).

2.2. Eligibility Criteria and Study Selection

Inclusion criteria were:

(a) Publication in English language;
(b) Peer-reviewed, original research papers;
(c) Studies with ≥ten patients in at least one patient group (RS, MSA-P or CBS) and

≥ten control subjects;
(d) Studies including data on at least one of the following MRI markers: midbrain area

(Marea), pons area (Parea), midbrain-to-pons-area ratio (M/Parea), midbrain volume
(Mvol), pons volume (Pvol), midbrain-to-pons-volume ratio (M/Pvol), magnetic reso-
nance Parkinsonism index 1 or 2 (MRPI 1 or MRPI 2, respectively);

(e) Studies with available, extractable, or retrievable mean values and standard deviations
(mean, SD) of MRI markers.

Exclusion criteria were:

(a) Non-original studies (reviews, meta-analyses, case reports);
(b) Studies with identical samples in different publications;
(c) Studies including PSP cohorts of diverse phenotypes (e.g., RS, PSP-parkinsonism,

primary gait apraxia with freezing) with unavailable or non-extractable data for the
RS syndrome;

(d) Studies including MSA cohorts of diverse phenotypes (i.e., MSA-cerebellar and MSA-
parkinsonian) with unavailable or non-extractable data for MSA-P.
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In cases of publications with possible partial overlap of cohorts, an algorithm including
evaluation of authorship, study characteristics, sample characteristics, constructs’ and
measures’ definitions, and study effects was applied to reach a decision regarding the
eligibility of studies [15].

2.3. Data Extraction

Data extraction was performed by two authors independently (V.C.C. and N.G.). In
cases of disagreement, a consensus was reached after joint assessment of the data from the
original study.

Information extracted from studies included the following: first author; year of publica-
tion; study title; study design (i.e., retrospective, prospective, cross-sectional, unspecified);
period of recruitment; study center.

Additionally, for each of the four groups included in this meta-analysis (RS, MSA-P,
CBS, control group), the following information was extracted where available: male/female
ratio; mean age; mean disease duration (applicable only in the patient groups). Also ex-
tracted were the subject count (n), mean value, and standard deviation (SD) of:
(a) Marea; (b) Parea; (c) M/Parea; (d) Mvol; (e) Pvol; (f) M/Pvol: (g) MRPI 1; and (h) MRPI 2 per
study group.

In cases of missing data on the n, mean, or SD of MRI markers, supplementary files
of relevant papers were reviewed. Additionally, data were extracted from scatterplots,
boxplot, or error bar plots where applicable through the use of WebPlotDigitizer version
4.6 (https://apps.automeris.io/wpd; access date: 15 November 2023).

2.4. Summary Measures

Standardized mean difference (SMD), as expressed by Cohen’s d, was calculated to
measure the effect size on the distinction between planimetric, volumetric, and composite
MRI markers in APD patients and control subjects. Effect size based on Cohen’s d was
interpreted as very small (d ≈ 0.01), small (d ≈ 0.2), medium (d ≈ 0.5), large (d ≈ 0.8), very
large (d ≈ 1.2), or huge (d ≈ 2.0), based on recommendations [16].

2.5. Quality Evaluation

Quality evaluation was performed by three authors independently (M.-E.B., I.K., N.G.)
through use of the QUADAS-2 tool [17]. It consists of four key domains—patient selection,
index test, reference standard, and flow/timing—which are assessed in terms of bias and
concerns regarding applicability. For the present meta-analysis, the signaling questions
regarding the presence or absence of “pre-specified cut-offs” from the “reference standard”
domain and the “appropriate interval between index test and reference standard” from the
“flow and timing” domain were not implemented due to non-applicability. Additionally,
the signaling question “Was a case–control design avoided?” from the “patient selection”
domain was omitted since the primary aim of this meta-analysis was the comparison of
MRI markers between APD patients and control subjects. Thus, per definition, all included
studies had a case–control design. In cases of disagreement, a consensus was reached after
discussions between the authors.

2.6. Statistical Analysis

The Q statistic was used to assess the presence or absence of heterogeneity and the I2

statistic was applied to quantify between-study heterogeneity. Heterogeneity was classified
as low, moderate, or high with I2 values of <25%, 25–50%, and >50%, respectively.

To control for between-study heterogeneity, a random effects model was applied for
meta-analysis. Cohen’s d was calculated as a measure of the effect size of distinction
between MRI markers in APD patients and control groups. Analyses were performed for
each patient group (RA, MSA-P, and CBS) against the control group. No direct comparison
between patient groups was performed. Forest plots were produced and displayed effect
sizes, standard errors, confidence interval limits, p-values, and weights.

https://apps.automeris.io/wpd
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To test for publication bias, funnel plots were constructed with Cohen’s d on the x-axis
and standard error on the y-axis in order to visualize any outlying studies. Additionally,
the Egger linear regression test was performed in order to quantify bias.

SPSS vs. 28 (IBM Corp. Released 2021; IBM SPSS Statistics for Windows, Version 28.0.
Armonk, NY, USA: IBM Corp) was used by one author (V.C.C.) for all statistical analyses.
A two-tailed p value < 0.05 was considered statistically significant.

3. Results
3.1. Literature Search and Screening Results

In total, 2076 were identified from PubMed and Scopus databases. After duplicate
record elimination, 1096 records were screened by reviewing the title and abstract, eliminat-
ing 702 further studies. For the 337 remaining records, full texts were reviewed, eliminating
315 records (unrelated content: n = 280; patient or control group consisting of <10 subjects:
n = 22 [18–37]; full text unavailable: n = 1 [38]; non-extractable data: n = 1 [39]; data in
median/quartiles: n = 4 [40–43]; identical study cohorts or study cohorts with signifi-
cant overlap: n = 2 [8,44]; data on PSP/MSA cohorts without distinction of RS/MSA-P
phenotypes: n = 5 [45–49]). Five studies were identified via manual search of related
papers, references, and citing papers [13,50–53]. A total of 27 studies were included in the
systematic review and meta-analysis [10–13,50–71] (Figure 1).
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Figure 1. Flow chart of study selection according to preferred reporting items for systematic reviews
and meta-analyses (PRISMA) criteria.

3.2. Basic Features Included in the Study

The basic characteristics of included studies are summarized in Table 1. Twenty-five
studies included data on RS patients, five studies on MSA-P, and four studies on CBS.
Eleven studies were retrospective, two studies were prospective, and the remaining had
undefined study designs.
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Table 1. Data regarding study design (Pr: prospective; Ret: retrospective; NC: not clarified), period of recruitment, male to female ratio, mean age (years), mean
disease duration (months), and main findings of all studies included in the meta-analysis. NA: not available; dur: duration; ctrls: control subjects.

Study
ID

Study
Design

Period of
Recruitment

Main
Findings

PSP MSA CBS

m/f age dur data m/f age dur data m/f age dur data

1 Oba, 2005
[10] Pr 1999–2003 1.6 71 33.6 Marea; Parea; M/Parea 0.3 67 93.8 Marea; Parea;

M/Parea
(-) M/Parea differentiated RS

from MSA-P

2 Groschel,
2006 [54] Pr 1997–1999 1.5 65.7 43.2 Marea (-) 0.8 66.4 55.2 Marea

Decreased Marea and
M/Parea values in

RS vs. ctrls

3 Paviour,
2006 [55] NC NA 65.1 55.2 Mvol; Pvol 62.4 64.8 (-) (-) Mvol 30% reduced in

RS vs. ctrls

4 Cosottini,
2007 [11] NC NA 1.1 72 Marea; Parea; M/Parea;

Mvol
2.5 70 (-) (-) Reduced Marea, M/Parea,

Mvol in RS vs. ctrls

5 Borroni,
2010 [56] NC 2001–2007 1.2 71.9 37.2 M/Parea (-) 1.7 61.3 20.8 M/Parea

M/Parea decreased in RS
vs. CBS, ctrls

6 Longoni,
2011 [57] Ret 1998–2008 2.3 62.5 45.6 Marea; Parea; M/Parea;

MRPI 1 (-) (-) MRPI 94% accuracy for
RS vs. ctrls

7 Looi, 2011
[50] NC NA 1.1 67.8 Marea; Parea; M/Parea (-) (-) Marea differentiates

RS vs. ctrls

8 Morelli,
2011 [12] NC NA 2.8 70.3 42.8 Marea; Parea; M/Parea;

MRPI 1 (-) (-) MRPI superior to M.Parea
in RS vs.ctrls

9 Morelli,
2014 [58] NC NA 2.1 69 50.2 Marea; Parea; M/Parea;

MRPI 1 (-) (-) MRPI superior to M.Parea
in RS vs.ctrls

10 Huppertz,
2016 [59] NC 2009–2013 1.3 69 38.4 Marea; Parea;

Mvol; Pvol
1.7 63.3 43.2 Marea; Parea; Mvol;

Pvol
(-) Mvol and Marea decreased

in RS

11 Mangesius,
2016 [60] NC NA (-) 1.2 63.2 24.7 Marea; Parea;

M/Parea; MRPI 1 (-)
M/Parea and MRPI

comparable accuracy
for RS

12 Pasha,
2016 [51] NC NA 2.4 62.5 54 Marea; Parea (-) (-) Marea and M/Parea

differentiate RS vs. ctrls

13 Sankhla,
2016 [61] NC 2012–2014 2.2 66.1 30.7 Marea; Parea; M/Parea;

MRPI 1 (-) (-) Marea, M/Parea, MRPI
differentiate RS vs. ctrls

14 Nigro,
2017a [62] NC NA 0.7 68.8 48.6 Marea; Parea; MRPI 1 (-) (-) MRPI >90% sens/ spec for

RS vs. ctrls
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Table 1. Cont.

Study
ID

Study
Design

Period of
Recruitment

Main
Findings

PSP MSA CBS

m/f age dur data m/f age dur data m/f age dur data

15 Nigro,
2017b [63] NC 2010–2016 2.0 71.0 45.6 Marea; Parea; M/Parea;

MRPI 1 (-) (-) M/Parea, MRPI 100%
sens/spec for RS vs. ctrls

16 Nizamani,
2017 [64] Ret 2006-2015 1.3 66.7 79.2 Marea; Parea (-) (-) MRPI 100% sens/spec for

RS vs. ctrls

17 Silsby,
2017 [65] NC NA 0.6 71.1 Marea; Parea; M/Parea;

MRPI 1 (-) (-)
M/Parea and MRPI

comparable AUCs in
RS vs. ctrls

18 Quattrone,
2018 [13] Ret 2009–2017 1.2 70.4 46.8 MRPI 1,2 (-) (-) MRPI 1 and 2 identical

AUCs in RS vs. ctrls

19 Ahn, 2019
[66] Ret 2010–2017 4.4 73 12.8 Marea; Parea; M/Parea (-) (-)

M/P ratio higher AUC
compared to Marea in

RS vs. vtrls

20 Krismer,
2019 [67] Ret NA (-) 1 59.7 32.4 Mvol; Pvol (-) Pvol did not differentiate

MSA-P from ctrls

21 Quattrone,
2019 [68] Ret 2009–2017 1.2 70.9 48 Marea (-) (-) Marea decreased in

RS vs. ctrls

22 Constantinides,
2019 [9] Ret 2012–2019 1.3 65.6 32.4 Marea; M/Parea; MRPI

1 (-) (-) Marea, M/Parea, MRPI
decreased in RS vs. ctrls

23 Jabbari,
2020 [52] Ret 2015–2018 Mvol (-) Mvol; Pvol

Mvol decreased in
RS vs. ctrls

24 Nigro,
2020 [69] Ret 2010–2017 1.0 70.2 44.4 Marea; Parea; MRPI 1 (-) (-)

Automated MRPI
produces high diagnostic

accuracy for RS

25 Madetko,
2022 [53] NC 2017–2019 1.7 74 Marea; Parea; M/Parea;

MRPI 1,2 0.6 62.6 Marea; Parea;
M/Parea; MRPI 1,2 0.1 72.8

Marea; Parea;
M/Parea;
MRPI 1,2

Marea, M/Parea, MRPI 1,2
were decreased in RS vs.

ctrls and to a lesser extent
in CBS vs. ctrls

26 Virhammar,
2021 [70] Ret NA 0.4 Marea (-) (-) Marea decreased in

RS vs. ctrls

27 Quattrone,
2023 [71] Ret 2012–2020 1.0 70.7 46.8 MRPI 1,2 (-) (-) MRPI 1,2 produce

AUC>0.975 in RS vs. ctrls
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Mean age in RS cohorts varied from 62.5–74 years, mean disease duration from
12.8–79.2 months, and male-to-female ratio from 0.4–4.4. In total, 21 studies included data
on midbrain area, 17 on pons area, 11 on M/Parea, 13 on MRPI 1, 3 on MRPI 2, and 4 on
midbrain volume (Table 1, Supplementary Table S1).

Mean age in MSA-P cohorts varied from 59.7–70 years, mean disease duration
from 24.7–93.8 months, and male-to-female ratio from 0.3–2.5. Four studies included
data on midbrain and pons area, and three studies included data on M/Parea (Table 1,
Supplementary Table S2).

None of the MRI markers had data on >2 studies for CBS cohorts. Mean age in CBS
cohorts varied from 61.3–72.8 years, mean disease duration from 20.8–55.2 months, and
male-to-female ratio from 0.1–1.7 (Table 1, Supplementary Table S3).

3.3. Quality Evaluation of Included Studies

Based on QUADAS-2 tool, the risk of bias regarding patient selection was unclear
for 19 of the 27 studies included due to unspecified consecutive/random selection of
patients in these studies. The risk of bias for the index test was unclear for 8 of the
27 studies and low for the remainder. The risk of bias for reference standard and flow/timing
as well as concerns regarding applicability, was low for all included studies (Figure 2,
Supplementary Table S1).
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3.4. Results of Meta-Analysis
3.4.1. Richardson’s Syndrome

Twenty-one studies included data on midbrain area (Marea) in RS cohorts. A total
of 1590 subjects (730 RS patients and 860 control subjects) were included in these studies.
Mean midbrain area ranged from 59 mm2 to 136.1 mm2. M/F ratio ranged from 0.4 to 4.4.
Mean age ranged from 62.5 to 74 years, and mean disease duration ranged from 12.8 to
79.2 months. All included studies reported significantly reduced midbrain surfaces, with
Cohen’s d ranging from −1.59 to −4.99. Overall Cohen’s d for Marea was −3.10 (−3.49 to
−2.72; p < 0.001) (Table 1, Figure 3, Supplementary Table S2).
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Seventeen studies included data on pons area (Parea) in RS cohorts. A total of
1348 subjects (577 RS patients and 771 control subjects) were included in these studies.
Mean pons area ranged from 417 mm2 to 526 mm2. M/F ratio ranged from 0.6 to 4.4.
Mean age ranged from 62.5 to 74 years, and mean disease duration ranged from 12.8 to
79.2 months. All included studies reported reduced pons surfaces, with Cohen’s d ranging
from −0.11 to −1.24. Overall Cohen’s d for Parea was −0.80 (−0.97 to −0.63; p < 0.001)
(Table 1, Figure 3, Supplementary Table S2).

Eleven studies included data on midbrain-to-pons-area ratio (M/Parea) in RS co-
horts. A total of 542 subjects (213 RS patients and 329 control subjects) were included in
these studies. Mean M/Parea ranged from 0.12 to 0.19. M/F ratio ranged from 0.6 to 4.4.
Mean age ranged from 62.5 to 74 years, and mean disease duration ranged from 12.8 to
50.2 months. All included studies reported significantly reduced M/Parea, with Cohen’s d
ranging from −1.86 to −4.51. Overall Cohen’s d for M/Parea was −3.02 (−3.45 to −2.58;
p < 0.001) (Table 1, Figure 3, Supplementary Table S2).

Thirteen studies included data on MRPI 1 in RS cohorts. A total of 1154 subjects
(493 RS patients and 662 control subjects) were included in these studies. Mean MRPI 1
ranged from 17.6 to 27. M/F ratio ranged from 0.6 to 2.8. Mean age ranged from 62.5 to
74 years, and mean disease duration ranged from 30.7 to 50.2 months. All included
studies reported significantly increased MRPI 1, with Cohen’s d ranging from 1.35 to
6.94. Overall Cohen’s d for MRPI 1 was 2.78 (2.05 to 3.52; p < 0.001) (Table 1, Figure 4,
Supplementary Table S2).

Three studies included data on MRPI 2 in RS cohorts. A total of 229 subjects (127 RS
patients and 102 control subjects) were included in these studies. Mean MRPI 2 ranged
from 17.6 to 27. M/F ratio ranged from 1.0 to 1.7. Mean age ranged from 70.4 to 74 years,
and mean disease was 46.8 months. All included studies reported significantly increased
MRPI 2, with Cohen’s d ranging from 1.87 to 3.11. Overall Cohen’s d for MRPI 2 was 2.48
(1.80 to 3.172; p < 0.001) (Table 1, Figure 4, Supplementary Table S2).

Four studies included data on midbrain volume (Mvol) in RS cohorts. A total of
304 subjects (164 RS patients and 140 control subjects) were included in these studies.
Mean Mvol ranged from 17.6 to 27. M/F ratio ranged from 1.1 to 1.3. Mean age ranged
from 65.1 to 72 years, and mean disease ranged from 38.4 to 55.2 months. All included
studies reported significantly decreased Mvol, with Cohen’s d ranging from −1.51 to −2.74.
Overall Cohen’s d for Mvol was −1.99 (−2.27 to −1.71; p < 0.001) (Table 1, Figure 4,
Supplementary Table S2).

3.4.2. MSA-P

Four studies included data on midbrain area (Marea) in MSA-P cohorts. A total of
275 subjects (126 MSA-P patients and 149 control subjects) were included in these studies.
Mean Marea ranged from 97.2 mm2 to 153.8 mm2. M/F ratio ranged from 0.3 to 1.7. Mean
age ranged from 62.6 to 67 years and mean disease ranged from 24.7 to 93.8 months. All
included studies reported significantly decreased Marea, with Cohen’s d ranging from
−0.55 to −1.30. Overall Cohen’s d for Marea was −0.97 (−1.34 to −0.59; p < 0.001) (Table 1,
Figure 5, Supplementary Table S3).
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Figure 4. Forrest plots of effect size (as measured by standardized mean difference—Cohen’s d) of
studies on Richardson’s syndrome patients compared to control subjects for: (a) MRPI 1; (b) MRPI 2;
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Four studies included data on pons volume (Parea) in MSA-P cohorts. A total of 275
subjects (126 MSA-P patients and 149 control subjects) were included in these studies.
Mean Parea ranged from 381.6 mm2 to 459 mm2. M/F ratio ranged from 0.3 to 1.7. Mean
age ranged from 62.6 to 67 years, and mean disease ranged from 24.7 to 93.8 months. All
included studies reported significantly decreased Parea, with Cohen’s d ranging from −1.68
to−0.54. Overall Cohen’s d for Parea was−1.15 (−1.57 to−0.72; p < 0.001) (Table 1, Figure 5,
Supplementary Table S3).
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Figure 5. Forrest plots of effect size (as measured by standardized mean difference—Cohen’s d)
of studies on MSA-P patients compared to control subjects for: (a) midbrain area; (b) pons area;
(c) midbrain-to-pons-area ratio. [10,53,59,60].
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Three studies included data on midbrain-to-pons-area ratio (M/Parea) in MSA-P co-
horts. A total of 142 subjects (66 MSA-P patients and 76 control subjects) were included
in these studies. Mean M/Parea ranged from 0.24 to 0.27. M/F ratio ranged from 0.1
to 1.2. Mean age ranged from 62.6 to 67 years, and mean disease ranged from 24.7
to 93.8 months. Two of the included studies reported significantly increased M/Parea,
whereas a single study reported a decreased M/Parea, with Cohen’s d ranging from −0.13
to 0.85. Overall Cohen’s d for M/Parea was 0.45 (−0.10 to 1.00; p = 0.11) (Table 1, Figure 5,
Supplementary Table S3).

3.4.3. CBS

Meta-analysis could not be performed because none of the MRI markers had available
data in >2 studies (Supplementary Table S4).

3.5. Heterogeneity

The Q statistic was used to assess the presence or absence of heterogeneity qualitatively,
and the I2 statistic was applied to quantify between-study heterogeneity.

In the RS studies, midbrain area (Q statistic p-value < 0.001; I2 = 0.85), midbrain-to-
pons-area ratio (Q statistic p-value < 0.001; I2 = 0.71), MRPI 1 (Q statistic p-value < 0.001;
I2 = 0.95), and MRPI 2 (Q statistic p-value < 0.001; I2 = 0.72) exhibited high heterogeneity.
Pons area exhibited moderate heterogeneity (Q statistic p-value = 0.02; I2 = 0.47), and
midbrain volume did not exhibit heterogeneity (Q statistic p-value = 0.24; I2 = 0.00)

In the MSA-p studies, midbrain area had moderate heterogeneity (Q statistic
p-value = 0.12; I2 = 0.49), whereas pons area (Q statistic p-value = 0.07; I2 = 0.58) and
midbrain-to-pons-area ratio (Q statistic p-value = 0.08; I2 = 0.61) had high heterogeneity.

3.6. Publication Bias

Funnel plots indicated a degree of asymmetry in RS patients for midbrain area and
MRPI 1, indicative of publication bias. The results of the Egger’s-regression-based test did
not support the presence of publication bias for MRPI 1 in RS but confirmed publication
bias for midbrain area in RS (β0 = −1.639; −3.034—0.244; p-value = 0.024) and pons area in
RS (β0 = −1.045; −1.735—0.355; p-value = 0.006) (Figure 6).

Neurol. Int. 2024, 15, FOR PEER REVIEW  16 
 

 

 

Figure 6. Funnel plots to visualize possible publication bias for: (a) midbrain area in RS; (b) pons 

area in RS; (c) M/Parea in RS; (d) MRPI 1 in RS; (e) MRPI 2 in RS; (f) midbrain volume in RS; (g) 

midbrain area in MSA-P; (h) pons area in MSA-P. A degree of asymmetry is evident for midbrain 

area in RS (a) and MRPI in RS (d). [9–13,50–66,68–71] 

Figure 6. Cont.



Neurol. Int. 2024, 16 13

Neurol. Int. 2024, 15, FOR PEER REVIEW  16 
 

 

 

Figure 6. Funnel plots to visualize possible publication bias for: (a) midbrain area in RS; (b) pons 

area in RS; (c) M/Parea in RS; (d) MRPI 1 in RS; (e) MRPI 2 in RS; (f) midbrain volume in RS; (g) 

midbrain area in MSA-P; (h) pons area in MSA-P. A degree of asymmetry is evident for midbrain 

area in RS (a) and MRPI in RS (d). [9–13,50–66,68–71] 

Figure 6. Funnel plots to visualize possible publication bias for: (a) midbrain area in RS; (b) pons area
in RS; (c) M/Parea in RS; (d) MRPI 1 in RS; (e) MRPI 2 in RS; (f) midbrain volume in RS; (g) midbrain
area in MSA-P; (h) pons area in MSA-P. A degree of asymmetry is evident for midbrain area in RS (a)
and MRPI in RS (d). [9–13,50–66,68–71].

4. Discussion

Progressive supranuclear palsy, multiple system atrophy, and corticobasal degenera-
tion are rare neurodegenerative Parkinsonian disorders with characteristic neuropathologi-
cal features which present with multiple diverse phenotypes. Richardson’s syndrome (RS)
is the prototypical manifestation of PSP and is characterized by early postural instability
and supranuclear gaze palsy [1]. MSA-Parkinsonism (MSA-P) manifests as predominant
Parkinsonism combined with dysautonomia, cerebellar, and pyramidal signs [2]. Corti-
cobasal syndrome (CBS) manifests with symptoms and signs of cortical (apraxia, cortical
sensory deficits, alien limb phenomena) and basal ganglionic dysfunction (parkinsonism,
myoclonus, dystonia) [3]. Despite the presence of these unique clinical features, patients
with APD are commonly misdiagnosed, particularly early in their disease course as well as
in oligosymptomatic or atypical/mixed presentations.

In an effort to improve a timely and accurate diagnosis of APD, multiple imaging
markers have been introduced. These markers range from morphometric MRI
markers—which are clinically applicable—to more elaborate, research-oriented markers,
including diffusion, resting-state MRI, SPECT, and PET markers [72–84].

Neuropathological studies have supported that PSP is characterized by preferential
midbrain and SCP atrophy, whereas MSA (particularly MSA-C) is characterized by pontine
and MCP atrophy. To this end, most morphometric MRI markers in APD have focused on
midbrain, pons, as measured through midbrain and pons areas and volumes. Additionally,
composite markers such as MRPI 1 and MRPI 2 have been introduced, which incorporate
measurements of midbrain and pons surfaces as well as SCP and MCP widths.

Multiple MRI studies have focused on the planimetric and volumetric midbrain/pons
characteristics of RS, MSA-P, and CBS. However, these studies exhibit differences in design,
diagnostic criteria, patient characteristics/groups, and imaging markers applied. In order
to systematically present data on these markers, we performed a systematic review of
all studies on RS, MSA-P, and CBS which included at least one of the following imaging
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markers: midbrain area and/or volume, pons area and/or volume, midbrain-to-pons-area
and/or volume ratio, and MRPI 1 and 2.

An initial conclusion of the present systematic review is that few studies have applied
these MRI markers in MSA-P (n = 5) or CBS (n = 4). Meta-analysis could not be performed
for any of the MRI markers in CBS because none of these markers had available data in
>2 studies. For MSA-p, only three MRI markers (midbrain area, pons area and M/Parea)
had available data on >2 studies and were thus available for meta-analysis. Based on
Cohen’s d as a measure of effect size as measured by pons area, MSA-p patients present
with predominant pontine atrophy (Cohen’s d = −1.15; p < 0.001). However, these patients
also exhibit comparable midbrain atrophy (Cohen’s d = −0.97; p < 0.001), thus rendering
the M/Parea an ineffective surrogate marker for MSA-P. Thus, pontine atrophy, as measured
by pons surface in the midsagittal plane, is the most potent MRI marker for MSA-P.

Twenty-five studies included data on MRI markers in RS. Meta-analysis was per-
formed for all MRI markers, except for pons volume and M/Pvol, due to lack of >2 studies
with data. Midbrain area provided the greatest Cohen’s d value among MRI markers
(Cohen’s d = −3.10; p < 0.001), followed by M/Parea (Cohen’s d = −3.02; p < 0.001), MRPI
1 (Cohen’s d = 2.78; p < 0.001) and MRPI 2 (Cohen’s d = 2.48; p < 0.001). The greater
effect size of midbrain area compared to M/Parea, MRPI 1 and MPRI 2 could be attributed
to the concomitant pontine atrophy in RS (as evidenced by pons area Cohen’s d = 0.80;
p = 0.02). These data indicate that despite the introduction of composite MRI markers such
as the MRPI, measurement of the midbrain surface remains the most effective MRI marker
for PSP.

The level of evidence, based on the number of subjects included per analysis, var-
ied between RS studies, with midbrain area (n = 1590), pons atrophy (n = 1348), and
MRPI 1 (n = 1154) included in the largest samples. Meta-analysis for MSA-P studies in-
cluded significantly smaller samples (n = 275) for midbrain and pons areas. Publication
bias was present for midbrain area studies in RS, and heterogeneity among studies was
high for multiple MRI markers.

There are certain limitations to this systematic review and meta-analysis. Initially,
most studies included had positive results. We did not perform a systematic search of the
grey literature, to search for negative relevant unpublished studies. However, publication
bias based on funnel plots and Egger’s-regression-based test was minimal. Additionally,
negative studies on pontine area in RS and on midbrain area, pons area, and M/Parea were
published and included. Lastly, the effect size for most MRI markers in RS in the included
studies was consistently high, rendering the possibility of negative relevant studies unlikely.
Another limitation of this study was the inclusion of all relevant MRI studies with plani-
metric/volumetric brainstem data irrespective of the methodology used (i.e., planimetry
methodology based on Oba et al. vs. Cossotini et al. [10,11]; inclusion or exclusion of
midbrain tectum [59]; manual vs. automatic measurements [63]; 1.5 T vs. 3 T MRI [60]). The
variability in these factors may have contributed to the heterogeneity of studies. However,
relevant studies have supported excellent agreement between automated and manual mea-
surements and between MRI scanners of different field strengths. Only two of the included
studies had a prospective design, with most studies being either retrospective or undefined.
Thus, the temporal pattern of atrophy based on MRI markers of this meta-analysis cannot
be deduced. The studies included in this meta-analysis applied different MRI acquisition
protocols with varied TR, TE, FOV, and slice thickness values (Supplementary Table S5).
Differences in resulting planimetric or volumetric measurements due to these MRI acquisi-
tion protocol differences could not be tested due to the great variability between studies.
Rarely, midline structural lesions, such as vascular malformations, tumors or traumatic
lesions may result in phenotypes mimicking atypical Parkinsonism. All studies included
in this meta-analysis excluded patients with structural lesions. Application of the MRI
markers discussed in this review implies the absence of such lesions. Lastly, all included
studies rely on the classification of patients based on established clinical diagnostic criteria,
in lack of neuropathological confirmation, rendering misdiagnosis of patients possible.
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Prospective longitudinal studies of large cohorts of RS, MSA-P, and CBS patients, with
neuropathological confirmation, would be pivotal in elucidating the temporal and spatial
patterns of brainstem structure atrophy and the optimal surrogate MRI markers for these
rare diseases.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/neurolint16010001/s1, Supplementary Table S1: “Analytical presentation
of study characteristics regarding the signaling questions, risk of bias and concerns regarding applica-
bility for patient selection, Index Test, Reference Standard and Flow/Timing, based on the QUADAS
Tool”; Supplementary Table S2: “Analytical data regarding the number of patients per study group,
mean values and standard deviations of all available MRI markers in studies of Richardson patients
included in the meta-analysis”; Supplementary Table S3: “Analytical data regarding the number
of patients per study group, mean values and standard deviations of all available MRI markers in
studies of MSA-P patients included in the meta-analysis”; Supplementary Table S4: “Analytical
data regarding the number of patients per study group, mean values and standard deviations of all
available MRI markers in studies of corticobasal syndrome patients included in the meta-analysis”;
Supplementary Table S5: “MRI acquisition protocol per study”.
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