
Citation: Webb, G.; Zhao, X.E. An

Epidemic Model with Infection Age

and Vaccination Age Structure. Infect.

Dis. Rep. 2024, 16, 35–64. https://

doi.org/10.3390/idr16010004

Academic Editor: Nicola Petrosillo

Received: 17 November 2023

Revised: 27 December 2023

Accepted: 1 January 2024

Published: 10 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Epidemic Model with Infection Age and Vaccination
Age Structure
Glenn Webb 1,* and Xinyue Evelyn Zhao 2,*

1 Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA
2 Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
* glenn.f.webb@vanderbilt.edu (G.W.); xzhao45@utk.edu (X.E.Z.)

Abstract: A model of epidemic dynamics is developed that incorporates continuous variables for
infection age and vaccination age. The model analyzes pre-symptomatic and symptomatic periods of
an infected individual in terms of infection age. This property is shown to be of major importance
in the severity of the epidemic, when the infectious period of an infected individual precedes the
symptomatic period. The model also analyzes the efficacy of vaccination in terms of vaccination age.
The immunity to infection of vaccinated individuals varies with vaccination age and is also of major
significance in the severity of the epidemic. Application of the model to the 2003 SARS epidemic
in Taiwan and the COVID-19 epidemic in New York provides insights into the dynamics of these
diseases. It is shown that the SARS outbreak was effectively contained due to the complete overlap
of infectious and symptomatic periods, allowing for the timely isolation of affected individuals. In
contrast, the pre-symptomatic spread of COVID-19 in New York led to a rapid, uncontrolled epidemic.
These findings underscore the critical importance of the pre-symptomatic infectious period and the
vaccination strategies in influencing the dynamics of an epidemic.
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1. Introduction

The objective of this work is to model the effects of quarantine, vaccination, and
hospital isolation on the transmission of an infectious disease in an epidemic population of
susceptible individuals and infected individuals. The focus of the model is on the infectious
and symptomatic periods of an infective, which may or may not coincide. For a viral
respiratory disease with severe morbidity and mortality, the symptomatic period typically
results in hospital isolation as soon as the disease is recognized as a major public health
problem. If the infectious and symptomatic periods coincide, or if the infectious period
follows the appearance of symptoms, then the hospitalization of symptomatic patients is
an effective method of isolating infectious individuals, reducing the potential for disease
transmission to others. If, however, the infectious period precedes the symptomatic phase,
then there is much greater potential for disease transmission to those who are susceptible.
The efficacy of vaccination during the epidemic is incorporated into the model to account
for the acquisition of immunity over a time period of vaccinated individuals.

The model is applicable to influenza epidemics such as the SARS epidemic of 2003
and the current COVID-19 pandemic. The 2003 SARS epidemic was contained, in part,
because SARS infectives were infectious after manifesting symptoms, which allowed for
their identification and controlled isolation in hospitals. Vaccination has played a key role
in the containment of the current COVID-19 pandemic. The central point of the study here
is that in a future epidemic comparable to the 2003 SARS epidemic and the current COVID-
19 pandemic, quarantine, vaccination, and hospital isolation will be critical elements of
containment.

The literature on epidemic models is extensive, with structure variables and vaccina-
tion elements. In our References, we have listed many of such works [1–110]. The collection
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of works in our References provides a useful resource of research contributions to the
subject of our work here.

The organization of this paper is as follows: In Section 2.1, we present the compart-
ments and parameters of the model. In Section 2.2, we present the equations of the model.
In Section 2.3, we analyze the model. In Section 2.4, we apply the model to the 2003 SARS
epidemic in Taiwan. In Section 2.5, we apply the model to the COVID-19 epidemic in New
York. In Section 3, we provide a discussion of our results and highlight some future work.

2. Materials and Methods
2.1. State Variables of the Model

The state variables of the model are S(t) = susceptible individuals at time t, V(t) =
vaccinated individuals at time t, E(t) = exposed individuals at time t (those who have
been infected but are not yet infectious), I(t) = infective individuals at time t (those capa-
ble of transmitting the disease), H(t) = hospitalized infectives at time t (including mor-
tality), Q(t) = quarantined infectives at time t, and R(t) = recovered infectives at time t.
The interactions among these compartments are depicted in Figure 1.

The key features of this model are (1) infected individuals are tracked by disease age
ai, and the incubation, infectious, and symptomatic stages of the disease are modeled by
the disease age of the infected individual, and (2) vaccinated individuals are tracked by
vaccination age av, and their susceptibility to infection depends on their vaccination age as
they gradually acquire and lose immunity.

Figure 1. Diagram of susceptible, vaccinated, exposed, infectious, hospitalized, quarantined, and
recovered compartments of the model and the interactions of these compartments in the equations of
the model.

The infected population has infection age density i(ai, t). Infectives begin the disease
course at age ai = 0, are infected but noninfectious (exposed) from age ai = 0 to age ai = r,
and infectious from age ai = r to age ai = r + s. Infectives are no longer infectious after
reaching the disease age ai = r + s and are considered recovered, with the assumption that
they cannot be re-infected. Thus:

E(t) =
∫ r

0
i(ai, t)dai, (1)

I(t) =
∫ r+s

r
i(ai, t)dai, (2)

R(t) =
∫ t

0
i(r + s, t̂)dt̂, t ≥ 0. (3)

Infectives with infection age ai ≤ r + s can be removed from the exposed class E(t)
or the infectious class I(t) at time t due to hospitalization or quarantine. Mortality due
to the disease is included in the hospitalized compartment. Transmission of infection to
susceptibles, hospitalization, manifestation of symptoms, and quarantine all depend on
disease age. It is also assumed that hospitalized, quarantined, and recovered infectives do
not transmit the disease to susceptibles.
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The vaccinated population has vaccination age density v(av, t). Vaccinated individuals
begin with vaccination age av = 0 and then have increasing or decreasing immunity to
infection as their vaccination age av increases over time. We assume there are no vaccinated
individuals at t = 0, and the vaccination starts on or after t = 0, thus av ≤ t. The number
of vaccinated individuals at time t is

V(t) =
∫ t

0
v(av, t)dav. (4)

The population of vaccinated individuals has a gain from the susceptible class and a
loss to the infected class, since vaccination efficacy is incomplete.

The model does not take into account demographics (births and deaths) of the popula-
tion. The time scale of the model (the units of t are typically days) is comparable to a small
fraction of the lifespan of individuals in the population. The asymptotic behavior of the
model populations, corresponding to large time, is comparable to a small fraction of the
typical lifespan of individuals. For human populations, the typical time units are days and
the meaningful time scale of the model is several years.

The parameters of the model are as follows: α(ai) is the disease transmission rate
from an infectious individual with infection age ai to a susceptible individual, ν is the rate
of vaccination of susceptibles, 1 − σ(av) measures the effectiveness of vaccination for a
vaccinated individual with vaccination age av, and βH(ai) and βQ(ai) are the transition
rates of infectives with infection age ai to hospitalization and quarantine, respectively.

2.2. Equations of the Model

The equations of the model are as follows: for t ≥ 0,

d
dt

S(t) = −
( ∫ r+s

r
α(ai)i(ai, t)dai + ν

)
S(t), (5)

∂

∂t
i(ai, t) +

∂

∂ai
i(ai, t) = −

(
βH(ai) + βQ(ai)

)
i(ai, t), 0 ≤ ai ≤ r + s, (6)

i(0, t) =
∫ r+s

r
α(ai)i(ai, t)dai

(
S(t) +

∫ t

0
σ(av)v(av, t)dav

)
, (7)

∂

∂t
v(av, t) +

∂

∂av
v(av, t) = −σ(av)

(∫ r+s

r
α(ai)i(ai, t)dai

)
v(av, t), 0 ≤ av ≤ t, (8)

v(0, t) = νS(t), (9)

with initial conditions

S(0) = S0, i(ai, 0) = i0(ai), v(av, 0) = v0(av) ≡ 0. (10)

(we assume there are no vaccinated individuals at t = 0).

2.3. Analysis of the Model

Assume the following hypothesis: ν ≥ 0, α is non-negative and piecewise continuous
on [r, r + s); βH and βQ are non-negative and piecewise continuous on [0, r + s); σ is non-
negative and piecewise continuous on [0, ∞); S0 > 0, i0 is non-negative and piecewise
continuous on [0, r + s); and v0 ≡ 0 on [0, ∞). The existence of unique non-negative
solutions in [0, ∞) × L1[0, r + s) × L1[0, ∞) to the system of Equations (5)–(9), with initial
conditions (10), can be proven with the techniques developed in [111]. The asymptotic
behavior of this system without vaccination is investigated in [112,113]. We prove the
following asymptotic behavior of the solutions with vaccination by the below theorem.
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Theorem 1. Assume that for 0 ≤ ai ≤ r + s, βH(ai) + βQ(ai) ≥ β̄ > 0, 0 ≤ α(ai) ≤ ᾱ > 0,
and 0 ≤ σ(ai) ≤ σ̄ > 0. The solutions of (5)–(9) with initial conditions (10) have the following
asymptotic behavior:

lim
t→∞

S(t) = S∞ ≥ 0, lim
t→∞

E(t) = 0, lim
t→∞

I(t) = 0. (11)

If ν > 0 (vaccination), then S∞ = 0. If ν = 0 (no vaccination), then S∞ satisfies

S∞ = exp
[
−
(

Γ + (S(0)− S∞)Λ
)]

S(0), (12)

where

Γ =
∫ r+s

r
α(ai)

∫ ai

0
i0(u)exp

[
−
∫ ai

u
(βH(b) + βQ(b))db

]
dudai, (13)

Λ =
∫ r+s

r
α(ai)exp

[
−
∫ ai

0
(βH(b) + βQ(b))db

]
dai. (14)

Proof. Let β(ai) = βH(ai) + βH(ai) ≥ β̄ > 0, 0 ≤ ai ≤ r + s. We first prove (11). From (5)
for t ≥ 0:

S(t) = exp(−νt)exp

[
−
∫ t

0

( ∫ r+s

r
α(ai)i(ai, t̂)dai

)
dt̂

]
S(0) (15)

Then, it implies that S(t) is non-increasing and S∞ = limt→∞ S(t) ≥ 0. It is also clear
that S∞ = 0 if ν > 0. In addition, by evaluating the integral of (5) from 0 to t, we have

S(t)− S(0) = −
∫ t

0

( ∫ r+s

r
α(ai)i(ai, t̂)dai

)
S(t̂)dt̂ − ν

∫ t

0
S(t̂)dt̂,

which is equivalent to

S(t) +
∫ t

0

( ∫ r+s

r
α(ai)i(ai, t̂)dai

)
S(t̂)dt̂ = S(0)− ν

∫ t

0
S(t̂)dt̂. (16)

We then derive equations for V(t). Combining (4), (8), and (9), we obtain, for t ≥ 0,

V′(t) =
d
dt

( ∫ t

0
v(av, t)dav

)
= v(t, t) +

∫ t

0
vt(av, t)dav

= v(t, t) +
∫ t

0

[
− vav(av, t)− σ(av)

( ∫ r+s

r
α(ai)i(ai, t)dai

)
v(av, t)

]
dav

= v(t, t)− v(t, t) + v(0, t)−
∫ t

0
σ(av)

( ∫ r+s

r
α(ai)i(ai, t)dai

)
v(av, t)dav

= νS(t)−
∫ t

0

( ∫ r+s

r
α(ai)i(ai, t)dai

)
σ(av)v(av, t)dav,

which integrates to

V(t) +
∫ t

0

( ∫ t̂

0

[( ∫ r+s

r
α(ai)i(ai, t̂)dai

)
σ(av)v(av, t̂)

]
dav

)
dt̂

= V(0) +
∫ t

0
νS(t̂)dt̂.

(17)
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Then, (15), (17), and the non-negativity of solutions imply that limt→∞ V(t) exists.
Next, we consider E(t) and I(t). Using Equations (1), (2), and (6), we have, for t ≥ 0,

E′(t) =
d
dt

( ∫ r

0
i(ai, t)dai

)
=
∫ r

0
it(ai, t)dai =

∫ r

0

(
− iai (ai, t)− β(ai)i(ai, t)

)
dai

= i(0, t)− i(r, t)−
∫ r

0
β(ai)i(ai, t)dai,

(18)

I′(t) =
d
dt

( ∫ r+s

r
i(ai, t)dai

)
=
∫ r+s

r
it(ai, t)dai =

∫ r+s

r

(
− iai (ai, t)− β(ai)i(ai, t)

)
dai

= i(r, t)− i(r + s, t)−
∫ r+s

r
β(ai)i(ai, t)dai,

(19)

where the boundary condition i(0, t) is defined in (7). Adding up these two equations
results in

E′(t) + I′(t) = i(0, t)− i(r + s, t)−
∫ r+s

0
β(ai)i(ai, t)dai,

which integrates to

E(t) + I(t) = E(0) + I(0) +
∫ t

0

(
i(0, t̂)− i(r + s, t̂)−

∫ r+s

0
β(ai)i(ai, t̂)dai

)
dt̂. (20)

In Equation (20), we use (7) to derive

∫ t

0
i(0, t̂) =

∫ t

0

∫ r+s

r
α(ai)i(ai, t̂)dai

(
S(t̂) +

∫ t̂

0
σ(av)v(av, t̂)dav

)
dt̂

=
∫ t

0

( ∫ r+s

r
α(ai)i(ai, t̂)dai

)
S(t̂)dt̂

+
∫ t

0

( ∫ r+s

r
α(ai)i(ai, t̂)dai

)( ∫ t̂

0
σ(av)v(av, t̂)dav

)
dt̂

=
∫ t

0

( ∫ r+s

r
α(ai)i(ai, t̂)dai

)
S(t̂)dt̂

+
∫ t

0

( ∫ t̂

0

[( ∫ r+s

r
α(ai)i(ai, t̂)dai

)
σ(av)v(av, t̂)

]
dav

)
dt̂.

(21)

We observe that the first term in (21) is equal to the second term in the left-hand side
of (16), and the second term in (21) equals the second term in the left-hand side of (17).
Therefore, when summing up Equations (16), (17) and (20), we find that the two terms in
(21) cancel each other out. Consequently, for t ≥ 0, we have

S(t) + V(t) + E(t) + I(t) +
∫ t

0
i(r + s, t̂)dt̂ +

∫ t

0

( ∫ r+s

0
β(ai)i(ai, t̂)dai

)
dt̂

= S(0) + V(0) + E(0) + I(0).
(22)

Since β(ai) ≥ β̄ for 0 ≤ ai ≤ r + s, (22) implies

∫ ∞

0

(
E(t) + I(t)

)
dt < ∞. (23)

Thus, (15), (17), (22), and (23) imply

lim
t→∞

E(t) = lim
t→∞

I(t) = 0.
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Lastly, we prove that if ν = 0 (no vaccination), then S∞ > 0 and satisfies (12). From
(6):

i(ai, t) =

{
i0(ai − t)exp[−

∫ ai
ai−t β(b)db], ai > t;

i(0, t − ai)exp[−
∫ ai

0 β(b)db], ai ≤ t.
(24)

From (5), (7), and (24) with ν = 0, for t ≥ 0,

S′(t) = −i(0, t) =⇒ S(0)− S∞ =
∫ ∞

0
i(0, t)dt. (25)

For t ≥ 0, (24) and (25) imply∫ ∞

0

∫ r+s

r
α(ai)i(ai, t)daidt

=
∫ r+s

r
α(ai)

( ∫ ai

0
i(ai, t)dt +

∫ ∞

ai

i(ai, t)dt
)

dai

=
∫ r+s

r
α(ai)

( ∫ ai

0
i0(ai − t)e−

∫ ai
ai−t β(b)dbdt +

∫ ∞

ai

i(0, t − ai)e−
∫ ai

0 β(b)dbdt

)
dai

=
∫ r+s

r
α(ai)

(
−
∫ 0

ai

i0(u)e−
∫ ai

u β(b)dbdu +
∫ ∞

0
i(0, u)e−

∫ ai
0 β(b)dbdu

)
dai

=
∫ r+s

r
α(ai)

( ∫ ai

0
i0(u)e−

∫ ai
u β(b)dbdu +

( ∫ ∞

0
i(0, u)du

)(
e−
∫ ai

0 β(b)db
))

dai

= Γ + (S(0)− S∞)Λ.

Then, (12) follows from (15).

Remark 1. We claim that |E′(t) + I′(t)| is bounded for t ≥ 0, which provides a useful estimate on
the values of E′(t) and I′(t). We shall prove this statement in two cases. For t ≥ r + s, (7), (22),
and (24) imply there exists C1 > 0, such that

i(r + s, t) = i(0, t − r − s)exp
[
−
∫ r+s

0
β(b)db

]
≤
( ∫ r+s

r
α(ai)i(ai, t − r − s)dai

)
(

S(t − r − s) +
∫ t−r−s

0
σ(ai)v(av, t − r − s)dav

)

≤
(

ᾱI(t − r − s)
)(

S(t − r − s) + σ̄V(t − r − s)
)
≤ C1.

For t < r + s, we again use (24) to derive

i(r + s, t) = i0(r + s − t)exp
[
−
∫ r+s

r+s−t
β(b)db

]
≤ i0(r + s − t).

Since the initial condition i0 is piecewise continuous on [0, r + s), there exists C2 > 0, such
that

i(r + s, t) ≤ i0(r + s − t) ≤ C2,

for t < r + s.
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Let C∗ = max{C1, C2}. Combining (7), (18), and (19), we have, for t ≥ 0,∣∣∣∣E′(t) + I′(t)
∣∣∣∣ = ∣∣∣∣i(0, t)− i(r + s, t)−

∫ r+s

0
β(ai)i(ai, t)dai

∣∣∣∣
=

∣∣∣∣( ∫ r+s

r
α(ai)i(ai, t)dai

)(
S(t) +

∫ t

0
σ(av)v(av, t)dav

)
− i(r + s, t)−

∫ r+s

0
β(ai)i(ai, t)dai

∣∣∣∣
≤ ᾱI(t)

(
S(t) + σ̄V(t)

)
+ C∗ + β̄

(
E(t) + I(t)

)
.

By (22), |E′(t) + I′(t)| is bounded for t ≥ 0.

2.4. Application of the Model to the 2003 SARS Epidemic in Taiwan

This example is based on results in [114–116], and illustrates the case that the period
of infectiousness coincides with the symptomatic period. In the SARS epidemic in Taiwan
in 2003, the seriousness of the disease was recognized after an initial period, and by
24 April 2003, infected individuals were quickly identified and isolated in hospitals, with
stringent control measures to prevent further disease transmission. The incubation period
of SARS was from two to seven days. In this epidemic in Taiwan 2003, vaccination was not
available. We first consider the model without vaccination (ν = 0).

We assume that the incubation (exposed) period lasts from the moment of infection to
day 5, and the infectious period lasts from day 5 to day 26. We assume the symptomatic
period to be synonymous with the infectious period, which also lasts from day 5 to day 26
(see Scenario 1 in Figure 2). It is also assumed that, after 24 April 2003, a certain percentage
of symptomatic infectives were isolated in hospitals, and gave no further transmissions to
susceptibles. We will then extrapolate the model to the case where the pre-symptomatic
and infectious periods overlap by one day (see Scenario 2 in Figure 2) and the case where
the two periods overlap by two days (see Scenario 3 in Figure 2).

Figure 2. Timeline of infectious periods relative to symptom onset for SARS. The top segment
displays the exposed–infectious period. Segments 2 to 4 illustrate scenarios where the infectious
period coincides with the symptomatic period, precedes the symptomatic period by one day, and
precedes the symptomatic period by two days, respectively.
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All parameters are based on fitting the model to data [114]. The initial population of
susceptibles is set at S(0) = 6.0 × 106. It is assumed that the exposed period lasts from
day 0 until day r = 5, and the infectious period lasts s = 21 days, from day r = 5 to
day r + s = 26. The asymptomatic period and the exposed period coincide, as do the
symptomatic period and the infectious period (see Figure 2). The transmission rate is
defined as (see Figure 3):

α(ai) =


0 if 0 ≤ ai < r,
3.1 × 10−8(ai − r) if r ≤ ai < r + 10,

3.1 × 10−7
(

1.0 − ai−r−10
11

)
if r + 10 ≤ ai < r + s,

0 if r + s ≤ ai.

The hospitalization rate is 54.5% per day after manifestation of symptoms at day 5
and 0.0% per day before day 5 (see Figure 3):

βH(ai) =

{
0 if 0 ≤ ai < 5,
0.545 if 5 ≤ ai ≤ 26.

We assume only pre-symptomatic infected individuals are quarantined. The quar-
antine rate is 2.0% per day from day 0 to day 5 and then 0.0% per day after day 5 (see
Figure 3):

βQ(ai) =

{
0.020 if 0 ≤ ai < 5,
0 if 5 ≤ ai ≤ 26.

It is assumed that at time 0 the distribution of infectives i(ai, 0) is given by (see
Figure 3):

i(ai, 0) =



12 if ai ≤ 1,
5 if 1 < ai ≤ 2,
19 if 2 < ai ≤ 3,
9 if 3 < ai ≤ 4,
15 if 4 < ai ≤ 5,
1
2 (17 − a) if 5 < ai ≤ 17,
0 if 17 < ai.

With this initial distribution i(a, 0), the total number of exposed at time t = 0 is
E(0) = 60 and the total number of infectious at time t = 0 is I(0) = 36. It is assumed that
H(0) = 0, Q(0) = 0, and R(0) = 0. In Figure 4, the graphs of the exposed population E(t),
the infectious population I(t), the cumulative number of new cases

∫ t
0 i(0, t̂)dt̂, and the

daily number of new cases i(0, t) are given and compared to the data of the epidemic from
28 April to 25 June 2003. The total number of new cases is ≈ 230. Data for the epidemic are
given in [114], with 232 cases reported for this time period.

The model can be used to evaluate the role of the susceptible size population S(0) in
predicting the number of cases S(0)− S∞ in the epidemic, with all other parameters and
initial conditions held fixed. For this example, S(0) = 6, 000, 000 and S0 − S∞ ≈ 230. In
Figure 5, we use Formula (12) to plot S(0)− S∞ as a function of S(0), as S(0) increases from
105 to 107. We find that the number of cases S(0)− S∞ increases as the initial susceptible
population size S(0) increases.
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Figure 3. The disease age-dependent transmission rate, quarantine rate, hospitalization rate, and
initial disease age distribution of infectives for the 2003 Taiwan SARS epidemic from 28 April to
5 June 2003. Vertical dashed lines separate exposed and infectious periods.
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Figure 4. The graphs of the exposed class E(t), infectious class I(t), cumulative number of new cases,
and daily new cases in the 2003 Taiwan SARS epidemic from 28 April to 5 June. The dotted curves
are data (Taiwan Centers for Disease Control https://www.cdc.gov.tw) and the solid curves are the
model simulation. S∞ ≈ 5,999,770. The cumulative number of cases on 5 June is approximately 230.
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Figure 5. (Top) The blueline is the function F(X) = X and the redline is the function
G(X) = exp[−(Γ + (S(0)− X)Λ)]S(0). The intersection of the two lines is (S∞, S∞), S∞ ≈ 5,999,770.
Λ ≈ 9.376 × 10−8 and Γ ≈ 0.000016929. The total number of cases is S(0) − S∞ ≈ 230.
(Bottom) The number of new cases S(0) − S∞ as a function of S(0), where S∞ is computed by
S∞ = exp[−(Γ + (S(0)− S∞)Λ)]S(0). S(0)− S∞ increases as S(0) increases.

Remark 2. The asymptotic behavior of the solutions of (5)–(7) without vaccination (ν = 0), is
analogous to the asymptotic behavior of the solutions of the classic Kermack–McKendrick SEIR
model [117,118]:

S′(t) = −αS(t)I(t), t ≥ 0, (26)

E′(t) = αS(t)I(t)− βE(t), t ≥ 0, (27)

I′(t) = βE(t)− γI(t), t ≥ 0, (28)

R′(t) = γI(t), t ≥ 0. (29)



Infect. Dis. Rep. 2024, 16 45

The limiting behavior as t → ∞ depends on the initial conditions S(0), E(0), I(0):

lim
t→∞

E(t) = 0, lim
t→∞

I(t) = 0, lim
t→∞

S(t) = S∞ > 0,

where S∞ satisfies

S∞ = S(0) + E(0) + I(0) +
γ

α
log
(

S∞

S(0)

)
. (30)

Examples are given in Figure 6. This result is of major scientific importance because
it explains why epidemic diseases, which can occur hundreds of thousands of times over
evolutionary time scales, do not annihilate biological species.

Figure 6. The solution S(t), E(t), I(t) of the Kermack–McKendrick SEIR model (26)–(29) for varying
initial values S(0), E(0), I(0). The limiting behavior as t → ∞ is dependent on the initial values:
limt→∞ E(t) = 0, limt→∞ I(t) = 0, limt→∞ S(t) = S∞, where S∞ satisfies (30).

The role of hospitalization (isolation) and quarantine of infectives in the 2003 Taiwan
SARS epidemic can be analyzed using the model. We consider two scenarios in which the
infection period precedes the symptomatic period—the period of infectiousness begins
on day 5 and the period of symptoms begins on day 6 or day 7 (see Figure 2). We also
consider three scenarios in which the quarantine rate is 2.0 % per day, 4.0% per day, and
10.0% per day. We assume only pre-symptomatic infected individuals are quarantined. The
parameters α and βH are as before, and ν = 0 (no vaccination).

In the case that exposed infectives are symptomatic at day 6 (infectious 1 day before
symptoms) and the maximum quarantine rate is 2.0%, the cumulative number of cases
reaches 2000 in 1 year and the cumulative number of quarantined infectives reaches 150 in
1 year. In the case that exposed infectives are symptomatic at day 7 (infectious 2 days before
symptoms) and the maximum quarantine rate is 2.0%, the cumulative number of cases
is approximately 3,700,000 and the cumulative number of quarantined infectives reaches
300,000 in 1 year (see Figure 7).
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Figure 7. The epidemic in the case that (top) infectiousness precedes symptom on-set by 1 day and the
maximum quarantine rate is 2.0% and (bottom) infectiousness precedes symptom on-set by 2 days
and the maximum quarantine rate is 2.0%. Vertical dashed lines separate exposed and infectious. Red
vertical lines represent the beginning of symptoms and the maximum disease age of quarantine.

In the case that exposed infectives are symptomatic at day 6 (infectious 1 day before
symptoms) and the maximum quarantine rate is 4.0%, the cumulative number of cases
reaches approximately 800 in 150 days and the cumulative number of quarantined infectives
reaches 120 in 150 days. In the case that exposed infectives are symptomatic at day
7 (infectious 2 days before symptoms) and the maximum quarantine rate is 4.0%, the
cumulative number of cases is approximately 2,700,000 in 450 days and the cumulative
number of quarantined infectives reaches 400,000 in 450 days (see Figure 8).
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,


Figure 8. The epidemic in the case that (top) infectiousness precedes symptom on-set by 1 day and
the maximum quarantine rate is 4.0% and (bottom) infectiousness precedes symptom on-set by 2
days and the maximum quarantine rate is 4.0%. Vertical dashed lines separate exposed and infectious.
Red vertical lines represent the beginning of symptoms and the maximum disease age of quarantine.

In the case that exposed infectives are symptomatic at day 6 (infectious 1 day before
symptoms) and the maximum quarantine rate is 10.0%, the cumulative number of cases
reaches approximately 350 in 50 days and the cumulative number of quarantined infectives
is approximately 100 in 50 days. In the case that exposed infectives are symptomatic at
day 7 (infectious 2 days before symptoms) and the maximum quarantine rate is 10.0%, the
cumulative number of cases is approximately 1000 in 200 days and the cumulative number
of quarantined infectives reaches approximately 300 in 200 days (see Figure 9).
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Figure 9. The epidemic in the case that (top) infectiousness precedes symptom on-set by 1 day and the
maximum quarantine rate is 10.0% and (bottom) infectiousness precedes symptom on-set by 2 days
and the maximum quarantine rate is 10.0%. Vertical dashed lines separate exposed and infectious.
Red vertical lines represent the beginning of symptoms and the maximum disease age of quarantine.

In Figure 10, the graph of the total number of cases
∫ ∞

0 i(0, t)dt as a function of the
number of days of infectiousness pre-symptomatic p and the maximum quarantine rate
is given. The number of cases rises sharply as the quarantine rate falls below 5% and the
number of days infectious pre-symptomatic exceeds 1.
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Figure 10. The total number of cases graphed as a function of the number of days infectiousness
pre-symptomatic and the maximum quarantine rate.

We modify the model of the 2003 Taiwan SARS epidemic without vaccination to
include vaccination, which was not available in Taiwan in 2003. This example will illus-
trate the epidemic evolution with alternate elements, including vaccination. We take the
vaccination parameter ν = 0.05. Vaccinated individuals begin with vaccinated age av = 0
and then acquire increasing immunity as their vaccination age increases over a period of
days or weeks. The total number of vaccinated at time t is

∫ t
0 v(av, t)dav. Susceptibles are

vaccinated at a constant rate ν per day. The proportion of vaccinated still susceptible at
vaccination age av is σ(av).

In this example, ν = 0.05, σ(av) = 0.7e−0.25av + 0.3 (which means vaccination results
in incomplete immunity, and as vaccination age av advances, 30% of vaccinated individuals
remain susceptible). We assume, V(0) = 0. Infectiousness precedes symptom onset by
2 days and the maximum quarantine rate is 4.0%. All other parameters are as before. The
evolution of the epidemic is graphed in Figure 11, where it is seen that the cumulative
number of cases is approximately 175,000. This example can be compared to the model
with the same parameters, except without vaccination in the bottom graph in Figure 8,
where the cumulative number of cases is approximately 350,000.

Figure 11. The cumulative number of quarantined cases, total number of cases, and cumulative
number of vaccinated susceptibles in the model with vaccination.
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2.5. Application of the Model to the COVID-19 Epidemic in New York

In this section, we apply our mathematical model to analyze the transmission dy-
namics of COVID-19 in New York. Numerous factors influence COVID-19 transmission,
including vaccination rates, the emergence of more contagious variants, the public’s reaction
to and understanding of the virus, and governmental responses and policies. To provide a
more detailed analysis, we segment the data into different phases, aligned with the timeline
of COVID-19 transmission and the New York state government’s response [118].

We obtain data from the New York State Department of Health (https://health.data.
ny.gov/, accessed on 25 December 2023). The state of New York confirmed its first case of
COVID-19 during the pandemic on 1 March 2020, while the first complete vaccination (i.e.,
two-dose vaccination) began on 15 December 2020. Our analysis focuses on the timeframe
from 30 October 2020 to 13 March 2022.

In Figure 12, the green dots depict daily reported cases. Since these data tend to be
erratic and are subject to ongoing updates, a standard approach is to use a rolling weekly
average. Accordingly, the gray bars in the figure represent this rolling weekly average.
The top figure in Figure 13 follows a similar presentation: green dots for daily vaccinated
individuals and gray bars for the rolling weekly averages.

On average, symptoms of COVID-19 manifest in newly infected individuals approxi-
mately 5–6 days later (WebMD, https://www.webmd.com/covid/coronavirus-incubation-
period, accessed on 15 October 2023) and last for about two weeks. We set the minimum
age of infectiousness r = 3, the number of days of pre-symptomatic infectiousness p = 2,
the number of days when symptoms appear r + p = 5, and the number of days of infec-
tiousness s = 11. It is assumed that the hospitalization rate βH(ai) per day is 54.5% once
symptoms appear (after day r + p = 5), with a rate of 0.0% per day before day 5 (Figure 14):

βH(ai) =

{
0 if 0 ≤ ai < r + p,
0.545 if r + p ≤ ai ≤ 14.

We assume only pre-symptomatic infected individuals are quarantined. The quarantine
rate is 4.0% per day from day 0 to day 5 and then 0.0% per day after day 5 (see Figure 14):

βQ(ai) =

{
0.020 if 0 ≤ ai < r + p,
0 if r + p ≤ ai ≤ 14.

In the case of COVID-19, the infectious period precedes the symptomatic phase.
Individuals with COVID-19 can transmit the virus up to 48 h before they begin to show
symptoms. Based on this understanding, we assume the exposed period for COVID-19
spans from the moment of infection to day 3 (i.e., r = 3). The infectious period then
continues from day 3 to day 14, resulting in a two-day overlap between the pre-symptomatic
and infectious periods (see Figure 15).

As mentioned, the transmission dynamics of COVID-19 are influenced by numerous
factors, leading to multiple waves of infection as evidenced by the empirical data presented
in Figure 12. In order to accurately model these multiple waves observed in the COVID-19
data, we have refined our simulation strategy. We segment the entire timeframe into
different phases, assigning distinct transmission rates to each phase to reflect the changing
epidemiological and social responses during the pandemic. The model is applied iteratively
with these phase-specific transmission parameters, enabling our simulations to capture the
multi-wave nature of the outbreak.

https://health.data.ny.gov/
https://health.data.ny.gov/
https://www.webmd.com/covid/coronavirus-incubation-period
https://www.webmd.com/covid/coronavirus-incubation-period
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Figure 12. Daily and cumulative infectious cases for COVID-19 in New York from 30 October 2020
to 13 March 2022. (Top) Green dots represent data sourced from the New York State Department of
Health (https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Testing/jvfi-ffup,
accessed on 20 December 2023), gray bars show the rolling weekly averages, and the red curve is
the simulation result of our model. (Bottom) Green dots represent data, and the red curve is the
simulation result of our model.

Figure 13. Daily and cumulative COVID-19 vaccinations in New York from 30 October 2020 to 13
March 2022. (Top) Green dots represent data from the New York State Department of Health (https://
health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Vaccination-Data/duk7-xrni, ac-
cessed on 20 December 2023), gray bars represent the rolling weekly average, and the red curve is the
simulation result of our model. (Bottom) The green dotted curve represents the data, and the red
curve illustrates the outcomes from our model simulation.

https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Testing/jvfi-ffup
https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Vaccination-Data/duk7-xrni
https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Vaccination-Data/duk7-xrni
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Figure 14. The vaccination age-dependent effectiveness, vaccination rate, hospitalization rate, and
quarantine rate for the COVID-19 epidemic in New York from 30 October 2020 to 13 March 2022.

Figure 15. Timeline of infectious periods relative to symptom onset for COVID-19. The top segment
displays the exposed–infectious period. Segments 2 to 4 illustrate scenarios where the infectious
period starts two days before, one day before, and simultaneously with symptom onset, respectively.

Upon fitting the data, we have different values of transmission rates in different
phases:

• Phase 1: 1 November 2020 to 8 January 2021. There was no vaccination in this phase.

α(ai) =


0 if 0 ≤ ai < r,
8.4 × 10−9(ai − r) if r ≤ ai < r + 7,
8.4 × 10−9 × 7

s−7 (r + s − ai) if r + 7 ≤ ai < r + s,
0 if r + s ≤ ai.
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• Phase 2: 8 January 2021 to 16 February 2021. With the commencement of vaccination
campaigns and growing public caution, there was a small decrease in the COVID-19
transmission rate.

α(ai) =


0 if 0 ≤ ai < r,
6.7 × 10−9(ai − r) if r ≤ ai < r + 7,
6.7 × 10−9 × 7

s−7 (r + s − ai) if r + 7 ≤ ai < r + s,
0 if r + s ≤ ai.

• Phase 3: 16 February 2021 to 17 June 2021. The emergence and prevalence of the Alpha
variant [119] brought a small increase in the transmission rate.

α(ai) =


0 if 0 ≤ ai < r,
8.3 × 10−9(ai − r) if r ≤ ai < r + 7,
8.3 × 10−9 × 7

s−7 (r + s − ai) if r + 7 ≤ ai < r + s,
0 if r + s ≤ ai.

• Phase 4: 17 June 2021 to 16 August 2021. In June 2021, the arrival of the Delta
variant [120] led to a rapid surge in COVID-19 cases. It is estimated that the Delta
variant is 60%–90% more transmissible than the Alpha variant [120,121].

α(ai) =


0 if 0 ≤ ai < r,
17.7 × 10−9(ai − r) if r ≤ ai < r + 7,
17.7 × 10−9 × 7

s−7 (r + s − ai) if r + 7 ≤ ai < r + s,
0 if r + s ≤ ai.

• Phase 5: 16 August 2021 to 28 November 2021. In response to the rise in the Delta
variant in August 2021, policies such as a universal mask mandate for all public and
private schools were implemented [118], leading to a reduced transmission rate.

α(ai) =


0 if 0 ≤ ai < r,
14.2 × 10−9(ai − r) if r ≤ ai < r + 7,
14.2 × 10−9 × 7

s−7 (r + s − ai) if r + 7 ≤ ai < r + s,
0 if r + s ≤ ai.

• Phase 6: 28 November 2021 to 3 January 2022. The Omicron variant [122] was first
discovered in Botswana and South Africa in November 2021 and quickly spread to
other countries, including the United States. In December 2021, the emergence of the
Omicron variant led to a significant surge in COVID-19 cases.

α(ai) =


0 if 0 ≤ ai < r,
23.6 × 10−9(ai − r) if r ≤ ai < r + 7,
23.6 × 10−9 × 7

s−7 (r + s − ai) if r + 7 ≤ ai < r + s,
0 if r + s ≤ ai.
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• Phase 7: 3 January 2022 to 13 March 2022. Reacting to the emergence of the Omicron
variant, various preventive policies, such as mask mandates and “Comprehensive Win-
ter Surge Plans” were introduced [118], leading to a decrease in the transmission rate.

α(ai) =


0 if 0 ≤ ai < r,
8.7 × 10−9(ai − r) if r ≤ ai < r + 7,
8.7 × 10−9 × 7

s−7 (r + s − ai) if r + 7 ≤ ai < r + s,
0 if r + s ≤ ai.

The transmission rate α(ai, t) as a function of disease age ai and time t is depicted in
Figure 16.

Similar to the example of SARS, we utilize the daily reported data from 16 October 2020
to 29 October 2020 (a fourteen-day period before 30 October 2020) as the initial distribution
of i(ai, 0). Specifically, at t = 0:

i(ai, 0) =



2328 if ai ≤ 1,
2369 if 1 < ai ≤ 2,
2511 if 2 < ai ≤ 3,
2328 if 3 < ai ≤ 4,
2314 if 4 < ai ≤ 5,
1164 if 5 < ai ≤ 6,
1304 if 6 < ai ≤ 7,
2028 if 7 < ai ≤ 8,
2337 if 8 < ai ≤ 9,
2177 if 9 < ai ≤ 10,
2044 if 10 < ai ≤ 11,
2177 if 11 < ai ≤ 12,
1189 if 12 < ai ≤ 13,
1115 if 13 < ai ≤ 14.

The graph of this initial disease age distribution i(ai, 0) is plotted in Figure 14. We
assume S(0) = 19, 500, 000 (https://usafacts.org/data/topics/people-society/population-
and-demographics/, accessed on 15 October 2023).

In contrast to the SARS outbreak in Taiwan in 2003, where vaccination was not an
option, the availability and administration of COVID-19 vaccines have significantly influ-
enced the dynamics of its transmission. While COVID-19 vaccines have proven to offer
substantial protection to those who are susceptible, they are not infallible—people can still
be infected with COVID-19 after vaccination. This means that the COVID-19 vaccination is
not 100% effective. We assume that the vaccination age-dependent function σ(av) decreases
from 1 to 0.3 within two weeks, resulting in a 70% effectiveness for COVID-19 vaccines.
This level of effectiveness persists for six months and then steadily wanes, reaching 0%
(i.e., 1 − σ = 0) after a year. This assumption is based on the administration of annual
boosters, indicating that the COVID-19 vaccines’ protection wanes after a year. The graph
of 1 − σ(av) is shown in Figure 14.

https://usafacts.org/data/topics/people-society/population-and-demographics/
https://usafacts.org/data/topics/people-society/population-and-demographics/
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Figure 16. (Top) The initial disease age distribution and (bottom) the phase-dependent disease
transmission rate, as a function of the disease age ai and time t, for the COVID-19 epidemic in New
York from 30 October 2020 to 13 March 2022.

The vaccination rate ν(t) (see Figure 14) is fitted using the daily vaccination data
for New York (https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19
-Vaccination-Data/duk7-xrni, accessed on 20 December 2023). It takes the form

ν(t) =



0 if t ≤ 65,
6 × 10−5(t − 65) if 65 < t ≤ 110,
0.27% if 110 < t ≤ 145,
0.82% if 145 < t ≤ 200,
0.50% if 200 < t ≤ 242,
0.33% if t > 242.

We assume a vaccination rate of 0 before t = 65, aligning with the actual start of
complete vaccinations (i.e., two-dose vaccination) in New York on 15 December 2020. The
rising vaccination rate from t = 65 to t = 110 reflects the initial scarcity of vaccine
doses, which were prioritized for older adults and high-risk hospital workers. As vaccine
production surged and more vaccination sites were established, the pace of vaccinations
increased, thus increasing vaccination rates. After t = 110, we assume a series of distinct
constant vaccination rates, each applicable to specific time intervals, to best represent the
varying pace of vaccination during those periods. These constant rates for each interval
have been determined based on data fitting.

We employ the Forward Euler Scheme with a time step of 0.1 to discretize our model
using the parameter values mentioned above. The resulting graph depicting the daily and
cumulative infections is represented by the red curves in Figure 12. It agrees well with

https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Vaccination-Data/duk7-xrni
https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Vaccination-Data/duk7-xrni
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the data, and our simulated curve aptly captures the significant surge in COVID-19 cases
attributed to the Omicron variant.

We analyze the effects of p on the number of infectives in the model. The parameter p
represents the number of days during which the infectious and pre-symptomatic periods
overlap. We explore two scenarios: p = 1, where the infectious period precedes symptoms
by a day (see Scenario 2 in Figure 15); and p = 0, where the infectious period and the symp-
tomatic period coincide (see Scenario 3 in Figure 15). With other parameters held constant,
the results for daily new and cumulative infectious cases are illustrated in Figures 17 and 18.
Notably, for p = 0, 1, daily new cases near zero appear after 50 days, indicating effective
disease control. This underscores the efficacy of hospitalizing symptomatic patients as a
means to isolate infectious individuals and control the disease’s progression.

Figure 17. Daily new infectious cases represented by different curves for p values of 2, 1, and 0. Here,
p denotes the overlap in days between infectious and pre-symptomatic periods.

Figure 18. Cumulative infectious cases represented by different curves for p values of 2, 1, and 0.
Here, p denotes the overlap in days between infectious and pre-symptomatic periods.

In addition, we further examine the effects of varying vaccination rates on the number
of infectives. Specifically, we consider two scenarios: one with a vaccination rate of 0.5ν(t)
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and another with 2ν(t). Figures 19 and 20 display the daily new and cumulative infectious
cases for vaccination rates of ν(t), 0.5ν(t), and 2ν(t). Our findings suggest that a lower
vaccination rate results in a higher number of infectious cases. Moreover, if the vaccination
rate is doubled in the initial stage, the disease can be fully suppressed by approximately
day 200. Another noteworthy observation is that with a vaccination rate of 0.5ν(t), there
is a peak in daily new infections around day 300. Yet, during the phase attributed to the
Omicron variant, the number of new infections is significantly lower. This can be attributed
to our assumption that infectives are not susceptible to re-infection. Consequently, the peak
of infections around day 300 significantly reduces the number of susceptible individuals,
and thus there are not many new infectious cases after day 400.

Figure 19. Daily new infectious cases with different vaccination rates ν(t), 2ν(t), and 0.5ν(t).

Figure 20. Cumulative infectious cases with different vaccination rates ν(t), 2ν(t), and 0.5ν(t).

Building on our analysis of vaccination rates, we next turn our attention to the role of
hospitalization rates in controlling the spread of COVID-19. We investigate how variations
in the hospitalization rate (after symptoms appear), denoted by βH , affect the number of
infections. In Figure 21, we present the daily new cases, and in Figure 22, we illustrate
the cumulative cases, each for a range of values from 0.51 to 0.58. The different curves
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in these figures demonstrate the sensitivity of the infection dynamics to hospitalization
practices, revealing that higher hospitalization rates can significantly flatten the curve and
reduce the total number of infections over time. These insights point to the critical impact
of hospitalization rates on the management of the disease, alongside vaccination strategies.

Figure 21. Daily new infectious cases represented by different curves for different βH values.

Figure 22. Cumulative infectious cases represented by different curves for different βH values.

3. Conclusions

We have developed an epidemic model structured by infection age and vaccination
age. The epidemic dynamics are analyzed with respect to the infection age of infected
individuals before symptoms appear, the fraction of pre-symptomatic infected individuals
placed in quarantine, the hospitalization rate of symptomatic infectives, and the vaccine
efficacy of vaccinated individuals with respect to their vaccination age. The model is
numerically simulated for the 2003 SARS epidemic in Taiwan (data from Taiwan Centers
for Disease Control) and the COVID-19 epidemic in the state of New York (data from New
York State Department of Health). The parameters for the model simulations are fitted
to these data based on weekly rolling averages of the daily data in these data sources.
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The computer codes for our numerical simulations are available upon request in both
MATHEMATICA and MatLab.

In the application of the model to the 2003 SARS epidemic in Taiwan, in which
vaccination was not available, the on-set of symptoms and the beginning of the infectious
period coincided. The quarantine rate of susceptibles was approximately 2% per day. The
epidemic was contained with the maximum cumulative number of infected individuals at
approximately 230 in 100 days (Figure 1).

We modified the pre-symptomatic and infectious periods to p = 1 and p = 2 days of
infectious pre-symptomatic cases. We also modified the quarantine rate to 4% and 10%.
The results are shown in Figures 7–9, where it is seen that the value p = 2 has much higher
cumulative cases than the value p = 1. When p = 2, the quarantine rate must be very high
to significantly reduce the cumulative number of cases.

We also modified the 2003 SARS epidemic model to illustrate the impact of vaccination.
In Figure 10, it is seen that infectious 2 days pre-symptomatic (p = 2), quarantine rate
4%, and the vaccine efficacy σ(av) = 0.7 exp(−0.25av) + 0.3, result in a reduction in the
maximum cumulative number of cases to 175, 000 compared to 350, 000 without vaccination.

In the application of the model to the COVID-19 epidemic in New York, the infectious
period is pre-symptomatic by p = 2 days. This pre-symptomatic infectious period is a
key feature of COVID-19 epidemic dynamics. From data sources, we parameterized the
model into seven phases corresponding to vaccine implementation, viral variants, and
social responses. The model simulations agree with the observed infection and vaccination
(Figures 12 and 13).

We examined the consequences of modifying the pre-symptomatic infectious period,
initially set at p = 2 days, by considering p = 1 day and p = 0 days. Figures 17 and 18
display numerical simulations for p = 0, 1, 2. It is seen that p = 0 and p = 1 result in a
major reduction in the epidemic impact. We also investigated the impact of varying the
vaccination rate parameter ν(t). Figures 19 and 20 show that an increase in ν(t) significantly
mitigates the epidemic, while a decrease in ν(t) exacerbates the epidemic. Furthermore, we
explored the effects of changing the hospitalization parameter βH(ai). In Figures 21 and 22,
we observed that higher values of βH(ai) significantly decrease the epidemic’s severity,
whereas lower values of βH(ai) increase the epidemic’s severity.

In general, incorporating infection age and vaccination age into our analysis enables a
detailed examination of key factors affecting epidemic outcomes. The continuum formula-
tion of the infection age and vaccination age provides applicable parameter identification
and numerical simulation of this age structure. Specifically, infection age and vaccination
age can be connected to critical elements, such as pre-symptomatic infectiousness, vaccina-
tion efficacy, and hospitalization rate, which are integral to understanding and predicting
epidemic dynamics.

While our model incorporates various factors, it remains a simplified representation of
real-world disease transmission. It is important to highlight potential areas for refinement
to make the model more realistic. For instance, reinfections are notably common with
COVID-19 [123]. As the Omicron variant became predominant, data indicated a significant
rise in reinfection rates among all COVID-19 cases [124]. Additionally, revaccination is
another factor to account for, given the CDC’s recommendation for individuals aged 12 and
older to receive an updated COVID-19 vaccine annually [125]. We will consider models for
this extension in our future study. Notably, another promising direction for enhancement
is the integration of chronological age. Data on COVID-19 are often categorized by age
groups, and different age brackets might exhibit varied transmission rates [126–128]. This
consideration will be a focus in our subsequent analyses.
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