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Abstract: Low-alcohol wines (ranging from <0.5 to 10.5% vol) are novel products that have been
steadily gaining scientific and commercial attention. Over the past few years, consumer interest in
healthier foods has augmented the development of novel functional products containing probiotic
microorganisms, while the urge for a reduction in chemical preservatives has shifted the food and
wine industry’s interest to natural alternatives, such as essential oils (EOs). In the present study, low-
alcohol (~6% vol) wines with (wet or dried) immobilized kefir cultures on fruit pieces, and essential
oils (Citrus medica or Cinnamomum zeylanicum) were produced and evaluated for their properties. The
viability of the immobilized kefir cultures on apple and pear pieces was not affected by the addition
of EOs, and levels >7 logcfu/g were maintained after 2 h of immersion in wines. HS-SPME GC/MS
analysis revealed characteristic compounds originating from the chemical composition of the added
EOs in the final products. Principal component analysis (PCA) revealed that the relative content of
terpenes, alcohols and carbonyl compounds played a major role in the discrimination of low-alcohol
wine products. EO addition affected the products’ sensory evaluation and resulted in significantly
higher aroma and taste density compared to control samples. Notably, all novel Sangria-type wine
variants were approved during preliminary sensory evaluation.

Keywords: low-alcohol wines; immobilized kefir cells; essential oils; Citrus medica; Cinnamomum
zeylanicum; volatiles

1. Introduction

In the past few years, low-alcohol wines (ranging from <0.5 to 10.5% vol) have been
steadily gaining scientific and commercial attention, as they are preferred by consumers for
a variety of reasons (healthier habits, modern lifestyle, economic motives, etc.) [1]. Typically,
pre- and post-fermentation treatments are required for low-alcohol wine-making, but since
their outcome is hard to predict, the use of kefir culture has recently been proposed [2,3].
Kefir culture is derived from a homemade, highly nutritional and healthy fermented
milk product, in which a wide spectrum of yeasts, lactic acid and, occasionally, acetic
acid bacteria co-exist [4], many species of which have previously been associated with
probiotic or beneficial properties for the consumer [5,6]. For this reason, kefir beverages are
considered to be of high added value and may be characterized as “functional foods”, a term
which includes a variety of products that may potentially positively affect body functions,
reduce the risk of disease or promote well-being in general upon regular consumption [7].
However, in order to perform alcoholic and malolactic fermentation [3] or, ideally, positively
affect the consumer’s health [8], adequate numbers of kefir cultures are required. For this
reason, immobilization strategies and the use of dried cultures are usually recommended,
as they are associated with many advantages and offer compatibility with industrial and
commercial needs [9,10].

Nevertheless, microbial spoilage may occur in wine at various pre- or post-fermentation
stages and is usually caused by yeast (of the genera Brettanomyces, Candida, Hanseniaspora,
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Pichia, Metschnikowia, Saccharomycodes, Schizosaccharomyces and Zygosaccharomyces) [11,12]
and bacterial species (of the genera Lactobacillus, Oenococcus, Pediococcus, Weissella, Acetobac-
ter, Gluconobacter and Gluconoacetobacter) [13,14]. The addition of chemical preservatives,
especially sulphur dioxide (SO2), is a common practice in wineries worldwide for prevent-
ing the growth of spoilage microorganisms and their negative actions [15–17]. However,
the excessive use of SO2 has raised a major concern, both from oenologists and the public,
since it may negatively affect the wine’s aroma [18,19] or even result in various adverse
health effects [20–22].

As a result, in the past few years, increased attention has been drawn on the use of
natural preservatives like essential oils (EOs) as antimicrobial and antioxidant agents in
numerous food matrices [23–26]. In general, EOs are secondary metabolites synthesized
by aromatic and medicinal plants. They are volatile, highly soluble in alcohol and organic
solvents and consist of multiple chemical compounds, such as alcohols, esters, ketones,
terpenes, terpenoids and phenolics, though their composition may vary depending on
harvesting season, geographical region, oil extraction methods, etc. [27]. Cinnamon (Cin-
namomum zeylanicum) EO from bark has revealed antibacterial [28,29], antidiabetic [30],
antilipidemic [31], antioxidant [32] and anti-inflammatory actions [30], while, the biological
activities of citron (Citrus medica) EO are similar [33–36]. Various studies have examined
the suitability of these EOs for application in foods (such as meat products [37,38], yo-
gurt [26,39], fruits [40–42], etc.) as natural antimicrobial and antioxidant compounds.
Recently, their antimicrobial activity was evaluated in storage of low-alcohol wines and
in deliberately contaminated wine products [28]. However, their effect on beneficial cell
cultures, such as kefir, has not yet been examined.

Considering the above and following the increasing consumer interest in more natural
and healthier food products, the potential of a new functional Sangria-type low-alcohol
wine product containing immobilized kefir cultures on fruit pieces and EOs was inves-
tigated in the present study. Data indicating the effective survival of immobilized kefir
culture (in counts capable of conferring a beneficial effect) and improved product quality
are presented.

2. Materials and Methods
2.1. Kefir Culture Immobilization and Production of Dried Cultures

Kefir culture, previously isolated from a traditional kefir drink [2], was grown in
diluted grape must of the Muscat Hamburg variety (Tyrnavos Cooperative Winery and
Distillery, Tyrnavos, Greece) at 30 ◦C for 24 h. The medium consisted of ~30–35 g/L sugars
supplemented with 0.1% w/v MgSO47H2O, 0.1% w/v (NH4)2SO4, 0.2% w/v KH2PO4 and
0.4% w/v yeast extract. Prior to use, the pH was adjusted to 6.2 by adding 1N NaOH, and
the medium was sterilized at 121 ◦C for 15 min.

For the immobilization process, kefir biomass was harvested by centrifugation (6000 rpm,
20 min, 4 ◦C), washed twice with sterile 1/4 Ringer’s solution (LabM, St. Albans, UK) and
resuspended in the same solution. Apple or pear pieces (~575 g) were then submerged in 1
L of kefir culture solution for 10 h at room temperature, and the immobilized cells were
washed twice with 1/4 Ringer’s solution. Immobilized thermally dried and freeze-dried
kefir cultures on apple and pear pieces were produced, as recently described [2,3] and
stored at 4 ◦C until further use.

2.2. Novel Low-Alcohol Sangria-Type Wines Preparation

Low-alcohol wine of ~6% vol was produced by free kefir culture as previously de-
scribed [2], using diluted grape must of the Muscat Hamburg variety. After fermentation,
wine was clarified by centrifugation (9000 rpm, 20 min, 4 ◦C). C. medica and C. zeylanicum
EOs were then added separately (0.01% v/v of each oil) or in combination (0.005% v/v
of each oil) into the low-alcohol wine samples. Wines with no EO addition were used as
controls, and all samples were stored at 4 ◦C until further use. Immobilized wet or dried
(thermally dried or freeze-dried) kefir cultures on apple or pear pieces (after rehydration)
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were then introduced into the wines at a final concentration of ~30% w/w, resulting in
novel Sangria-type products.

2.3. Microbial Enumeration

Due to the absence of chemical preservatives, all wine samples stored at 4 ◦C were
initially checked for common wine-spoilage microorganisms (O. oeni, P. pentosaceus, G.
cerinus, D. bruxellensis, C. zemplinina, H. uvarum, P. guilliermondii or Z. bailii), as previously
described [28].

After preparation of the Sangria-type products, the survival of immobilized kefir
cells was monitored at frequent intervals (0.5, 1 and 2 h). In brief, 5 g of immobilized
cells were drained, blended with 45 mL of sterile 1/4 Ringer’s solution and subjected to
serial dilutions; counts of total mesophilic flora were then determined on Plate Count Agar.
Results were expressed as logcfu/g, and the viability of the cultures was calculated as
recently reported [43].

2.4. Chemical Analyses

The pH and total and volatile acidity values of all products were determined after the
addition of immobilized kefir cultures into the wine products, as previously reported [2].

Samples of novel low-alcohol wines (10 g) were analyzed for the content of minor
volatiles using the HS-SPME GC/MS technique [6890N GC, 5973NetworkedMS MSD
(Agilent Technologies, Santa Clara, CA, USA)], as previously described [44]. All analyses
were carried out in triplicate, and the mean values are presented (standard deviation for all
values was ±5%).

2.5. Preliminary Sensory Evaluation

Preliminary sensory evaluation for aroma, taste and overall acceptability of the new
wine products with immobilized kefir cultures and EOs was performed by a mixed panel
of random wine tasters [45]. The Sangria-type products were evaluated on a 0–5 scale; wine
products with apple or pear pieces (no culture addition) were used as controls. Tasters
were offered water and crackers to clean their palates between samples.

2.6. Statistical Analysis

Analysis of variance (ANOVA) was employed for determination of statistical differ-
ences of all treatments (state of immobilized kefir culture: wet/thermally dried/freeze-
dried, immersion time in the final product: 0 h/1 h/2 h and EO enrichment: C. medica/C.
zeylanicum/mix were considered as factors) and their interactions. All analyses were per-
formed using Duncan’s multiple range test with a 95% confidence level. The concentrations
of minor volatile compounds (HS-SPME GC/MS) were used as variables in principal
component analysis (PCA), and XLSTAT 2015.1 was used to compute the algorithm.

3. Results and Discussion
3.1. Viability of Immobilized Kefir Cultures in the Novel Sangria-Type Low-Alcohol Wines

Fruit pieces are known to be suitable immobilization carriers for kefir culture [44,46]
and, as expected, total counts of wet immobilized kefir culture on apple and pear pieces
exceeded 8 logcfu/g. Application of drying processes (thermal or freeze-drying), however,
resulted in significantly (p < 0.05) reduced counts compared to the wet culture [2,3], but still
>7.5 logcfu/g in all cases (data not shown). Reduced cell viability after a drying treatment
is not uncommon [47–49], but cell immobilization is considered to be a promising strategy
for the maintenance or even enhancement of kefir culture viability during processing and
storage [2,3].

The development of new Sangria-type low-alcohol wines supplemented with EOs
and immobilized kefir culture on fruit pieces presupposes the survival of kefir cells. For
this reason, dried (thermally or freeze-dried) immobilized kefir cells (on apple or pear
pieces) were directly immersed in low-alcohol wines (~6% vol) supplemented with EOs
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(0.01% v/v C. zeylanicum, 0.01% C. medica or a mixture of both at 0.005% each), at a final
proportion of ~25% w/w in the reconstituted wine product, and their populations were
monitored for 2 h. Likewise, wet immobilized kefir cells (on apple or pear pieces) were
directly immersed in low-alcohol wines with EOs and served as controls. Results showed
that the state of immobilized kefir culture (wet or dried) and the immersion time in EO-
supplemented low-alcohol wines significantly affected (p < 0.05) kefir total counts, and a
strong interaction (p < 0.05) among the factors was observed (Figures 1 and 2). Interestingly,
and despite the documented antimicrobial action of C. zeylanicum and C. medica EOs [28],
the viability of immobilized kefir culture after initial immersion (timepoint of 0 h) was not
affected in most cases or resulted in a slight reduction compared to the initial populations.
Adaptation and recovery of populations at a later storage stage [50] or even a count
increase (up to 1 logcfu/g) have been documented [51]. That is a very important aspect
of kefir culture’s survival ability, as numerous benefits of kefir consumption have been
related to its microbial composition [52–54]. The kefir culture used in this study was
originally isolated from a homemade traditional kefir drink and is a part of the microbial
collection of the Laboratory of Applied Microbiology and Biotechnology, Department
of Molecular Biology and Genetics, Democritus University of Thrace (Alexandroupolis,
Greece). Its microbial populations have been previously investigated with DNA next
generation sequencing, and the existence of various species with potential health-promoting
effects has been verified [2]. For instance, L. kefiri strains have been associated with
mucus adhesion ability [55,56], in vivo cholesterol and triglyceride level reduction [57,58]
and immunomodulation properties [59]. Additionally, K. marxianus strains are known
to be associated with cholesterol-lowering effects, bile salt hydrolase activity [60] and
immunomodulatory properties [61], while K. lactis and S. cerevisiae strains have been
associated with promoting health and well-being, in general [62,63]. In the present study,
kefir populations >109 cfu were established in a typical wine serving [64], thus achieving
the minimum recommended cell concentration to confer beneficial health effects on the
consumer [65].

As previously demonstrated, no food-spoilage microorganisms were detected in the
low-alcohol wine samples used for the Sangria-type products, despite the absence of
chemical preservatives after wine manufacture [28]. In general, it should be noted that
various species present in kefir culture are known for their antimicrobial activity. Specif-
ically, L. kefiri strains have been associated with protective or inhibitory effects against
food-spoilage microorganisms and other pathogens (such as Salmonella, E. coli, C. difficile,
etc.) [54]. Similarly, Saccharomyces and Kluyveromyces species (the most abundant kefir
yeasts) are known for their antimicrobial and antioxidant properties [66]. The antimicro-
bial activity of various EOs against food-borne pathogens and food-spoilage microbes
is also well documented [28,67–70]. Thus, the combined inhibitory effect of EOs along
with kefir culture could be utilized for food microbial safety enhancement and shelf-life
prolongation [71].

3.2. Chemical Analyses
3.2.1. pH and Acidity Values

In all cases examined, pH (3.9–4.0) was at a level typically observed in low-alcohol
wines (Table 1). Volatile acidity was significantly affected (p < 0.05) by the state of the immo-
bilized kefir cells (wet or dried cultures), and higher values were recorded in wine products
with wet cultures (0.51–0.57 g acetic/L) compared to wine products with freeze-dried
immobilized cultures (0.39–0.45 g acetic/L). Regarding wines with thermally dried immo-
bilized kefir cultures, the volatile acidity ranged from 0.48 to 0.63 g acetic/L (depending on
EO treatment applied), but remained within values commonly found in low-alcohol wine
products [2,3]. Likewise, wine products with freeze-dried or thermally dried immobilized
kefir cultures had increased total acidity values compared to wet cultures, but the increase
was not significant in all cases and remained at typical levels for wines.
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Figure 1. Total cell counts (logcfu/g) of (a) wet immobilized kefir cultures, (b) thermally dried im-
mobilized kefir cultures, (c) freeze-dried immobilized kefir cultures in low-alcohol wine products 
supplemented with essential oils (EOs). Co: low-alcohol wines without EOs addition, Cm: low-al-
cohol wines with 0.01% v/v Citrus medica EO, Cz: low-alcohol wines with 0.01% v/v Cinnamon zeylan-
icum EO, Mix: low-alcohol wines with Citrus medica and Cinnamon zeylanicum EOs (0.005% each). 
The immobilization support is shown at the end of the sample codes. Ap: immobilized kefir cultures 
on apple pieces, Pe: immobilized kefir cultures on pear pieces. 

Figure 1. Total cell counts (logcfu/g) of (a) wet immobilized kefir cultures, (b) thermally dried
immobilized kefir cultures, (c) freeze-dried immobilized kefir cultures in low-alcohol wine products
supplemented with essential oils (EOs). Co: low-alcohol wines without EOs addition, Cm: low-
alcohol wines with 0.01% v/v Citrus medica EO, Cz: low-alcohol wines with 0.01% v/v Cinnamon
zeylanicum EO, Mix: low-alcohol wines with Citrus medica and Cinnamon zeylanicum EOs (0.005%
each). The immobilization support is shown at the end of the sample codes. Ap: immobilized kefir
cultures on apple pieces, Pe: immobilized kefir cultures on pear pieces.
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Figure 2. Survival rate (%) of wet, thermally dried and freeze-dried immobilized kefir cultures in 
low-alcohol wine products supplemented with essential oils (EOs) after 2 h of immersion. Co: low-
alcohol wines without EOs addition, Cm: low-alcohol wines with 0.01% v/v Citrus medica EO, Cz: 
low-alcohol wines with 0.01% v/v Cinnamon zeylanicum EO, Mix: low-alcohol wines with Citrus 
medica and Cinnamon zeylanicum EOs (0.005% each). The immobilization support is shown at the end 
of the sample codes. Ap: immobilized kefir cultures on apple pieces, Pe: immobilized kefir cultures 
on pear pieces. 
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but the increase was not significant in all cases and remained at typical levels for wines. 

Table 1. Oenological parameters of low-alcohol wine products with essential oils and wet, thermally 
dried or freeze-dried immobilized kefir culture on fruit pieces. 

 Wine Sample 
Total Acidity 
(g tartaric/L) 

Volatile Acidity 
(g acetic/L) pH 

Alcohol 
(% vol) 

Wet kefir cultures 

Co_Wt_Ap 2.6 ± 0.1 0.54 ± 0.02 3.9 ± 0.1 6.0 ± 0.1 
Co_Wt_Pe 2.1 ± 0.1 0.51 ± 0.02 3.9 ± 0.1 6.0 ± 0.1 

Cm_Wt_Ap 2.0 ± 0.1 0.57 ± 0.02 3.9 ± 0.1 6.0 ± 0.1 
Cm_Wt_Pe 1.8 ± 0.1 0.51 ± 0.02 4.0 ± 0.1 6.0 ± 0.1 
Cz_Wt_Ap 2.1 ± 0.1 0.54 ± 0.02 3.9 ± 0.1 6.0 ± 0.1 
Cz_Wt_Pe 2.3 ± 0.1 0.54 ± 0.02 3.9 ± 0.1 6.0 ± 0.1 

Mix_Wt_Ap 2.6 ± 0.1 0.57 ± 0.02 3.9 ± 0.1 6.0 ± 0.1 
Mix_Wt_Pe 2.0 ± 0.1 0.54 ± 0.02 3.9 ± 0.1 6.0 ± 0.1 

Thermally dried 
kefir cultures 

Co_ThDr_Ap 2.3 ± 0.1 0.48 ± 0.02 3.9 ± 0.1 6.0 ± 0.1 
Co_ThDr_Pe 2.6 ± 0.1 0.51 ± 0.02 4.0 ± 0.1 6.0 ± 0.1 

Cm_ThDr_Ap 3.0 ± 0.1 0.63 ± 0.03 3.9 ± 0.1 6.0 ± 0.1 

Figure 2. Survival rate (%) of wet, thermally dried and freeze-dried immobilized kefir cultures
in low-alcohol wine products supplemented with essential oils (EOs) after 2 h of immersion. Co:
low-alcohol wines without EOs addition, Cm: low-alcohol wines with 0.01% v/v Citrus medica EO,
Cz: low-alcohol wines with 0.01% v/v Cinnamon zeylanicum EO, Mix: low-alcohol wines with Citrus
medica and Cinnamon zeylanicum EOs (0.005% each). The immobilization support is shown at the end
of the sample codes. Ap: immobilized kefir cultures on apple pieces, Pe: immobilized kefir cultures
on pear pieces.

Table 1. Oenological parameters of low-alcohol wine products with essential oils and wet, thermally
dried or freeze-dried immobilized kefir culture on fruit pieces.

Wine Sample Total Acidity
(g Tartaric/L)

Volatile Acidity
(g Acetic/L) pH Alcohol

(% vol)

Wet kefir cultures

Co_Wt_Ap 2.6 ± 0.1 0.54 ± 0.02 3.9 ± 0.1 6.0 ± 0.1
Co_Wt_Pe 2.1 ± 0.1 0.51 ± 0.02 3.9 ± 0.1 6.0 ± 0.1

Cm_Wt_Ap 2.0 ± 0.1 0.57 ± 0.02 3.9 ± 0.1 6.0 ± 0.1
Cm_Wt_Pe 1.8 ± 0.1 0.51 ± 0.02 4.0 ± 0.1 6.0 ± 0.1
Cz_Wt_Ap 2.1 ± 0.1 0.54 ± 0.02 3.9 ± 0.1 6.0 ± 0.1
Cz_Wt_Pe 2.3 ± 0.1 0.54 ± 0.02 3.9 ± 0.1 6.0 ± 0.1

Mix_Wt_Ap 2.6 ± 0.1 0.57 ± 0.02 3.9 ± 0.1 6.0 ± 0.1
Mix_Wt_Pe 2.0 ± 0.1 0.54 ± 0.02 3.9 ± 0.1 6.0 ± 0.1

Thermally dried
kefir cultures

Co_ThDr_Ap 2.3 ± 0.1 0.48 ± 0.02 3.9 ± 0.1 6.0 ± 0.1
Co_ThDr_Pe 2.6 ± 0.1 0.51 ± 0.02 4.0 ± 0.1 6.0 ± 0.1

Cm_ThDr_Ap 3.0 ± 0.1 0.63 ± 0.03 3.9 ± 0.1 6.0 ± 0.1
Cm_ThDr_Pe 2.0 ± 0.1 0.51 ± 0.02 4.0 ± 0.1 6.0 ± 0.1
Cz_ThDr_Ap 2.9 ± 0.1 0.54 ± 0.02 3.9 ± 0.1 6.0 ± 0.1
Cz_ThDr_Pe 2.7 ± 0.1 0.57 ± 0.03 4.0 ± 0.1 6.0 ± 0.1

Mix_ThDr_Ap 3.0 ± 0.1 0.57 ± 0.02 3.9 ± 0.1 6.0 ± 0.1
Mix_ThDr_Pe 2.3 ± 0.1 0.57 ± 0.03 4.0 ± 0.1 6.0 ± 0.1

Freeze-dried kefir
cultures

Co_FrDr_Ap 2.7 ± 0.1 0.45 ± 0.02 3.9 ± 0.1 6.0 ± 0.1
Co_FrDr_Pe 2.4 ± 0.1 0.42 ± 0.02 3.9 ± 0.1 6.0 ± 0.1

Cm_FrDr_Ap 2.7 ± 0.1 0.39 ± 0.02 3.9 ± 0.1 6.0 ± 0.1
Cm_FrDr_Pe 2.1 ± 0.1 0.45 ± 0.03 4.0 ± 0.1 6.0 ± 0.1
Cz_FrDr_Ap 2.7 ± 0.1 0.39 ± 0.02 3.9 ± 0.1 6.0 ± 0.1
Cz_FrDr_Pe 2.1 ± 0.1 0.45 ± 0.02 3.9 ± 0.1 6.0 ± 0.1

Mix_FrDr_Ap 2.6 ± 0.1 0.42 ± 0.02 3.9 ± 0.1 6.0 ± 0.1
Mix_FrDr_Pe 2.1 ± 0.1 0.42 ± 0.02 4.0 ± 0.1 6.0 ± 0.1

Co: low-alcohol wines without EO addition, Cm: low-alcohol wines with 0.01% v/v Citrus medica EO, Cz:
low-alcohol wines with 0.01% v/v Cinnamon zeylanicum EO, Mix: low-alcohol wines with Citrus medica and
Cinnamon zeylanicum EOs (0.005% each). The immobilization support is shown at the end of the sample codes. Ap:
immobilized kefir cultures on apple pieces, Pe: immobilized kefir cultures on pear pieces.
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3.2.2. HS-SPME GC/MS Analyses

As the development of new foods and beverages with a unique sensory profile is an
undeniable consumer desire, EOs are gaining attention for their organoleptic effect on food
matrices. For that reason, the aromatic profile of new Sangria-type wine products with EOs
and immobilized kefir cultures on fruit pieces (apple or pear) was analyzed using the HS-
SPME GC/MS technique. In general, esters, organic acids, terpenes, alcohols and carbonyl
compounds are considered important aroma and flavor constituents. In total, 99 volatile
compounds were detected in samples supplemented with EOs (Supplementary Table S1),
with the majority of them belonging to esters and terpenes. Noticeably, wine samples with
no EO addition revealed similar volatile composition, as recently reported [2,3]. The relative
content (%) of the volatile groups identified by HS-SPME GC/MS analysis is presented in
Table 2.

Table 2. Relative percentage content (%) of the identified volatile compound groups in low-
alcohol wine products with immobilized kefir cultures and essential oils, as detected by HS-SPME
GC/MS analysis.

Essential Oil
Addition

Samples
Compounds Detected

Esters Acids Terpenes Alcohols Carbonyls Miscellaneous

Citrus medica
(0.01% v/v)

Cm_Wt_Ap 8.4 a 0.3 a 89.1 f 2.1 a <0.1 a 0.1 a

Cm_ThDr_Ap 8.5 a 0.3 a 86.9 f 3.8 a <0.1 a 0.4 b

Cm_FrDr_Ap 8.5 a 0.3 a 87.7 f 3.4 a <0.1 a 0.1 a

Cm_Wt_Pe 4.9 A 0.2 A 92.2 D 2.5 A <0.1 A 0.1 A

Cm_ThDr_Pe 3.9 A 0.2 A,B 92.7 D 2.9 A <0.1 A 0.2 A

Cm_FrDr_Pe 12.3 B 0.3 A,B 84.6 D 2.5 A <0.1 A 0.2 A

Cinnamon
zeylanicum
(0.01% v/v)

Cz_Wt_Ap 37.9 c 1.0 b 33.5 c 24.8 e 2.0 b 0.8 c

Cz_ThDr_Ap 42.4 c 1.0 b 24.8 b 18.9 d 10.9 d 1.9 f

Cz_FrDr_Ap 36.3 c 2.3 c 21.7 b 17.1 d 21.3 f 1.2 e

Cz_Wt_Pe 30.8 D 1.2 D 34.1 B 29.1 F 3.3 E 1.5 E

Cz_ThDr_Pe 29.8 D 1.8 E 34.4 B 25.3 E 5.9 F 2.8 F

Cz_FrDr_Pe 37.6 E 1.0 C,D 33.3 B 16.6 D 10.3 G 1.2 D

EO Mix
(0.005% v/v each)

Mix_Wt_Ap 23.1 b 0.4 a 68.1 e 7.4 b 0.7 a 0.4 b

Mix_ThDr_Ap 19.0 b 0.9 b 65.8 d,e 7.4 b 6.0 c 1.0 d

Mix_FrDr_Ap 19.7 b 1.0 b 58.8 d 7.5 b 12.7 e 0.4 b

Mix_Wt_Pe 19.0 C 0.5 A,B,C 72.1 C 6.8 B 0.9 B,C 0.7 B,C

Mix_ThDr_Pe 11.8 B 1.0 C,D 74.7 C 10.1 C 1.2 C,D 1.2 D

Mix_FrDr_Pe 14.6 B,C 0.8 B,C,D 70.3 C 7.7 B,C 6.0 F 0.6 B

No EO addition

Co_Wt_Ap 68.7 d 4.3 e 2.9 a 23.7 e 0.1 a 0.4 b

Co_ThDr_Ap 76.3 e 2.2 c 1.1 a 18.7 d 0.4 a 1.3 e

Co_FrDr_Ap 82.1 e 3.6 d 1.8 a 11.4 c 0.2 a 0.9 c

Co_Wt_Pe 72.5 H 2.3 F 8.2 A 15.7 D 0.4 A,B 0.8 C

Co_ThDr_Pe 59.5 G 5.0 G 2.5 A 29.8 F 1.6 D 1.5 E

Co_FrDr_Pe 45.3 F 10.7 H 5.6 A 38.1 G 0.1 A 0.2 A

Co: low-alcohol wines without EO addition, Cm: low-alcohol wines with 0.01% v/v Citrus medica EO, Cz:
low-alcohol wines with 0.01% v/v Cinnamon zeylanicum EO, Mix: low-alcohol wines with Citrus medica and
Cinnamon zeylanicum EOs (0.005% each). The state of the cells is shown in the middle of the sample codes (Wt: wet
immobilized kefir cultures, ThDr: thermally dried immobilized kefir cultures, FrDr: freeze-dried immobilized
kefir cultures). The immobilization support is shown at the end of the sample codes. Ap: immobilized kefir
cultures on apple pieces, Pe: immobilized kefir cultures on pear pieces. a–f Significant differences (p < 0.05) in the
same column between low-alcohol wines with kefir cells immobilized on apple pieces are shown with different
letters. A–H Significant differences (p < 0.05) in the same column between low-alcohol wines with kefir cells
immobilized on pear pieces are shown with different letters. Standard deviation for all values was about ±5%.

In low-alcohol wines with immobilized kefir cells on apple pieces, the state of kefir
cultures (wet, thermally or freeze-dried) and the EO addition (C. medica, C. zeylanicum, EO
mix or no EO) significantly affected (p < 0.05) organic acids, terpenes, alcohols, carbonyls
and miscellaneous content. The content of esters, however, was affected only by EO
addition, while strong interactions (p < 0.05) between the two factors were observed in
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most cases. Similarly, esters, organic acids, alcohols, carbonyls and miscellaneous content
in low-alcohol wines with immobilized kefir cells on pear pieces was significantly affected
(p < 0.05) by both factors, while strong interactions (p < 0.05) were noted in all cases. The
content of terpenes, on the other hand, was significantly affected (p < 0.05) only by the
addition of EOs.

Esters are considered crucial aroma contributors, enhancing the aroma complexity of
wines and mainly contributing pleasant fruity and floral notes [72]. In contrast to methyl
esters, which are naturally present in grapes, ethyl esters are mainly secondary metabolites
produced via the conjugation of alcohols and fatty acids during the alcoholic fermentation
process, and most of them have low odor-detection thresholds, while they can mask the
unpleasant aroma scents of fatty acids [73]. In the present study, 31 ester compounds were
identified and, among them, ethyl octanoate (responsible for sweet, banana- and pear-like
aroma notes), ethyl hexanoate (producing banana and apple aromas), 2-phenylethyl acetate
(responsible for fruity rose aroma) [74] and ethyl 9-decenoate (providing quince-like and
floral notes) [75] were the most abundant. Other esters adding fruity aromas, such as
banana-, pineapple-, strawberry- and apple-like scents (isoamyl acetate, butyl acetate, ethyl
propionate, hexyl acetate, ethyl butanoate, ethyl 2-methylbutyrate, ethyl heptanoate, ethyl
nonanoate, ethyl decanoate), floral attributes (ethyl benzoate, ethyl tetradecanoate), oily
and fatty notes (ethyl dodecanoate, ethyl linoleate), as well as creamy (ethyl hexadecanoate)
or sweet, honey and floral scents (ethyl phenylacetate) were also detected in lower con-
centrations [72,74]. Additionally, cinnamyl acetate, benzyl benzoate and hydrocinnamyl
acetate were present only in wine variants with C. zeylanicum EO, in line with its chem-
ical composition [28,76], and these volatile odorants exhibit sweet, fruity, flowery and
balsamic fragrances [77,78]. Other ester compounds linked with cinnamon EO addition
in wines were benzyl acetate, ethyl benzoate, ethyl cinnamate, ethyl hydrocinnamate and
isoeugenyl acetate, which are known for cinnamon-, sweet-balsamic, floral, fruity and
honey-like odors [77,79], and their concentration was lower compared to the previously
mentioned substances.

Terpenes and their derivative compounds were the most numerous and the most
abundant identified volatile odorants, resulting in significantly (p < 0.05) higher content,
especially in wine samples supplemented with C. medica EO (for both fruit carriers). No-
tably, 35 terpenes and derivative compounds were detected in wine samples with EO
addition versus only 8 relative compounds in the control samples. In samples supple-
mented with 0.01% v/v C. medica EO, linalool was the most prevalent volatile compound,
ranging from 70.9 to 80.9% (of the total volatile content) between different samples and
contributing floral, citrus-like, sweet and muscat-like odors [74,77,78]. It was followed
by ethyl octanoate (2.7–7.5%), geraniol (3.8–6.3%), nerol (1.0–2.2%), α-terpineol (1.5–2.5%)
and limonene (0.6–2.2%), which also added mostly floral, sweet, citrus-like and green
scents [74,78,80]. In contrast, apart from linalool, wines with C. zeylanicum EO addition
were characterized by α-terpineol, caryophyllene oxide (revealing woody, spicy notes),
caryophyllene (known for sweet, woody, green, spicy odor) and α-humulene (having
woody odor) [78,79] in relatively high content. Other compounds also known to contribute
woody (β-myrcene, δ-cadinene), fruity (β-phellandrene, α-terpinene, γ-terpinene, citral,
α-farnesene, citral, (-)-spathulenole), floral (o-cymene, linalool oxide, (E)-nerolidol) or spicy
notes (α-phellandrene, carvacrol) were also detected in small quantities [78,79,81,82].

Long-chain fatty acids are naturally present in grapes. They generally have high odor
threshold values and thus present a modest contribution to the aroma of wines [77,83]. They
are mainly produced from autoxidation of the saturated lipid constituents of fruits, while
short-chain fatty acids are metabolism products produced by yeast and bacteria [74,77].
Despite their low impact on wine aroma, they are important precursor compounds for
the formation of more powerful odorants, such as esters, aldehydes and alcohols [84].
Octanoic acid, known for its oily, fatty acid, rancid, soapy and cheesy odor character [74],
was the major identified fatty acid and was present in all wine samples. Other fatty
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acids presenting cheesy, vinegar, sour, fatty and rancid aromas (hexanoic, decanoic and
hexadecanoic acid) [74,79] were also detected in lower concentrations.

Higher alcohols are also considered important wine flavor contributors and may be
produced as byproducts of yeast alcoholic fermentation or synthesized through degrada-
tion of the relevant amino acids [85,86]. Higher alcohols (especially C6 and C9) usually
generate herbal, strong and pungent odors, but at low concentrations (<300 mg/L), are
associated with a wine’s complexity, elegance and high quality [86]. In the present study,
higher alcohols content ranged from 26.2 to 324.9 mg/L, and 2-phenylethanol (providing
a characteristic floral, rose-, honey-like bouquet) [74] was present in all wine samples; its
concentration varied (1.1–129.4 mg/L) depending on EO treatment. Likewise, isoamyl and
amyl alcohols were also identified in all wine variants in high quantities, producing burnt,
cocoa, floral, malty [78] and oily, sweet, dark chocolate and malty scents, respectively [79,87].
Noticeably, eugenol, cinnamyl alcohol and hydrocinnamyl alcohol were detected only in
wines with cinnamon EO, revealing a sweet, spicy, clove-like (eugenol and hydrocinnamyl
alcohol) or sweet, balsam, cinnamon-like (cinnamyl alcohol) fragrance [79,88]. Other al-
cohols responsible for fruity, creamy (2,3 butanediol), herbal, grassy, woody (1-hexanol),
green, bitter, alcohol (isobutanol) or jasmine-, lemon-like (1-octanol) bouquets [74,79] were
detected in most wine samples, but in low quantities.

In general, carbonyl compounds comprise the most abundant group of volatiles de-
tected in red grape varieties [84]. According to the results, a few carbonyl compounds were
detected in all samples, but significantly higher (p < 0.05) relative amounts were observed
in wine variants containing C. zeylanicum EO compared to wines with no EO addition
or wines with C. medica EO (for both fruit carriers). Among them, cinnamaldehyde and
benzenepropanal were the major aldehydes, as they are important constituents in cinnamon
oil [76]. Cinnamaldehyde has a sweet, spicy, cinnamon, honey-like odor contribution, and
benzenepropanal has a honey-like, floral and roasted fragrance [79,87]. Other aldehydes,
such as hexanal (fresh, green), nonanal (fatty, soapy, rose, floral, citrus-like), benzaldehyde
(sweet, cherry, roasted, almond-like) and decanal (floral, citrus notes) [74,79,88,89] were
also identified in low quantities.

A few miscellaneous compounds with minimal sensorial impact were also identified,
in accordance with our previous studies in low-alcohol wines [2,3].

Each aromatic compound present in wine has its own odor threshold and, notably,
most of them are usually found in concentrations below that value [90]. As a result, they do
not solely influence the development of the product’s fragrance [72] nor can the aroma be
considered as the sum of contributions made by each individual compound [91]. Instead,
the final aromatic bouquet relies on synergistic or additive or even suppressive interactions,
depending on the compounds’ presence and concentrations. Moreover, the alcohol content
of the wine may alter the organoleptic perception of the product, while parameters, such as
variations in an individual’s perception or sensitivity should not be ignored [72,91].

3.2.3. Principal Component Analysis

As shown in Figure 3, PCA of minor volatiles detected by HS-SPME analysis revealed
that the addition of EOs rather than the state of the kefir culture (wet or dried) had a
significant effect. In particular, wine samples with 0.01% v/v C. medica EO, presenting a
relatively high abundance of terpenes and their derivative compounds (Supplementary
Figure S1), were clustered at the top left part of the plot. In contrast, wine samples with
0.01% v/v C. zeylanicum EO were characterized by a relatively high amount of alcohols and
carbonyl compounds (Supplementary data), which correlated positively most with PC1.
As a result, the mixed EOs addition resulted in a diagonal distribution, affected by both
trends. All wine variants with no EO addition (controls) were clustered at the bottom left
corner of the plot.
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Figure 3. Score plot of the principal component analysis (PCA) of total identified minor volatiles in
low-alcohol wine variants with essential oils (EOs) and immobilized kefir cultures. Co: low-alcohol
wines without EOs addition, Cm: low-alcohol wines with 0.01% v/v Citrus medica EO, Cz: low-
alcohol wines with 0.01% v/v Cinnamon zeylanicum EO, Mix: low-alcohol wines with Citrus medica
and Cinnamon zeylanicum EOs (0.005% v/v each). The state of the cells is shown in the middle of the
sample codes (Wt: wet immobilized kefir cultures, ThDr: thermally dried immobilized kefir cultures,
FrDr: freeze-dried immobilized kefir cultures). The immobilization support is shown at the end of
the sample codes (Ap: immobilized kefir cultures on apple pieces, Pe: immobilized kefir cultures on
pear pieces).

3.3. Preliminary Sensory Evaluation

The sensory attributes (aroma, taste, overall evaluation) of the new Sangria-type wines
represent important criteria for determining their acceptability by consumers. According
to the results (Table 3), the aroma, taste density and overall evaluation were significantly
(p < 0.05) affected by the addition of EOs, while the state of kefir cultures (wet, thermally
or freeze-dried) had no effect on the scores. In particular, wines with EOs had significantly
(p < 0.05) higher scores (3 to 4 rating) regarding aroma and taste density compared to
the wines with no addition of EOs (control samples). The majority of wine variants
supplemented with EOs were characterized by fruity and piquant scents, while the samples
without EOs mostly had wine-like aromas. Concerning taste, addition of EOs resulted in a
sweet/bitter taste in most wine variants, which, in the case of C. medica supplementation,
was associated with an unpleasant aftertaste, while wines supplemented with C. zeylanicum
EO were characterized by an enjoyable cola-like aftertaste. As for wines with no EOs added,
the taste was slightly sour with a typical wine aftertaste. In contrast to the aroma and taste
density, wines without EOs were highly graded regarding overall evaluation, probably
because they more closely resembled the consumers’ familiar perception of the typical
Sangria wine [92]. Products with C. zeylanicum EO closely followed the tasters’ preference,
but samples with C. medica EO gathered mixed criticism, possibly due to the bitter notes
detected upon tasting. After all, factors like the appearance (color, shape, etc.) and general
expected perception of a product (e.g., Sangria wine) constitute the basic characteristics
responsible for the identification and selection of the product and strongly affect concepts,
such as the desirability and selection by consumers [93].
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Table 3. Sensory evaluation of new Sangria-type wines with immobilized kefir cultures on fruit
pieces and essential oils.

Wine Products Supplemented with EOs Aroma Density Taste Density Overall Evaluation

Wet kefir culture

Co_Wt_Ap 2.8 ± 0.4 2.8 ± 0.4 3.6 ± 0.7
Co_Wt_Pe 2.7 ± 0.5 3.1 ± 0.2 3.5 ± 0.6

Cm_Wt_Ap 3.8 ± 0.8 3.2 ± 0.4 3.3 ± 0.9
Cm_Wt_Pe 4.0 ± 0.9 4.3 ± 0.5 2.9 ± 0.9
Cz_Wt_Ap 3.3 ± 0.4 3.4 ± 0.5 3.3 ± 0.7
Cz_Wt_Pe 3.5 ± 0.8 2.9 ± 0.2 3.4 ± 0.5

Mix_Wt_Ap 4.2 ± 0.4 3.5 ± 0.8 3.3 ± 0.9
Mix_Wt_Pe 3.5 ± 0.6 3.3 ± 0.5 3.3 ± 0.7

Thermally dried
kefir culture

Co_ThDr_Ap 2.6 ± 0.7 2.9 ± 0.5 3.0 ± 0.6
Co_ThDr_Pe 2.9 ± 0.4 2.8 ± 0.7 3.7 ± 0.8

Cm_ThDr_Ap 3.6 ± 0.6 3.5 ± 0.6 2.6 ± 0.7
Cm_ThDr_Pe 3.6 ± 0.6 3.2 ± 0.6 2.9 ± 0.9
Cz_ThDr_Ap 2.9 ± 0.5 3.1 ± 0.8 3.1 ± 0.7
Cz_ThDr_Pe 3.6 ± 0.5 3.4 ± 0.4 3.4 ± 0.6

Mix_ThDr_Ap 3.2 ± 0.6 3.1 ± 0.5 3.0 ± 0.8
Mix_ThDr_Pe 3.5 ± 0.7 3.3 ± 0.4 3.2 ± 0.7

Freeze-dried
kefir culture

Co_FrDr_Ap 2.6 ± 0.7 2.9 ± 0.5 3.4 ± 0.9
Co_FrDr_Pe 2.4 ± 0.7 2.8 ± 0.5 3.1 ± 0.7

Cm_FrDr_Ap 3.4 ± 0.9 3.3 ± 0.6 2.7 ± 0.6
Cm_FrDr_Pe 3.4 ± 0.7 3.7 ± 0.8 2.5 ± 0.9
Cz_FrDr_Ap 3.7 ± 0.7 3.8 ± 0.5 2.8 ± 0.6
Cz_FrDr_Pe 3.6 ± 0.7 3.4 ± 0.5 2.8 ± 0.8

Mix_FrDr_Ap 4.2 ± 0.3 3.6 ± 0.8 3.0 ± 0.8
Mix_FrDr_Pe 3.3 ± 0.5 3.3 ± 0.4 3.0 ± 0.9

Co: low-alcohol wines without EOs addition, Cm: low-alcohol wines with 0.01% v/v Citrus medica EO, Cz:
low-alcohol wines with 0.01% v/v Cinnamon zeylanicum EO, Mix: low-alcohol wines with Citrus medica and
Cinnamon zeylanicum EOs (0.005% each). The immobilization support is shown at the end of the sample codes. Ap:
immobilized kefir cultures on apple pieces, Pe: immobilized kefir cultures on pear pieces.

Serving fruit pieces (containing immobilized cells) and low-alcohol wines with EOs in
different containers, with the testers’ direct involvement in the process of reconstituting the
final Sangria-type product, was characterized as highly intriguing. Thus, attributes like the
style of presentation could be exploited, in terms of sensory marketing, as it can influence
the consumers’ perception, judgement and behavior, affecting their satisfaction and result-
ing in indirect product promotion [94]. All Sangria-type products with immobilized kefir
cultures and EOs were characterized as highly original and were accepted by the tasting
panel, indicating a great market potential for these products.

4. Conclusions

In the current study, novel Sangria-type low-alcohol wines supplemented with im-
mobilized kefir cultures on fruit pieces and EOs were produced and evaluated. High cell
viability was retained after immersion of immobilized kefir cells for 2 h in low-alcohol
wines supplemented with Citrus medica EO (0.01% v/v), Cinnamon zeylanicum EO (0.01%
v/v) or mixed EOs (0.005% v/v each), and adequate numbers (enough to confer potential
beneficial activity) were retained in all cases. Fluctuations in pH, as well as total and volatile
acidity values, were observed depending on the state (wet or dried) of the cells used, but
were among typical levels for wines. HS-SPME GC/MS analysis and PCA applied on
results revealed that EO supplementation and the relative content of terpenes, alcohols and
carbonyl compounds played a major role in the discrimination of the novel low-alcohol
wine products. Notably, EO supplementation resulted in higher aroma and taste density,
and all new wine products were accepted by the sensory panel.

In conclusion, data supporting the development of a novel Sangria-type low-alcohol
wine with immobilized kefir cells on fruit pieces and EOs with great market potential are
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presented. However, more research is still required for aspects, such as minimizing the
organoleptic impact of EOs on the product, as well as effectively prolonging its shelf life.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microbiolres14020038/s1, Table S1: Minor volatiles (mg/L) detected
by HS-SPME GC/MS analysis in Sangria-type low-alcohol wines with immobilized kefir cultures
and essential oils.; Figure S1: Biplot showing the projection of the minor volatiles on the first two
principal components of the PCA.
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