Urological, Digestive and Motor Function in Children After Prenatal or Postnatal Repair of Myelomeningocele
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Subjects
2.2. The Survey Questionnaire
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadler, T.W. Embryology of neural tube development. Am. J. Med. Genet. C Semin. Med. Genet. 2005, 135, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Avagliano, L.; Massa, V.; George, T.M.; Qureshy, S.; Bulfamante, G.P.; Finnell, R.H. Overview on neural tube defects: From development to physical characteristics. Birth Defects Res. 2019, 111, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
- Atta, C.A.; Fiest, K.M.; Frolkis, A.D.; Jette, N.; Pringsheim, T.; St Germaine-Smith, C.; Rajapakse, T.; Kaplan, G.G.; Metcalfe, A. Global birth prevalence of spina bifida by folic acid fortification status: A systematic review and meta-analysis. Am. J. Public Health 2016, 106, e24–e34. [Google Scholar] [CrossRef]
- Giardini, V.; Russo, F.M.; Ornaghi, S.; Todyrenchuk, L.; Vergani, P. Seasonal impact in the frequency of isolated spina bifida. Prenat. Diagn. 2013, 33, 1007–1009. [Google Scholar] [CrossRef]
- Jamry-Dziurla, A. Prevalence of Spina Bifida in Poland in 2021; Polish Registry of Congenital Malformations, University of Medical Sciences: Poznan, Poland, 2025; Available online: http://www.rejestrwad.pl/ (accessed on 8 August 2025).
- Sarmah, S.; Muralidharan, P.; Marrs, J.A. Common congenital anomalies: Environmental causes and prevention with folic acid containing multivitamins. Birth Defects Res. C Embryo Today Res. 2016, 108, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Grewal, J.; Carmichael, S.L.; Ma, C.; Lammer, E.J.; Shaw, G.M. Maternal periconceptional smoking and alcohol consumption and risk for select congenital anomalies. Birth Defects Res. A Clin. Mol. Teratol. 2008, 82, 519–526. [Google Scholar] [CrossRef]
- Heffez, D.S.; Aryanpur, J.; Hutchins, G.M.; Freeman, J.M. The paralysis associated with myelomeningocele: Clinical and experimental data implicating a preventable spinal cord injury. Neurosurgery 1990, 26, 987–992. [Google Scholar] [CrossRef]
- Meuli, M.; Meuli-Simmen, C.; Hutchins, G.M.; Seller, M.J.; Harrison, M.R.; Adzick, N. The spinal cord lesion in human fetus with myelomeningocele: Implications for fetal surgery. J. Pediatr. Surg. 1997, 32, 448–452. [Google Scholar] [CrossRef]
- Hüsler, M.R.; Danzer, E.; Johnson, M.P.; Bebbington, M.; Sutton, L.; Adzick, N.S.; Wilson, R.D. Prenatal diagnosis and postnatal outcome of fetal spinal defects without Arnold–Chiari II malformation. Prenat. Diagn. 2009, 29, 1050–1056. [Google Scholar] [CrossRef]
- Johnson, M.P.; Sutton, L.N.; Rintoul, N.; Crombleholme, T.M.; Flake, A.W.; Howell, L.J.; Hedrick, H.L.; Wilson, R.; Adzick, N. Fetal meningomyelocele repair: Short-term clinical outcomes. Am. J. Obstet. Gynecol. 2003, 189, 482–487. [Google Scholar] [CrossRef]
- Adzick, N.S.; Thom, E.A.; Spong, C.Y.; Brock, J.W.I.; Burrows, P.K.; Johnson, M.P.; Howell, L.J.; Farrell, J.A.; Dabrowiak, M.E.; Sutton, L.N.; et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N. Engl. J. Med. 2011, 364, 993–1004. [Google Scholar] [CrossRef]
- Zamłyński, J.; Olejek, A.; Koszutski, T.; Ziomek, G.; Horzelska, E.; Gajewska-Kucharek, A.; Maruniak-Chudek, I.; Herman-Sucharska, I.; Kluczewska, E.; Horak, S.; et al. Comparison of prenatal and postnatal treatments of spina bifida in Poland: A nonrandomized, single-center study. J. Matern. Fetal Neonatal Med. 2014, 27, 1409–1417. [Google Scholar] [CrossRef]
- Pastuszka, A.; Bohosiewicz, J.; Koszutski, T. Prenatal myelomeningocele repair improves urinary continence and reduces the risk of constipation. Neurourol. Urodyn. 2018, 37, 2792–2798. [Google Scholar] [CrossRef]
- Pastuszka, A.; Bohosiewicz, J.; Olejek, A.; Zamłyński, J.; Horzelska, E.; Koszutski, T. Prenatal myelomeningocele repair—A chance to improve the quality of life. Wiad. Lek. 2019, 77, 1382–1390. [Google Scholar]
- Horzelska, E.I.; Zamłyński, M.; Horzelski, T.; Zamłyński, J.; Pastuszka, A.; Bablok, R.; Herman-Sucharska, I.; Koszutski, T.; Olejek, A. Open fetal surgery for myelomeningocele—Is there a learning curve at reduction of maternal and fetal morbidity? Ginekol. Pol. 2020, 91, 123–131. [Google Scholar]
- Stanisz, A. An Accessible Statistics Course Using STATISTICA PL on Examples from Medicine; StatSoft Polska Sp. z o.o.: Kraków, Poland, 2007. [Google Scholar]
- Campbell, I. Chi-squared and Fisher–Irwin tests of two-by-two tables with small sample recommendations. Stat. Med. 2007, 26, 3661–3675. [Google Scholar]
- Richardson, J.T.E. The analysis of 2 × 2 contingency tables—Yet again. Stat. Med. 2011, 30, 890–891. [Google Scholar] [CrossRef]
- Cope, H.; McMahon, K.; Heise, E.; Eubanks, S.; Garrett, M.; Gregory, S.; Ashley-Koch, A. Outcome and life satisfaction of adults with myelomeningocele. Disabil. Health J. 2013, 6, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Meuli, M.; Meuli-Simmen, C.; Hutchins, G.M.; Yingling, C.D.; Hoffman, K.M.; Harrison, M.R.; Adzick, N.S. In utero surgery rescues neurological function at birth in sheep with spina bifida. Nat. Med. 1995, 1, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Meuli, M.; Moehrlen, U. Fetal surgery for myelomeningocele is effective: A critical look at the “whys”. Pediatr. Surg. Int. 2014, 30, 689–697. [Google Scholar] [CrossRef]
- Moehrlen, U.; Flake, A.; Ochsenbein, N.; Huesler, M.; Biro, P.; Scheer, I.; Tharakan, S.; Dürig, P.; Zimmermann, R.; Meuli, M. Fetal surgery in Zurich: Key features of our first open in utero repair of myelomeningocele. Eur. J. Pediatr. Surg. 2013, 23, 494–498. [Google Scholar]
- Ovaere, C.; Eggink, A.; Richter, J.; Cohen-Overbeek, T.E.; Van Calenbergh, F.; Jansen, K.; Oepkes, D.; Devlieger, R.; De Catte, L.; Deprest, J.A. Prenatal diagnosis and patient preferences in patients with neural tube defects around the advent of fetal surgery in Belgium and Holland. Fetal Diagn. Ther. 2015, 37, 226–234. [Google Scholar] [PubMed]
- Zamłyński, J.; Horzelska, E.; Zamłyński, M.; Olszak-Wąsik, K.; Nowak, L.; Bodzek, P.; Horzelski, T.; Bablok, R.; Olejek, A. Current views on fetal surgical treatment of myelomeningocele—The Management of Myelomeningocele Study (MOMS) trial and Polish clinical experience. Ginekol. Pol. 2017, 88, 31–35. [Google Scholar] [CrossRef]
- Bruzek, A.K.; Koller, G.M.; Karuparti, S.; Varagur, K.; Dunbar, A.; Flanders, T.M.; Mingo, M.; Sudanagunta, K.; Bligard, K.H.; Odibo, A.; et al. MRI analysis of neurodevelopmental anatomy in myelomeningocele: Prenatal vs postnatal repair. Ultrasound Obstet. Gynecol. 2024, 64, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Karuparti, S.; Dunbar, A.; Varagur, K.; Sudanagunta, K.; Mingo, M.; Bligard, K.H.; Odibo, A.; Vrecenak, J.; McEvoy, S.; Limbrick, D.; et al. Predictors and timing of hydrocephalus treatment in patients undergoing prenatal versus postnatal surgery for myelomeningocele. J. Neurosurg. Pediatr. 2024, 33, 544–553. [Google Scholar] [PubMed]
- Cameron, A.P.; Rodriguez, G.M.; Gursky, A.; He, C.; Clemens, J.Q.; Stoffel, J.T. The severity of bowel dysfunction in patients with neurogenic bladder. J. Urol. 2015, 194, 1336–1341. [Google Scholar] [CrossRef]
- Macedo, A., Jr.; Ottoni, S.L.; Garrone, G.; Campelo, T.R.; Aragon, R.G.; Correa, R.; Balladares, R.J.; Macedo, E.L.; da Cruz, M.L. Myelomeningocele operated in utero and the incontinent bladder pattern: Mid-term follow-up of a prospective study. J. Pediatr. Urol. 2025, 21, 283.e1–283.e8. [Google Scholar]
- Brock, J.W.; Carr, M.C.; Adzick, N.S.; Burrows, P.K.; Thomas, J.C.; Thom, E.A.; Howell, L.J.; Farrell, J.A.; Dabrowiak, M.E.; Farmer, D.L.; et al. Bladder function after fetal surgery for myelomeningocele. Pediatrics 2015, 136, e906–e913. [Google Scholar]
- Macedo, A., Jr.; Campelo, T.R.; Aragon, R.G.; Macedo, E.L.; Garrone, G.; Ottoni, S.L.; da Cruz, M.L. Prospective trial of a uniform protocol for managing infants with neurogenic bladder. J. Pediatr. Urol. 2024, 20, 1125.e1–1125.e10. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Benson, C.B.; Bromley, B.; Campbell, J.B.; Chow, J.; Coleman, B.; Cooper, C.; Crino, J.; Darge, K.; Herndon, C.A.; et al. Multidisciplinary consensus on the classification of prenatal and postnatal urinary tract dilatation (UTD classification system). J. Pediatr. Urol. 2014, 10, 982–998. [Google Scholar]
- Smith, K.A.; Hudson, S.M.; Betz, C.L.; Chwa, J.S.; Cellura, R.; Van Speybroeck, A. Risk factors for unanticipated hospitalizations in children and youth with spina bifida at an urban children’s hospital: A cross-sectional study. Disabil. Health J. 2023, 16, 101373. [Google Scholar] [CrossRef]
- Zoghi, S.; Feili, M.; Mosayebi, M.A.; Ansari, A.; Feili, A.; Masoudi, M.S.; Taheric, R. Surgical outcomes of myelomeningocele repair: A 20-year experience from a single center in a middle-income country. Clin. Neurol. Neurosurg. 2024, 239, 108214. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Bakhshi, S.K.; Shah, Z.; Urooj, F.; Golani, S.; Masood, H.; Zahid, N.; Dewan, M.C.; Shamim, M.S. Quality of life in children operated for spina bifida: Low- and middle-income country perspective. Child’s Nerv Syst. 2023, 39, 3155–3161. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, N.E.; Bryant, J.P.; Niazi, T.N. Myelomeningocele including fetal prescription. Pediatr. Rev. 2022, 43, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Karmur, B.S.; Kulkarni, A.V. Medical and socioeconomic predictors of quality of life in myelomeningocele patients with shunted hydrocephalus. Child’s Nerv. Syst. 2018, 34, 741–747. [Google Scholar] [CrossRef]
- Kaluri, A.L.; Jiang, K.; Abu-Bonsrah, N.; Ammar, A.; Reynolds, R.; Alomari, S.; Odonkor, M.N.; Bhimreddy, M.; Ram, N.; Robinson, S.; et al. Socioeconomic characteristics and postoperative outcomes of patients undergoing prenatal vs. postnatal repair of myelomeningoceles. Child’s Nerv. Syst. 2024, 40, 1177–1184. [Google Scholar]
- Talamonti, G. Reflections upon the intrauterine repair of myelomeningocele. Child’s Nerv. Syst. 2024, 40, 1571–1575. [Google Scholar] [CrossRef]
- Rozensztrauch, A.; Iwańska, M.; Bagłaj, M. The quality of life of children with myelomeningocele: A cross-sectional preliminary study. Int. J. Environ. Res. Public Health 2021, 18, 10756. [Google Scholar] [CrossRef]
- Tornali, C.; Praticò, A.D.; Vecchio, F.; Polizzi, A.; Ruggieri, M.; Vecchio, I. Treatment of lumbar and intrathoracic meningocele: Bioethical implications. Acta Biomed. 2021, 92, e2021211. [Google Scholar]
- Kamath, N.N.; Kulesz, P.A.; Fletcher, J.M.; Houtrow, A.J.; Treble-Barna, A. Association of ethnicity and adaptive functioning with health-related quality of life in pediatric myelomeningocele. J. Pediatr. Rehabil. Med. 2022, 15, 571–580. [Google Scholar] [CrossRef]
- Shanmuganathan, M.; Sival, D.; Eastwood, K.A.; Morris, K.; Cartmill, J.; Heep, A.; Bohosiewicz, J.; Pastuszka, A.; Hunter, A.; Ali, A.; et al. Prenatal surgery for spina bifida: A therapeutic dilemma. Ir. J. Med. Sci. 2018, 187, 713–718. [Google Scholar] [PubMed]
- Sawin, K.J.; Brei, T.J.; Houtrow, A.J. Quality of life: Guidelines for the care of people with spina bifida. J. Pediatr. Rehabil. Med. 2020, 13, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Blount, J.P.; Bowman, R.; Dias, M.S.; Hopson, B.; Partington, M.D.; Rocque, B.G. Neurosurgery guidelines for the care of people with spina bifida. J. Pediatr. Rehabil. Med. 2020, 13, 467–477. [Google Scholar] [PubMed]
- Starowicz, J.; Cassidy, C.; Brunton, L. Health Concerns of Adolescents and Adults with Spina bifida. Front. Neurol. 2021, 12, 667665. [Google Scholar] [CrossRef]
- Fabelo, C.; He, H.; Lim, F.Y.; Atzinger, C.; Wong, B. Factors impacting surgical decision making between prenatal and postnatal repair for myelomeningocele. Prenat. Diagn. 2022, 42, 27–36. [Google Scholar]


| Method of Surgery Myelomeningocele | Current Age of Children | ||
|---|---|---|---|
| <7 Years | ≥7 Years | Total | |
| Prenatal Group | 35 | 11 | 46 |
| % Column | 49.30% | 28.21% | |
| % Row | 76.09% | 23.91% | |
| Postnatal Group | 36 | 28 | 64 |
| % Column | 50.70% | 71.79% | |
| % Row | 56.25% | 43.75% | |
| Total | 71 | 39 | 110 |
| Chi2, Yates, test: p = 0.0520 | |||
| Total Cohort (n = 110) | Prenatal Group (n = 46) | Postnatal Group (n = 64) | Test | p-Value | |
|---|---|---|---|---|---|
| Age (median) | 5.5 | 4.5 | 6.0 | Chi2, Yates | 0.0520 |
| Female, n (%) | 62 (56%) | 30 (48%) | 32 (52%) | Chi2, NW | 0.1110 |
| Male, n (%) | 48 (44%) | 16 (33%) | 32 (67%) | Chi2, NW | 0.1108 |
| Mother’s age, (median) | 37.0 | 37.0 | 35.5 | Mann–Whitney U test | 0.0773 |
| Father’s age, (median) | 39.0 | 41.0 | 37.0 | Mann–Whitney U test | 0.0133 |
| Duration of pregnancy, (Hbd; median) | 37.0 | 35.0 | 38.0 | Mann–Whitney U test | <0.001 |
| Birth weight, (grams; median) | 2735.0 | 2035.0 | 3040.0 | Mann–Whitney U test | 0.0001 |
| Current body weight, (kilograms, median) | 18.0 | 16.5 | 19.3 | Mann–Whitney U test | 0.0622 |
| Myelomeningocele at the lumbosacral level of the spine | 90 (81.82%) | 39 (84.78%) | 51 (79.69%) | Chi2, NW | 0.7520 |
| Total Cohort (n = 110) | Prenatal Group (n = 46) | Postnatal Group (n = 64) | Test | p-Value | |
|---|---|---|---|---|---|
| Shunt-dependent hydrocephalus | 52(47.3%) | 16 (45.71%) | 36 (78.26%) | Chi2, NW Test for two structure indicators Model 2 | 0.0024 0.0011 |
| Paralysis of the lower limbs | 79 (71.82%) | 29 (63.04%) | 50 (78.13%) | Test for two structure indicators Model 2 | 0.0422 |
| Bilateral contractures of the lower limbs | 71 (64.55%) | 24(52.17%) | 47(73.44%) | Test for two structure indicators Model 2 | 0.0108 |
| No deformation of lower limbs in the ankle joints | 39 (35.45%) | 21 (45.65%) | 18 (28.13%) | Test for two structure indicators Model 2 | 0.0292 |
| Varus deformity of lower limbs | 50 (45.45%) | 16 (34.78%) | 34 (53.13%) | Test for two structure indicators Model 2 | 0.0272 |
| Deformities of the spine | 56 (50.91%) | 22 (47.83%) | 34 (53.13%) | Chi2, test Yatesa | 0.5693 |
| Moving in wheelchair only | 32 (29.09%) | 9 (19.57%) | 23 (35.94%) | Test for two structure indicators Model 2 | 0.0286 |
| Moving independently or with the use of orthopedic equipment (hybrid) | 78 (70.91%) | 37 (80.43%) | 41 (64.06%) | Test for two structure indicators Model 2 | 0.0279 |
| Moving independently | 38 (34.55%) | 17 (36.96%) | 21 (32.81) | Chi2, NW | 0.2527 |
| Total Cohort (n = 110) | Prenatal Group (n = 46) | Postnatal Group (n = 64) | Test | p-Value | |
|---|---|---|---|---|---|
| Urinating with diapers | 63 (57.27%) | 23 (50.0%) | 40 (62.50%) | Test for two structure indicators Model 2 | 0.0956 |
| Urination by catheterization (CICI) | 91 (82.73%) | 39 (84.78%) | 52 (81.25%) | Test for two structure indicators Model 2 | 0.3130 |
| Self-controlled urination | 5 (4.54%) | 1 (2.17%) | 4 (6.25%) | Test for two structure indicators Model 2 | 0.1393 |
| Vesico-ureteral reflux (VUR) all grade | 23 (20.91%) | 5 (10.87%) | 18 (28.13%) | Test for two structure indicators Model 2 | 0.0105 |
| Vesico-ureteral reflux (VUR)—high grade (IV–V) | 9 (8.18%) | 1 (2.17%) | 8 (12.50%) | Chi2, test NW | 0.0454 |
| Urinary tract infections | 58 (52.72%) | 24 (52.17%) | 34 (53.13%) | Test for two structure indicators Model 2 | 0.4607 |
| Self-controlled defecation | 66 (60.0%) | 32 (69.57%) | 34 (53.13%) | Test for two structure indicators Model 2 | 0.0395 |
| Constipations—defecation with enemas | 19 (17.27%) | 9 (19.57%) | 10 (15.63%) | Chi2, test NW | 0.0269 |
| Constipations—defecation with oral pharmacological agents | 21 (19.09%) | 4 (12.50%) | 17 (40.48%) | Test for two structure indicators Model 2 | 0.0026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łoskot, M.; Koszutski, T. Urological, Digestive and Motor Function in Children After Prenatal or Postnatal Repair of Myelomeningocele. Pediatr. Rep. 2025, 17, 111. https://doi.org/10.3390/pediatric17060111
Łoskot M, Koszutski T. Urological, Digestive and Motor Function in Children After Prenatal or Postnatal Repair of Myelomeningocele. Pediatric Reports. 2025; 17(6):111. https://doi.org/10.3390/pediatric17060111
Chicago/Turabian StyleŁoskot, Marianna, and Tomasz Koszutski. 2025. "Urological, Digestive and Motor Function in Children After Prenatal or Postnatal Repair of Myelomeningocele" Pediatric Reports 17, no. 6: 111. https://doi.org/10.3390/pediatric17060111
APA StyleŁoskot, M., & Koszutski, T. (2025). Urological, Digestive and Motor Function in Children After Prenatal or Postnatal Repair of Myelomeningocele. Pediatric Reports, 17(6), 111. https://doi.org/10.3390/pediatric17060111
