

Article Analyzing Generalist Plant Species Using Topographic Characteristics of *Picea jezoensis* (Siebold & Zucc.) Carrière Forests in East Asia: From China (Mt. Changbai) to South Korea

Byeong-Joo Park ¹, Tae-Im Heo ¹, and Kwang-Il Cheon ^{2,*}

- ¹ Baekdudaegan National Arboretum, Korea Arboreta and Gardens Institute, Bonghwa 36209, Republic of Korea; bzpark@koagi.or.kr (B.-J.P.); heoming@koagi.or.kr (T.-I.H.)
- ² Ecosystem Service Team, National Institute of Ecology, Seocheon 33657, Republic of Korea
- * Correspondence: ndz1000@nie.re.kr; Tel.: +82-41-950-5463

Abstract: Picea jezoensis (Siebold & Zucc.) Carrière forests are distributed in Korea and China and are crucial for phytogeographical research. Implementing conservation policies encompassing multiple species is necessary to conserve endangered species, particularly monitoring coexisting species and their interactions within an ecological network. Here, we identified plants within P. jezoensis forests in East Asia as generalist species to contribute foundational data for biodiversity conservation. We examined 91 standardized sites through the Braun-Blanquet method, while generalist indices were calculated using Levin's method. The top 5% of generalists in the P. jezoensis forests were Acer komarovii (0.7409), Betula ermanii (0.7214), Asarum sieboldii (0.7002), Lepisorus ussuriensis (0.6977), Acer pseudosieboldianum (0.6915), Tripterygium regelii (0.6876), Thelypteris phegopteris (0.6771), Dryopteris expansa (0.6745), Sorbus commixta (0.6642), and Rhododendron schlippenbachii (0.6625). Correlation analysis between ecological factors and generalist species revealed that the coverage of Abies spp., Acer spp., and Rhododendron spp. and the species diversity index were influenced by altitude. Convex hull analysis revealed that pteridophytes and broad-leaved plants regenerated through stump sprouts occupy ecological niche spaces, indicating diverse habitats within P. jezoensis forests. This study highlights the importance of the simultaneous monitoring of multiple species to conserve ecosystem health and offers broader implications for ecological understanding.

Keywords: Picea jezoensis; sub-alpine conifers; generalist species

1. Introduction

An ecological niche refers to the physical space where an organism survives and lives, influencing its function and role as an organism in the ecosystem. It is closely associated with the distribution and scope of organisms [1,2] and serves as a shelter for plants, providing them with limited resources for their growth and survival. Various factors significantly influence the distribution of plant species in an ecosystem. Among these, topographic features play a crucial role in changing the complexity of the structure and function of vegetation [3].

Rapoport's rule is a representative hypothesis related to species distribution, which suggests that the species diversity and ecological niche increase when moving from the equator toward the poles [1]. This evidence suggests that physical distance, such as topographical differences among species, influences the availability of resources necessary for survival. Ecologists have thus shown interest in understanding the changes in ecological niche mechanisms associated with species' physical distance and topographic features' variations. For instance, environmental factors (such as soil physicochemical properties, air temperature, and relative humidity) differ depending on topographic features such as elevation and latitude), suggesting that these variations could influence species distribution [4,5]. Environmental changes also affect the composition of vegetation species in a particular

Citation: Park, B.-J.; Heo, T.-I.; Cheon, K.-I. Analyzing Generalist Plant Species Using Topographic Characteristics of *Picea jezoensis* (Siebold & Zucc.) Carrière Forests in East Asia: From China (Mt. Changbai) to South Korea. *Int. J. Plant Biol.* **2024**, *15*, 320–339. https://doi.org/ 10.3390/ijpb15020027

Academic Editor: Adriano Sofo

Received: 11 March 2024 Revised: 8 April 2024 Accepted: 15 April 2024 Published: 18 April 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). area, leading to interspecific competition [6]. In topographies with diverse features, various species appear and are considered generalists owing to their wide range of available resources within a particular vegetation. They are defined as abundant species and welladapted to environments owing to their wide range of tolerance limits and widespread distribution [7]. They also serve as indicator species within specific ecosystems and play a crucial role in maintaining the stability of ecosystem networks. Thus, the observation of generalists in specific ecosystems is important to assess and confirm the overall health of ecosystems.

Meanwhile, alpine conifer species are experiencing rapid declines in population and habitat due to the ongoing climate crisis. The alpine region has a harsh ecological environment for plant species, characterized by moisture stress, strong winds, and soil erosion [8–13].

Picea jezoensis (Siebold & Zucc.) Carrière, an endangered conifer species, is listed as Least Concern on the International Union for Conservation of Nature (IUCN) Red List. It is predominantly found in alpine areas above 1300 m above sea level [14,15]. *P. jezoensis* is the most widely distributed species in the sub-alpine forests of Northeast Asia, specifically in Korea, Manchuria, China, Russia, and Japan. Although it has recently maintained good populations in relatively cold habitats at high latitudes, populations are declining in low-latitude areas, such as Korea and the Changbai Mountain areas in China [14,16–20]. Therefore, identifying the ecosystem structures of *P. jezoensis* in South Korea and China (areas near Changbai Mountain) is crucial for observing the southern limit lines of this vegetation. On a global scale, changes in the distribution of *P. jezoensis* forests are observed in these areas, which are worthy of conservation from a phytogeographical perspective [12,20]. By formulating proactive national and international conservation strategies, the implementation of ecosystem management through the maintenance and enhancement of biodiversity should be prioritized [21].

Complex interrelationships exist between biotic and abiotic factors in ecosystems, and effective conservation of a particular species requires the simultaneous monitoring of neighboring species that share the same spatial extent. To conserve endangered species, it is necessary to implement conservation policies encompassing multiple species rather than a single species [22,23]. In short, active vegetation dynamics, facilitated by spatially flexible relationships, are crucial in maintaining healthy biodiversity within ecosystems. Thus, investigating the dynamics of co-occurring plant species in *P. jezoensis* communities is essential for conserving *P. jezoensis*, which first requires the selection of generalists based on species distribution.

This study aimed to select generalist plant species based on their ecological niche and analyze correlations between environmental factors and the topography. This study focused on the plants in Korea and parts of China that correspond to the southern limit line of the *P. jezoensis* forest in East Asia. The study results can provide basic data for conserving the *P. jezoensis* forest in East Asia.

2. Materials and Methods

2.1. Overview of the Target Site

This study investigated 91 standardized sites in five *P. jezoensis* habitats located in Gyebang (n = 28), Sobaek (n = 5), Deogyu (n = 8), and Jiri Mountains (n = 30) in South Korea, and Baekdu Mountain (n = 20) in China (Figure 1). Ninety-one circular sample plots, each covering an area of 400 m², were set up in standardized sites. The study targeted overstory and understory vegetation within a radius of 11.3 m.

The geographical distribution of the standardized survey plots is as follows: latitude $35^{\circ}18'42''-42^{\circ}30'6''$ and longitude $127^{\circ}33'53''-128^{\circ}38'55''$; the average elevation was 1492.5 ± 22.9 m and average slope was $24.0 \pm 1.0^{\circ}$. Azimuth slopes were as follows: north at 27.6%, east at 18.4%, south at 14.9%, and west at 39.1%.

Figure 1. Survey plots of Picea jezoensis habitat in East Asia.

We analyzed meteorological data considering the 30-year climate characteristics (1991–2020) from the Korea Meteorological Administration for South Korea and the Changbai Mountain area in China. The data from the closest meteorological stations in the five regions per habitat were utilized: the data from the Hongcheon Meteorological Station for Gyebang Mountain, the Yeongju Meteorological Station for Sobaek Mountain, the Geochang Meteorological Station for Deogyu Mountain, the Sancheong Meteorological Station for Jiri Mountain, and the Samjiyeon Meteorological Station for Changbai Mountain [24]. South Korea is in a mid-latitude temperate climate zone characterized by four distinct seasons: sunny and dry in spring and fall, hot and humid in summer owing to the influence of the North Pacific anticyclone, and cold and dry in winter. The Changbai Mountain area in China has a cooler and drier continental climate than South Korea, with an annual temperature of approximately 36 °C. The average maximum monthly temperatures are as follows: 25.0 °C at Gyebang Mountain, 24.5 °C at Sobaek Mountain, 18.8 °C at Deogyu Mountain, 25.7 °C at Jiri Mountain, and 7.7 °C at Changbai Mountain. The average monthly temperatures are as follows: 11.5 °C at Gyebang Mountain, 11.8 °C at Sobaek Mountain, 12.2 °C at Deogyu Mountain, 13.3 °C at Jiri Mountain, and 10.0 °C at Changbai Mountain. The average monthly minimum temperatures are as follows: -0.8 °C at Gyebang Mountain, -0.2 °C at Sobaek Mountain, 6.5 °C at Deogyu Mountain, 2.0 °C at Jiri Mountain, and –5.3 °C at Changbai Mountain. Deogyu and Jiri Mountains show relatively mild temperatures. The annual precipitation is as follows: 1134.5 mm at Gyebang Mountain, 1274.7 mm at Sobaek Mountain, 1226.1 mm at Deogyu Mountain, 1551.7 mm at Jiri Mountain, and 950.8 mm at Changbai Mountain, and Jiri Mountain has the highest precipitation.

2.2. Field Survey Method

To conduct the vegetation survey in the target site, the layered structure of vegetation within the survey sites was classified into four distinct layers: tree layer, low-tree layer, shrub layer, and herbaceous layer. After identifying the plant species in each layer, we utilized the Braun-Blanquet phytosociological method [25] to assess the coverage and

dominance. And we analyzed the median values of these classes as referenced below. The identification of plants was conducted based on the Colored Flora of Korea [26] for plant classification, and the identification of pteridophytes was conducted using the illustrated guide to Korean pteridophytes [27]. Scientific names and species names in Korean followed the Korean Plant Name Index [28], as the Korea National Arboretum and the Korean Society of Plant Taxonomists recommended. The survey was conducted from September 2019 to October 2022.

2.3. Statistical and Analytical Methods

Before analyzing the indicator species in this study, we examined species-area curves to confirm whether the appropriate number of standardized survey plots for the analysis was met [29]. We estimated the species number by randomly selecting the order of the cumulative survey sites in the species-area curves using a table of random sampling numbers, assigning serial numbers for 91 survey sites using the Chao1 estimator [30]. The ecological niche index was calculated using the following formula suggested by Levins [31]:

$$\mathbf{E} = \frac{1}{S \times \sum_{k=1}^{S} P_{ik}^{2}}$$

where E is Levin's ecological niche breadth, P_{ik} is the relative species composition of a given species (*i*) to the whole gradient in realized gradient 'S', and S is the total number of gradients.

The environmental gradients used in the analysis were divided into vertical and horizontal distributions, and they were grouped as shown in Table 1, considering the minimum and maximum values of the topographical data.

Index	Environmental Factor (Number of Groups)	Remark
Vertical	Altitude (7)	~1300 m/1300–1400 m/ 1400–1500 m/1500–1600 m/1600–1700 m/1700–1800 m/1800~
	Latitude (5) Habitat (5)	35°/36°/37°/41°/42° JR/DG/SB/GB/BD
Horizontal	Slope (5)	~15°/15°-20°/20°-25° /25°-30°/30°~
	Azimuth (8)	N/NE/NW/S SE/SW/W/E

Table 1. Environmental factors for analyzing ecological niche breadth.

The data used for relative species composition were analyzed based on two parameters: coverage and dominance. Moreover, topographic characteristics determined five environmental gradient factors: vertical distribution (elevation) and horizontal distribution (e.g., latitude, habitat, slope, and azimuth). According to the environmental gradient factor, the ecological niche index ranges between 0 and 1, and a value closer to 1 indicates a species widely distributed according to topographic characteristics.

We also conducted a non-metric multidimensional scaling (NMS) analysis to examine the environmental impact factors of generalist species and assess interspecific correlations. This approach is primarily applied to vegetation data, specifically ecosystem data, exhibiting a non-parametric pattern, and the interpretation can be made by representing correlations between biotic and abiotic factors in two dimensions [32]. We utilized the mean values of coverage and dominance of each plant species within the survey plots, and the Sørenson distance was used as the distance scale. Convex hull measurements were conducted to confirm the two-dimensional spatial range of each generalist according to species composition within the survey sites of the *P. jezoensis* forests. Convex hull can identify the correlations of ecological niches among species by visualizing measured values on spatial distribution after filtering out specific species' habitats within a community [33]. We used PC-ORD (ver. 7.0) as the analysis program [32]. The statistical analysis of topographical conditions was conducted using ANOVA, and post hoc testing was performed using Tukey's method. The topographical survey utilized a clinometer manufactured by Suunto (Tandem/360PC/360R DG CLINO/COMPASS) to measure the slope and azimuth. Rock exposure was assessed by investigating the rock ratio within a circular area with a radius of 11.3 m. Elevation was recorded using the numerical values from a GPS receiver (Table 2), the plant coverage values were determined using the Median Value according to the Braun-Blanquet method as presented in Table 3.

Table 2. Information on the *Picea jezoensis* forest survey areas from South Korea to China (a, b, and c indicate different delimiters in the ANOVA post hoc test (Tukey's post hoc), * p < 0.05).

Contents (Plots)	* D - 1. E	* Altitude	* Slope	Azimuth (%)			
	Rock Exposure (76)	(m)		Ν	Е	S	W
Mt. Gyebang (28)	$40.8\pm2.3~^{ab}$	1378.1 \pm 13.8 $^{\rm c}$	28.4 ± 1.3 ab	20.0	36.0	20.0	24.4
Mt. Sobeak (5)	56.3 ± 3.7 ^a	1345.6 ± 10.8 ^c	37.8 ± 4.4 ^a	0.0	25.0	75.0	0.0
Mt. Deogyu (8)	35.6 ± 3.7 $^{\mathrm{ab}}$	1552.3 ± 10.0 ^b	22.4 ± 4.6 ^b	12.5	25.0	0.0	62.5
Mt. Jiri (30)	36.3 ± 1.9 $^{ m ab}$	1731.7 \pm 21.6 $^{\mathrm{a}}$	21.4 ± 1.4 ^b	6.7	10.0	33.3	50.0
Mt. Changbai (20)	$24.3\pm4.9\ensuremath{^{\circ}}$ c	$1282.3\pm29.4\ensuremath{^{\rm c}}$	$18.3\pm2.1\ensuremath{^{\rm c}}$	30.0	5.0	25.0	40.0

Table 3. Braun-Blanquet cover-dominance scale.

Braun-Blanquet Scale	Range of Cover and Dominance (%)	Median Value
5	75–100	87.5
4	50–75	62.5
3	25–50	37.5
2	12.5–25	18.75
1	<12.5 numerous individuals	9.375
+	<5 few individuals	4.69
r	Species represented by a unique individual	1.01

3. Results

3.1. Species-Area Curves

To examine whether the appropriate quadrats were installed in the target sites, speciesarea curves were analyzed by estimating the number of species per level after dividing them into crown and understory vegetation (Figure 2). Consequently, based on the number of survey plots, the slope for species richness converged to 0, suggesting that an appropriate number of quadrats was installed for the vegetation analysis in the target site.

3.2. Selection of Generalist Species

The list of vascular plant species found in the 91 survey sites is presented in Table 4. In total, 202 taxa were identified, including 59 families, 127 genera, 171 species, 2 subspecies, 26 varieties, and 3 forms. The results of selecting generalist species of the *P. jezoensis* forests in East Asia are presented in Table 5. The identified generalists are the top 10 species in the ecological niche index, representing 5% of the plant species found. After calculating the ecological niche index for each species based on five topographic characteristics, we selected the final generalists based on their average values. The ecological niche index of *P. jezoensis*, the target species in this study, was 0.7411, and the top 10 generalists were as follows (Figure 3): *Acer komarovii* Pojark. (0.7409), *Betula ermanii* Cham. (0.7214), *Asarum sieboldii* Miq. (0.7002), *Lepisorus ussuriensis* (Regel & Maack) Ching (0.6977), *Acer pseudosieboldianum* (Pax) Kom. (0.6915), *Tripterygium regelii* Sprague & Takeda (0.6876), *Thelypteris phegopteris* (L.) Sloss.

(0.6771), Dryopteris expansa (C.Presl) Fraser-Jenk. & Jermy (0.6745), Sorbus commixta Hedl. (0.6642), and *Rhododendron schlippenbachii* Maxim. (0.6625).

Figure 2. Species-area curves of forest layers by estimating species richness using the Chao1 estimator. Error bars indicate standard deviation.

Contents	Family	Genera	Species	Subspecies	Variety	Form	Total	Ratio (%)
Pteridophyte	7	11	17	0	1	0	18	8.9
Gymnosperm	3	6	7	0	1	0	8	4.0
Angiosperm	49	110	147	2	24	3	176	87.1
Dicotyledoneae	45	92	116	2	20	2	140	69.3
Monocotyledoneae	4	18	31	0	4	1	36	17.8
Total	59	127	171	2	26	3	202	100.0

Table 4. List of plant species in the Picea jezoensis forest.

Table 5. List of generalists in *Picea jezoensis* habitats in East Asia (above 5% in total species [202 taxa], \times 1: altitude, \times 2: latitude. \times 3: habitat, \times 4: slope, and \times 5: azimuth, Refer to Appendix A for the niche breathe of plant species observed).

Scientific Name	×1	×2	×3	× 4	×5	Mean	Generalist (G) Rank
Picea jezoensis (Siebold & Zucc.) Carrière	0.5357	0.7221	0.7366	0.8844	0.8267	0.7411	Target species (T)
Acer komarovii Pojark.	0.5506	0.6751	0.6935	0.9049	0.8802	0.7409	Ι
Betula ermanii Cham.	0.7720	0.4972	0.7275	0.8812	0.7288	0.7214	II
Asarum sieboldii Miq.	0.5411	0.5381	0.8826	0.8952	0.6440	0.7002	III
Lepisorus ussuriensis (Regel & Maack) Ching	0.5054	0.6760	0.8921	0.6043	0.8108	0.6977	IV
Acer pseudosieboldianum (Pax) Kom.	0.6544	0.4904	0.6903	0.9025	0.7197	0.6915	V
Tripterygium regelii Sprague & Takeda	0.7049	0.4501	0.5921	0.8652	0.8255	0.6876	VI
Thelypteris phegopteris (L.) Sloss.	0.6597	0.5766	0.5351	0.8358	0.7782	0.6771	VII
Dryopteris expansa (C.Presl) Fraser-Jenk. & Jermy	0.4433	0.6492	0.6102	0.8299	0.8398	0.6745	VIII
Sorbus commixta Hedl.	0.4706	0.5892	0.6250	0.8114	0.8250	0.6642	IX
Rhododendron schlippenbachii Maxim.	0.7110	0.3748	0.5172	0.9672	0.7425	0.6625	Х

Figure 3. Pictures of generalists ((I) Acer komarovii Pojark; (II) Betula ermanii Cham; (III) Asarum sieboldii Miq; (IV) Lepisorus ussuriensis (Regel & Maack) Ching; (V) Acer pseudosieboldianum (Pax) Kom.; (VI) Tripterygium regelii Sprague & Takeda; (VII) Thelypteris phegopteris (L.) Sloss.; (VIII) Dryopteris expansa (C.Presl) Fraser-Jenk. & Jermy; (IX) Sorbus commixta Hedl.; (X) Rhododendron schlippenbachii Maxim.).

3.3. Correlations between Environmental Factors

The results of the correlation analysis between environmental factors of generalist plant species within the *P. jezoensis* forests are presented in Figure 4. The explanatory

power of the NMS ordination was 0.417 and 0.202 for the first and second axes, respectively, resulting in a total explanatory power of 0.619. The correlation factors were elevation, *Rhododendron* spp. coverage, *Abies* spp. coverage, *Acer* spp. coverage, and the species diversity index. The correlation between *Abies* spp. coverage and *Acer* spp. coverage was heterogeneous. The generalist species correlated with the coverage of the genus of *Abies* were *Acer komarovii* Pojark., *Thelypteris phegopteris* (L.) Sloss., and *P. jezoensis*. The one species that showed correlations with *Acer* spp. coverage and species diversity index was *Lepisorus ussuriensis* (Regel & Maack) Ching. The species that were correlated with elevation and *Rhododendron* spp. were *Rhododendron schlippenbachii* Maxim., *Acer pseudosieboldianum* (Pax) Kom., *Asarum sieboldii* Miq., and *Tripterygium regelii* Sprague & Takeda.

Axis 1 / R²=0.417

Figure 4. The distribution of the 10 generalists in two-dimensional space and correlation with environmental factors (NMS ordination was used, Total R2 = 0.619, cut off = 0.3). Blue dots represent the two-dimensional spatial distribution of emerging species (I, *Acer komarovii* Pojark; II, *Betula ermanii* Cham; III, *Asarum sieboldii* Miq; IV, *Lepisorus ussuriensis* (Regel & Maack) Ching; V, *Acer pseudosieboldianum* (Pax) Kom.; VI, *Tripterygium regelii* Sprague & Takeda; VII, *Thelypteris phegopteris* (L.) Sloss.; VIII, *Dryopteris expansa* (C.Presl) Fraser-Jenk. & Jermy; IX, *Sorbus commixta* Hedl.; X, *Rhododendron schlippenbachii* Maxim.).

The habitat of *P. jezoensis* in Korea reportedly has the same habitat status as that of subalpine conifers, such as *Abies nephrolepis* (Trautv. Ex Maxim.) Maxim. and *Abies koreana* E. H. Wilson [12,13]; our study yielded the same results. Notably, *Rhododendron schlippenbachii* Maxim. is a species that typically thrives at high altitudes, frequently appearing in habitats where the *Rhododendron* spp. is prevalent [12].

3.4. Convex Hull

A two-dimensional representation of the ecological niche range of generalists as determined through convex hull analysis is shown in Figure 5. The area shown in the convex hull result indicates the diversity of species composition and complexity of vegetation structure in the survey plot to which the generalist belongs. *Rhododendron schlippenbachii* Maxim. was found in various vegetation structure types. In addition, *Acer komarovii* Pojark., *Betula ermanii* Cham., *Asarum sieboldii* Miq., *Lepisorus ussuriensis* (Regel & Maack) Ching, *Acer pseudosieboldianum* (Pax) Kom., *Tripterygium regelii* Sprague & Takeda, and *Sorbus commixta* Hedl. were identified with ecological niches distributed within similar species composition structures. Meanwhile, pteridophytes or epiphytes such as *Thelypteris phegopteris* (L.) Sloss., *Dryopteris expansa* (C.Presl) Fraser-Jenk. & Jermy, and *Lepisorus ussuriensis* (Regel & Maack) Ching exhibited a heterogeneous spatial distribution.

Axis 1 / R²=0.417

Figure 5. The convex hull graph shows the ecological niche of 10 generalists in the *Picea jezoensis* habitat from South Korea to China (black dots represent survey plots by calculating the species composition value on a two-dimensional axis, AcKo (I), *Acer komarovii* Pojark; BeEr (II), *Betula ermanii* Cham.; AsSi (III), *Asarum sieboldii* Miq.; LeUs (IV), *Lepisorus ussuriensis* (Regel & Maack) Ching; AcPs (V), *Acer pseudosieboldianum* (Pax) Kom.; TrRe (VI), *Tripterygium regelii* Sprague & Takeda; Th Ph (VII), *Thelypteris phegopteris* (L.) Sloss.; DrEx (VIII), *Dryopteris expansa* (C.Presl) Fraser-Jenk. & Jermy; SoCo (IX), *Sorbus commixta* Hedl.; RhSc (X), *Rhododendron schlippenbachii* Maxim).

4. Discussion

4.1. Ecological Characteristics of Generalist Species

The generalists along the southern limit line of *P. jezoensis* were identified as the genus *Acer* and the genus *Betula*, which are widely distributed plant species. The species of *Acer* or *Betula* are noticeable as they are woody plants with the potential to evolve into woody species in sub-alpine ecosystems in the future [20]. These species are widely distributed in sub-alpine coniferous forest zones, including *Abies nephrolepis* (Trautv. ex Maxim.) Maxim.

and *Abies koreana* E. H. Wilson in Korea. *Betula ermanii* Cham. was analyzed as a generalist species with the highest vertical range.

P. jezoensis forests in Korea and China are characterized by highly complex and diverse vegetation structures owing to secondary forests. The generalists that exhibit such characteristics are *Acer* spp. and *Tripterygium regelii* Sprague & Takeda. In Korea, *Acer* spp. maintain their ecological niche through sprout regeneration; as the *Acer* spp. is highly affected by pests in seeds within natural forests, approximately 30% of the seeds produced by an individual are perforated by pests. Approximately 70% of the seeds undergo advanced seed decay, making it difficult to naturally regenerate through seeds [34]. Therefore, most grow by branching out from the root-sucker, forming populations. These growth patterns of broad-leaved species are characteristic of the typical vegetation structure of a secondary forest in Korea. Secondary forests occur in frequent disturbances, leading to the predominant regeneration of vegetation primarily through stump saplings for broad-leaved trees; this forest structure is predominantly found in sub-alpine coniferous forests in Korea [20].

Meanwhile, *Tripterygium regelii* Sprague & Takeda vigorously reproduces after the occurrence of a forest gap, making it a major species for confirming disturbance frequencies within forest stands [13,20]. After the occurrence of forest gaps, secondary forests undergo dynamic transitions, experiencing frequent disturbances until the crown layer within the forest become stable [35]. Regarding *Betula ermanii* Cham., *Asarum sieboldii* Miq., *Acer pseudosieboldianum* (Pax) Kom., *Tripterygium regelii* Sprague & Takeda, and *Sorbus commixta* Hedl., multiple generalists have the same ecological niche ranges, indicating that they are simultaneously found in similar vegetation structures. This phenomenon is speculated to be the result of a highly dynamic response to changes in vegetation structure caused by frequent disturbances, particularly forest gaps; these disturbances, involving the repeated opening and closing of canopies, affect species richness within the vegetation, contributing to the complexity in vegetation structure [20,36,37]. This is assumed to result from natural disturbances driven by conditions such as wind damage and moisture deficit in the sub-alpine zone of the *P. jezoensis* forests [8,9,11,12].

In addition, pteridophyte species, such as *Thelypteris phegopteris* (L.) Sloss. and *Dryopteris expansa* (C.Presl) Fraser-Jenk. & Jermy, and the epiphyte *Lepisorus ussuriensis* (Regel & Maack) Ching, exhibited spatial arrangements different from those of other generalists. Epiphytes are plant species that generally thrive in areas with poorly developed soils; they show a unique ecological life history by growing on the surface of other plants and absorbing water and nutrients from the atmosphere and soil through their roots. Furthermore, epiphytes exhibit adaptability to various habitats, including rainforests, deserts, and alpine areas, indicating their ability to survive in diverse environments without being significantly influenced by host specificity [38–40]. Our study also revealed their ability to survive in barren environments, such as the habitat for *P. jezoensis*, indicating adaptation to various stresses.

Pteridophytes, such as *Dryopteris expansa* (C.Presl) Fraser-Jenk. & Jermy and *Thelypteris phegopteris* (L.) Sloss., thrive in environments with abundant moisture in the air and soil and grow in shaded areas or rocky crevices within forests. Pteridophytes also exhibit ecological features, including reproduction via spores and the ability of individuals to thrive in habitats with low moisture stress [41–44]. Undisturbed areas in the *P. jezoensis* forests within the southern limit line are expected to have high aerial humidity, and it is assumed that the *P. jezoensis* forests, where these pteridophytes thrive, have not experienced significant and frequent disturbances. In the future, if natural disturbances occur, forest gaps will form, and the resultant drop in atmospheric humidity can provide a dry environment in the forest, contributing to a decline in pteridophytes; considering this, these species are considered indicator plants that provide insights into disturbance levels.

Rhododendron schlippenbachii Maxim. belongs to the *Rhododendron* spp., a shrubby tree species and a plant species with a wide vertical range that can grow above the tree line. The *Rhododendron* spp., which grows in sub-alpine regions, is widely distributed in East Asia, including Korea and China, and is considered the genus representing the vegetation in Korea [45]. The *Rhododendron* spp. is an important indicator plant for moni-

toring, which confirms the shrinkage and expansion of sub-alpine ecosystems in response to global environmental changes [46]. In an analysis of indicator species based on elevation in East Asia, the *Rhododendron* spp. was identified as an indicator species at high elevations [46]; in this study, the species was the second highest generalist species in terms of elevation, demonstrating a broad vertical range and highlighting its adaptability across diverse elevations.

The selection of generalists within coniferous forests is crucial for predicting future changes in vegetation structures driven by long-term transitions, and such plant species evolve owing to the interrelations among them [47]. The findings of this study will provide a basis for understanding the vegetation structure of climax forests during the transition from coniferous to broadleaf forests.

4.2. Correlations between Generalist Species and Ecological Niche Distribution

Generalist species with equivalent ecological niches demonstrate the same environmental adaptability in the ecosystem [48]. Variations in the ecological niches of plant species within vegetation ultimately reflect differences in their habitats, and plant species with overlapped ecological niches have similar habitats [49].

Examining the ten generalist species in *P. jezoensis* forests in East Asia found that each species does not have the same habitat type. This study categorized the ecological niche range into two groups: woody broad-leaved species and pteridophytes. This result suggests that the same woody community can consist of different habitats. The most significant difference between the two groups lies in the moisture environment within the vegetation. The broad-leaved tree species group is characterized by irregularities due to frequent disturbances, whereas the pteridophyte group is considered relatively stable. As the broadly distributed pteridophyte group is more sensitive to other environmental factors and occupies a smaller habitat than the woody plant species [50], it is identified as a vegetation structure that should be intensively monitored within *P. jezoensis* forests.

Seasonal winds are a crucial factor influencing East Asia's diverse vegetation structure of sub-alpine coniferous forests. The climatic requirement in East Asia is monsoonal winds, vital in determining the vegetation structure. Monsoonal winds are dry and create diverse vegetation types along the vertical range within mountains [51]. This complexity causes diverse habitats, and *Picea* forests, forming part of the remnant population, are predominantly found in small numbers in areas with frequent disturbances, such as cliffs and rocky terrain [52–55]. The analysis identified broad-leaved species, such as *Acer* spp. or *Betula* spp., as generalists, favoring regeneration through sprouts within secondary forests after frequent disturbance; this observation aligns with the complexity of sub-alpine ecosystems observed in previous studies. The diverse distribution of ecological niches of generalists in *P. jezoensis* forests at the southern limit line in East Asia, as revealed through convex hull analysis, can be considered an indirect example of the dynamics and diversity of habitats [46].

As the fluctuations in bioclimatic factors increase, the residual community species experiencing unstable climate conditions gradually decline [51]. Therefore, the stability of climatic factors is a prerequisite for protecting specific plant species, and long-term, stable remnant populations, characterized by rich gene pools and species diversity, have the potential for new speciation over time [56–60].

For the sub-alpine remnant populations, unstable climatic requirements disadvantage the in situ survival of specific species. Within forest ecosystems, the complex habitat mosaic suggests that *P. jezoensis* forests persist as remnant populations within sub-alpine vegetation owing to rising temperatures, with the high dynamics of forest ecosystems rendering it difficult to maintain a stable ecosystem structure [12,14].

5. Conclusions

This study aimed to obtain scientific evidence for conservation policy recommendations to maintain and enhance biodiversity by selecting generalist plant species in *P. jezoensis* forests in Korea and China. Identifying generalist plant species influenced by topographic features is crucial in formulating effective conservation strategies. However, this study has limitations in quantitative analysis based on short-term vegetation survey data. Thus, it is necessary to clarify changes and patterns through continuous and long-term monitoring of *P. jezoensis* forests in Northeast Asia, including Korea.

Remnant populations in sub-alpine ecosystems face considerable challenges in directly collecting data on environmental factors owing to the harsh and barren nature of the ecosystems. Therefore, co-occurring species refer to species that naturally appear together with a specific organism or in a particular habitat. These species coexist in a specific environment and can influence or interact with each other. From a conservation perspective, investigating and understanding co-occurring species is essential for comprehending the ecosystem of a specific habitat and designing conservation strategies. Conservation efforts for a particular species require understanding not only the environment in which the species exists but also the roles of other organisms coexisting in that environment. This understanding can provide insights into inter-species interactions and the stability of the habitat ecosystem. This is the ultimate purpose of this study, and the results can provide essential foundational data that can be instrumental in formulating ecosystem conservation policies in the future.

Author Contributions: Conceptualization, B.-J.P. and K.-I.C.; software, B.-J.P.; formal analysis, B.-J.P. and K.-I.C.; investigation, B.-J.P., T.-I.H. and K.-I.C.; writing—original draft, B.-J.P. and T.-I.H.; writing—review and editing, K.-I.C.; data curation, B.-J.P.; visualization, B.-J.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Baekdudagan National Arboretum (Project No. 2023-01-01-02) and the National Institution of Ecology (Project No. NIE-B-2024-03).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Acknowledgments: This research was conducted as part of the Baekdudagan National Arboretum's research project, "Research on the Target Plant Species in Baekdudaegan for Conservation Status Assessments and Strategies (Project No. 2023-01-01-02)" and the National Institution of Ecology's research project, "Development of Policy Decision Support System Base on Ecosystem Services Assessment (Project No. NIE-B-2024-03)", and the Korea Environmental Industry & Technology Institute project, "Development of decision support integrated impact assessment model for climate change, adaptation: ecosystem (Project No. 2022003570001)" in Republic of Korea.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

List of niche breadth for plants on *P. jezoensis* habitats (\times 1: altitude, \times 2: latitude, \times 3: habitat, \times 4: slope, \times 5: azimuth).

Scientific Name	×1	×2	×3	$\times 4$	$\times 5$	Mean
Abies koreana Wilson	0.3210	0.2000	0.2467	0.9516	0.5379	0.4514
<i>Abies nephrolepis</i> (Trautv.) Maxim.	0.2409	0.6784	0.4601	0.7196	0.8919	0.5982
Acer barbinerve Maxim.	0.3842	0.7315	0.6249	0.4055	0.4471	0.5186
Acer komarovii Pojark.	0.5506	0.6751	0.6935	0.9049	0.8802	0.7409
Acer mandshuricum Maxim.	0.1825	0.2000	0.2000	0.3702	0.3497	0.2605

	×1	~2	~ 2	×4		Maan
	×1	×2	×3	×4	×3	Mean
Acer pictum subsp. mono (Maxim.) Ohashi	0.5180	0.5519	0.5901	0.6604	0.5332	0.5707
Acer pseudosieboldianum (Pax) Kom.	0.6544	0.4904	0.6903	0.9025	0.7197	0.6915
Acer tegmentosum Maxim.	0.2722	0.4916	0.4916	0.7416	0.7063	0.5406
Acer ukurunduense Trautv. & C.A.Mey.	0.2805	0.4640	0.4600	0.5489	0.9036	0.5314
Aconitum jaluense Kom.	0.3542	0.4565	0.4565	0.7059	0.5415	0.5029
Acontrum pseudolaeoe Nakai Actaga aciatica H	0.1429	0.3291	0.2533	0.2953	0.2524	0.2546
Hara Actinidia arguta	0.1920	0.2000	0.2000	0.3456	0.4253	0.2726
(Siebold & Zucc.) Planch. ex Miq.	0.3094	0.2443	0.2443	0.6333	0.5115	0.3885
Actiniuu polygumu (Siebold & Zucc.) Planch. ex Maxim. Adenonhora	0.1429	0.3812	0.2000	0.3812	0.2383	0.2687
remotiflora (Siebold & Zucc.) Miq. Agastache rugosa	0.2593	0.2649	0.2649	0.4667	0.4712	0.3454
(Fisch. & Mey.) Kuntze	0.2857	0.4000	0.4000	0.8000	0.5000	0.4771
Agrimonia pilosa Ledeb. Ainslinga acquifalia	0.2857	0.4000	0.4000	0.4000	0.2500	0.3471
Sch.Bip. Angelica amurensis	0.5001	0.3253	0.3645	0.8053	0.6956	0.5382
Schischk.	0.4244	0.2477	0.4701	0.6709	0.4193	0.4465
Angelica gigas Nakai	0.3295	0.2535	0.2559	0.6213	0.7163	0.4353
Anthriscus sylvestris (L.) Hoffm. Aralia elata (Mig.)	0.1429	0.2000	0.2000	0.3171	0.2359	0.2192
Seem. Arisaema amurense	0.4947	0.4241	0.6421	0.6679	0.3174	0.5092
Maxim. Arisaema peninsulae	0.2062	0.2000	0.2000	0.4000	0.3700	0.2752
Nakai Aruncus dioicus var.	0.(277	0.2550	0.5000	0.5274	0.4695	0.5727
(Maxim.) H. Hara Asarum sieholdii Mia	0.5411	0.5381	0.3829	0.8952	0.4685	0.3727
Asplenium yokoscense (Franch. & Sav.)	0.4049	0.2115	0.3624	0.8239	0.6195	0.4844
H.Christ Aster scaber Thunb.	0.5762	0.4822	0.6155	0.6368	0.3750	0.5371
Astilbe rubra Hook.f.	0.5751	0.5410	0.5410	0.7512	0.7401	0.6297
Athyrium brevifrons Kodama ex Nakai	0.2404	0.8458	0.6476	0.4577	0.6951	0.5773
Athyrium niponicum (Mett.) Hance	0.3673	0.4000	0.4000	0.7200	0.3750	0.4525
Berberis amurensis var. brevifolia Nakai	0.3737	0.4000	0.4000	0.5232	0.2400	0.3874
Betula costata Trauty.	0.2822	0.3951	0.2000	0.3340	0.2088	0.2840
Betula davurica Pall. Betula ermanii Cham	0.2125 0.7720	0.2974 0.4972	0.2974	0.5324 0.8812	0.3328 0.7288	0.3345 0.7214
Betula platyphylla var. japonica (Miq.)	0.1429	0.2000	0.2000	0.3028	0.3012	0.2294
H. Hara Betula schmidtii Regel	0.1429	0.2830	0.2830	0.2830	0.1769	0.2338
Bistorta manshuriensis (Potrov ox Kom)	0.2407	0.2000	0.2000	0.3370	0.2106	0.2377
Kom. Calamagrostis		0.4000	0 4/45	0.9/10	0.0010	0.4347
arundinacea (L.) Roth Cardamine komarovii	0.3361	0.4203	0.4645	0.7143	0.8218	0.6247
Nakai Cardamine leucantha (Tausch) O E Schulz	0.1429	0.2000	0.2000	0.4000	0.2500	0.2386
<i>Carex biwensis</i> Franch.	0.1429	0.2000	0.2000	0.4000	0.2500	0.2386

rhynchophylla Hance

Scientific Name	×1	×2	×3	$\times 4$	$\times 5$	Mean
Carex erythrobasis	0.3136	0.5651	0.2915	0.5525	0.5679	0.4581
Carex glabrescens	0.1420	0 2000	0.2000	0.2000	0.1250	0 1726
Ohwi Carar kakananaia	0.1429	0.2000	0.2000	0.2000	0.1250	0.1756
Franch. & Sav.	0.5190	0.5685	0.5685	0.5310	0.3566	0.5087
nana (H.Lév. & Vaniot) Ohwi	0.5708	0.4575	0.7294	0.4922	0.5746	0.5649
Carex lanceolata	0.5135	0.3155	0.5780	0.8294	0.2812	0.5035
Carex okamotoi Ohwi	0.2056	0.2000	0.2000	0.6939	0.3745	0.3348
Carex siderosticta	0.2676	0.3567	0.3625	0.6276	0.6413	0.4511
Hance Caulophyllum robustum Movim	0.2857	0.2000	0.2000	0.4000	0.2500	0.2671
Chrysosplenium flagelliferum	0 1429	0.2000	0.2000	0.2000	0 3621	0 2210
F.Schmidt <i>Cimicifuga dahurica</i>	0.112	0.2000	0.2000	0.2000	0.0021	0.2210
(Turcz. ex Fisch. & C.A.Mey.) Maxim.	0.3155	0.2000	0.2000	0.6055	0.6106	0.3863
Cimicifuga simplex	0.1429	0.3340	0.2000	0.2000	0.1250	0.2004
<i>Circaea alpina</i> L.	0.1429	0.2000	0.2000	0.5155	0.3222	0.2761
Clematis fusca var.	0.3452	0.3951	0.3951	0.3951	0.2469	0.3555
Clematis koreana Kom	0.1977	0.2000	0.2000	0.5686	0.4820	0.3296
Clintonia udensis Trauty & C A May	0.3632	0.5168	0.4404	0.7506	0.6750	0.5492
Cornus controversa	0.1429	0.3514	0.3514	0.5070	0.2394	0.3184
Corylus heterophylla Fisch ex Trauty	0.2163	0.4820	0.4820	0.4820	0.1892	0.3703
Corylus sieboldiana var. mandshurica	0.2657	0.2000	0.2000	0.3797	0.5552	0.3201
(Maxim. & Rupr.) Cymopterus						
<i>melanotilingia</i> (H.Boissieu) C.Y.Yoon	0.5352	0.3951	0.5686	0.8695	0.5091	0.5755
Deutzia glabrata Kom.	0.2740	0.2883	0.2883	0.5640	0.6025	0.4034
<i>Deutzia parviflora</i> Bunge	0.2723	0.2000	0.3812	0.3812	0.2383	0.2946
Diarrhena fauriei (Hack.) Ohwi	0.2723	0.3812	0.3812	0.3812	0.2383	0.3308
Diarrhena mandshurica Maxim.	0.1429	0.2000	0.2000	0.5684	0.2088	0.2640
Disporum smilacinum A.Gray	0.4861	0.3836	0.5893	0.4836	0.4253	0.4736
Disporum viridescens (Maxim.) Nakai	0.2857	0.4000	0.4000	0.4000	0.2500	0.3471
Dryopteris chinensis (Baker) Koidz.	0.4060	0.3951	0.5685	0.2000	0.2469	0.3633
Dryopteris crassirhizoma Nakai	0.4039	0.5375	0.5402	0.6442	0.8201	0.5892
C.Presl) Fraser-Jenk. & Jermy	0.4433	0.6492	0.6102	0.8299	0.8398	0.6745
Eleutherococcus senticosus (Rupr. & Maxim.) Maxim.	0.2820	0.2621	0.2000	0.4077	0.2956	0.2895
Epilobium	0.1429	0.2000	0.2000	0.2000	0.1250	0.1736
Equisetum hyemale L.	0.2336	0.2000	0.2000	0.4891	0.5294	0.3304
Euonymus macrontarus Pupp	0.6096	0.6037	0.6617	0.5648	0.7545	0.6389
Euonymus oxyphyllus Mia	0.3333	0.3379	0.3379	0.3920	0.3224	0.3447
Euonymus pauciflorus Maxim.	0.1429	0.2000	0.2000	0.3774	0.3621	0.2565
Euonymus sachalinensis	0.2682	0.4977	0.5555	0.4468	0.3472	0.4231
(F.SCHITHAT) MAXIM. Filipendula elaberrima Nakai	0.4622	0.5253	0.5253	0.5285	0.5873	0.5257
Fraxinus rhumchanhulla Hanco	0.3774	0.5440	0.5440	0.5173	0.4327	0.4831

Scientific Name	×1	×2	×3	$\times 4$	×5	Mean
Fraxinus sieboldiana	0 4412	0.2000	0.2600	0.7338	0.6768	0 4624
Blume	01111	0.2000	0.2000	011 0000	0107 00	011021
kamtschaticum Steller ex (Roem. & Schult.)	0.1429	0.4000	0.2000	0.2000	0.2500	0.2386
<i>Japonica</i> (Kusn.) H. Hara	0.2286	0.3200	0.3200	0.3200	0.5000	0.3377
Geranium koreanum Kom.	0.2857	0.4000	0.4000	0.4000	0.2500	0.3471
Hemerocallis hakuunensis Nakai	0.1429	0.2000	0.2000	0.2826	0.2613	0.2173
Hosta capitata (Koidz.) Nakai	0.3507	0.2000	0.3951	0.4910	0.2470	0.3368
Hosta plantaginea (Lam.) Asch.	0.1429	0.3340	0.2000	0.3340	0.3553	0.2732
Hydrangea serrata f. acuminata (Siebold & Zucc.) E.H.Wilson	0.3280	0.3995	0.4592	0.2352	0.3512	0.3546
Hydrocotyle	0.1429	0.2000	0.2000	0.3812	0.2382	0.2325
sibthorpioides Lam.	0.2857	0.2000	0.2000	0.4000	0.2500	0.2671
Impatiens nolitangere	0.2837	0.2000	0.2000	0.4000	0.2300	0.2071
L. Isodon excisus	0.2101	0.2000	0.2000	0.3600	0.4767	0.2894
(Maxim.) Kudo	0.3321	0.2231	0.2231	0.7402	0.6529	0.4343
Juglans mandshurica Maxim. Kalopanax	0.1429	0.4000	0.4000	0.2000	0.1250	0.2536
<i>septemlobus</i> (Thunb.) Koidz.	0.1429	0.2000	0.2000	0.4000	0.2500	0.2386
Larix olgensis var. koreana (Nakai) Nakai	0.2723	0.3812	0.2000	0.2000	0.2382	0.2583
(Regel & Maack) Ching	0.5054	0.6760	0.8921	0.6043	0.8108	0.6977
Ligularia fischeri (Ledeb.) Turcz.	0.5812	0.5502	0.6168	0.6845	0.5974	0.6060
Nakai ex Kamib.	0.4083	0.3802	0.3802	0.5716	0.3573	0.4195
Gilg	0.2339	0.3274	0.3274	0.5529	0.1250	0.3133
<i>edulis</i> Turcz. ex Herder	0.1429	0.3456	0.2000	0.3456	0.2160	0.2500
Lonicera chrysantha Turcz.	0.3982	0.2999	0.2999	0.6506	0.7263	0.4750
Lonicera maackii (Rupr.) Maxim.	0.2463	0.2000	0.2000	0.2000	0.2155	0.2124
Lonicera sachalinensis (F.Schmidt) Nakai	0.2302	0.3223	0.3223	0.3486	0.5614	0.3570
Lonicera tatarinown var. leptantha	0.1429	0.2912	0.2000	0.2722	0.4045	0.2622
(Render) Nakai Lychnis cognata	0.4286	0.2000	0.2000	0.3600	0.3750	0.3127
Lycopodium chinense	0.2368	0.4954	0.2972	0.5843	0.5630	0.4353
Lycopodium obscurum	0.2021	0.3618	0.2829	0.5528	0.4579	0.3715
L. Lycopodium serratum Thunh	0.2923	0.6467	0.7273	0.6845	0.6056	0.5913
Magnolia sieboldii K.Koch	0.3708	0.3328	0.3382	0.5491	0.5104	0.4202
Maianthemum bifolium (L.) F.W.Schmidt	0.2482	0.3474	0.3474	0.3474	0.4765	0.3534
Maianthemum dilatatum (Wood) A.Nelson & L E Machr	0.1637	0.3969	0.2000	0.5218	0.5680	0.3701
Malus baccata (L.) Borkh.	0.2723	0.3812	0.3812	0.3812	0.2382	0.3308
Meehania urticifolia (Miq.) Makino	0.2740	0.4657	0.4657	0.7925	0.7707	0.5537
Oplopanax elatus (Nakai) Nakai Osmunda	0.2405	0.3367	0.3367	0.7484	0.4458	0.4216
cinnamomea var. forkiensis Copel.	0.2772	0.3881	0.2000	0.2000	0.3371	0.2805

Chartaning personwarding (Maxim) Nity. (Maxim) Nity. <br< th=""><th>Scientific Name</th><th>×1</th><th>×2</th><th>×3</th><th>$\times 4$</th><th>$\times 5$</th><th>Mean</th></br<>	Scientific Name	×1	×2	×3	$\times 4$	$\times 5$	Mean
genererritering 0.1429 0.2000 0.2000 0.2014 0.4514 0.2957 0.2957 0.2958 0.2015 0.2000 0.2000 0.2000 0.2358 0.2355 Double conviction L 0.1429 0.2950 0.2000 0.2000 0.2350 0.2353 0.2355 Double conviction L 0.1429 0.2950 0.2000 0.2000 0.2350 0.3424 Database Marken J.Kayenna D. Marken D.	Ostericum						
Marking Unitarial and the set of the	grosseserratum	0.1429	0.2000	0.2000	0.5104	0.4301	0.2967
Order Description0.14290.3990.48260.39120.39120.39120.39120.39120.39120.3933Makken Personin provinc0.14290.36000.36000.36000.36000.37300.3424Makken Personin provinc Personin provinc0.17980.37310.24560.56700.44060.3667Maxin Personin Personin Personin provinc Personin provinc Personin Personin0.35770.42660.42960.43910.35770.4263Maxin Personin Personin Personin Personin Personin Personin Personin Personin Personin Personin Pe	(Maxim.) Kitag.						
Data control and L 0.149 0.3812 0.000 <td>Oxalis acetosella L.</td> <td>0.2175</td> <td>0.7986</td> <td>0.4526</td> <td>0.5912</td> <td>0.6992</td> <td>0.5518</td>	Oxalis acetosella L.	0.2175	0.7986	0.4526	0.5912	0.6992	0.5518
Abdahan Names & 0.2571 0.3600 0.3600 0.3700 0.3424 Parsentio 0.2571 0.3600 0.3600 0.3700 0.3424 Parsentio 0.2565 0.2565 0.2565 0.4995 0.3603 0.3603 0.3603 Parsentio and column 0.3567 0.3585 0.4265 0.4900 0.3500 0.4906 Parsentio and column 0.3567 0.3585 0.4466 0.500 0.3500 0.4906 Parsentio and column 0.3567 0.3701 0.707 0.7476 0.3500 0.4996 Parsentio and column 0.4295 0.3701 0.701 0.7476 0.5360 0.4996 Parsentio and column 0.4295 0.200 0.4000 0.4000 0.500 0.5907 Parsention and column 0.4295 0.4995 0.4995 0.4995 0.4995 0.4995 0.4996 0.4900 0.500 0.2900 0.2900 0.2900 0.2900 0.2901 0.5907 0.5197 0.5197 0.5197 0	Oxalis corniculata L.	0.1429	0.3812	0.2000	0.2000	0.2383	0.2325
Onlock of a particular in the second of the secon	(Makino) Miyabo &	0.2571	0 3600	0 3600	0.3600	0.3750	0 3424
Parametric is altering bioling in the same is a standard priority of the same is a standard priority of the same is altering bioling in the same is altering bioling bi	Takeda	0.2571	0.5000	0.5000	0.5000	0.5750	0.3424
andminipation 0.1798 0.3313 0.2456 0.5697 0.4966 0.3662 Maxim. J. Hxoyana Jamance and control in the provided and control in the pro	Parasenecio						
(Franch. & Sav. ex (1.798 (2.513 (2.528 (1.539) (1.549)	adenostyloides	0.1500	0.0510	0.0454	0 5 (00	0.4007	0.0440
Maxim, Ji Koyama var. Jensencies instruction var. Jensencies instruction (Maxim, Ji Koyama) maximum (Maxim, Ji Koyama) maximum (Maxim, Ji Koyama) maximum (Maxim, Ji Koyama) maximum (Maxim, Ji Koyama) Maka0.40960.42960.42960.42960.41910.77270.4263Var. networknet Nakad Pris verifished Mileb.0.49950.37010.37010.74760.55000.4966Paris verifished Mileb.0.42920.20000.20000.40000.25000.2586Paris verifished Mileb.0.5210.49930.49450.49530.42520.5933Paris verifished Maxim0.5210.72210.72660.85440.82670.5117Pris verifished Maxim0.28570.40000.40000.40000.25000.3471Pris verifisher Maxim0.28570.40100.40000.40000.25000.3471Pris verifisher Maxim0.28570.40100.40000.40000.40000.40100.4012Pris verifisher Maxim0.28570.40720.52930.84790.83880.2850Pris verifisher Pris verifisher Pris verifisher0.41970.26810.24920.46110.3178Pris verifisher Pris verifisher Pris verifisher0.41970.26910.39820.46110.3181Pris verifisher Pris verifisher0.41970.26910.24920.46130.49760.4975Pris verifisher Pris verifisher0.41970.26910.24900.24900.2500 <td< td=""><td>(Franch. & Sav. ex</td><td>0.1798</td><td>0.3513</td><td>0.2456</td><td>0.5639</td><td>0.4906</td><td>0.3663</td></td<>	(Franch. & Sav. ex	0.1798	0.3513	0.2456	0.5639	0.4906	0.3663
Parasection articulate vor. Landschafting D2608 D.4295 D.4295 D.4391 D.572 D.4263 Maxim JLKoyama D3667 D.3858 D.4486 D.5101 D.3188 D.4040 Nakas D.4995 D.3701 D.3701 D.7476 D.5360 D.4966 Milsb. D.4995 D.4095 D.6534 D.7320 D.9993 Parial distribution D.6221 D.4969 D.4995 D.6534 D.7320 D.9993 Parial distribution D.6221 D.4993 D.4995 D.6534 D.7320 D.9993 Parial distribution D.6221 D.4995 D.4995 D.6484 D.7320 D.9993 Parial distribution D.6221 D.4995 D.4995 D.4925 D.4925 D.9993 Parial distribution D.3906 P.7221 P.7266 D.8544 D.8267 D.7411 Maxim D.3907 D.3711 D.3171 D.3171 D.3172 D.9826 D.9993 Prior distribution D.2905	Maxim.) H.Koyama						
var. bankshafar 0.208 0.429 0.429 0.429 0.429 0.429 Daraseric intrabala Daraseric intrabala 0.3567 0.3588 0.4486 0.5101 0.3188 0.4496 Daraseric intrabala 0.4595 0.3701 0.3701 0.7476 0.5360 0.4966 Parts evicibilitit 0.4595 0.3701 0.3701 0.7476 0.5360 0.4966 Parts evicibilitit 0.4295 0.3701 0.3701 0.7476 0.5360 0.4966 Partners evicibilititititi 0.4295 0.3701 0.3701 0.4000 0.2500 0.5387 Plant properties 0.5387 0.7221 0.2366 0.8544 0.8267 0.7411 Plant properties 0.3587 0.4900 0.4000 0.4000 0.2500 0.3471 Plant properties 0.3587 0.4721 0.3711 0.3171 0.1922 0.250 Plant properties 0.4197 0.4702 0.5233 0.8479 0.8366 0.6195 Plan	Parasenecio auriculata						
Maximum H. Koyama Description unreaded in the second of the	var. kamtschatica	0.2608	0.4296	0.4296	0.4391	0.5727	0.4263
Parasetencial variable District of arriable variable	(Maxim.) H.Koyama						
var. metalametrin 0.3667 0.388 0.4480 0.3101 0.3188 0.4449 Pars arriblish 0.4595 0.3701 0.701 0.7476 0.5500 0.4966 Parts arriblish 0.1429 0.2000 0.2000 0.4000 0.2500 0.2586 Hernsl. 0.6221 0.4993 0.4693 0.6834 0.7320 0.5993 L Dialophis 0.2521 0.4995 0.6844 0.8257 0.5149 Maxim Maxim 0.2587 0.7221 0.7266 0.8844 0.8267 0.7411 Dialophis 0.2887 0.4000 0.4000 0.4000 0.2000 0.371 Dialomis 0.2887 0.2055 0.3171 0.3171 0.3171 0.318 0.2902 Dialomis 0.2665 0.3171 0.3171 0.3171 0.3181 0.3388 0.6195 Dialomis 0.2131 0.2983 0.2983 0.4611 0.3188 0.5387 Physician ripiterin 0.1429	Parasenecio auriculata						
Nakat Optimis with infinitiant 0.4995 0.5701 0.7476 0.5580 0.4966 Patricia minicula fielia 0.1429 0.200 0.200 0.400 0.250 0.2586 Patricia minicula fielia 0.4221 0.4993 0.4995 0.6834 0.7320 0.5993 Patricia francesis Districia francesis 0.5577 0.7261 0.7366 0.844 0.8267 0.7411 Carrière Carrière 0.5577 0.7261 0.7366 0.844 0.8267 0.7411 Verda Carrière Carrière 0.2500 0.3471 Prines devisiont 0.2265 0.3171 0.3171 0.3171 0.1982 0.2752 Stebol & Zacc 0.2265 0.3171 0.3171 0.3171 0.3187 Prines devisiont 0.1429 0.2601 0.2601 0.3982 0.3888 0.2800 Stebol & Zacc Devisiont 0.1429 0.2601 0.3982 0.3888 0.2800 Stebol & Zacc Devisiont 0.1	var. matsumurana	0.3567	0.3858	0.4486	0.5101	0.3188	0.4040
purps purps 0.4595 0.3701 0.701 0.7476 0.5800 0.4666 Hamed, citual/film 0.1429 0.2000 0.2000 0.4000 0.2500 0.2586 Hamed, citual/film 0.6221 0.4993 0.4995 0.6634 0.7320 0.5993 L 0.4225 0.5149 0.4194 0.3024 0.4525 0.5149 Maxin 0.4200 0.4000 0.4000 0.4000 0.4000 0.4002 0.3471 Piles moregloin 0.2357 0.4000 0.4000 0.4000 0.2000 0.3471 Piles moregloin 0.2357 0.4000 0.4000 0.4000 0.4000 0.500 0.519 Piles moregloin 0.2357 0.4000 0.4000 0.4001 0.1982 0.2582 Piles moregloin 0.2457 0.4000 0.2983 0.2983 0.2983 0.2983 0.2983 0.2983 0.2983 0.2580 0.2587 Polyoichinm minim 0.1429 0.2601 0.2601	Nakai						
No.000. 0.2000 0.4000 0.2500 0.2580 Periodal is resupinata 0.6221 0.4993 0.4995 0.6834 0.7320 0.5993 Patiadelphas 0.5206 0.4194 0.4194 0.9324 0.4525 0.5149 Proving provide 0.5367 0.7221 0.7366 0.8844 0.8267 0.7411 Provide provide 0.2587 0.4000 0.4000 0.4000 0.2500 0.3471 Provide provide 0.2857 0.4000 0.4000 0.4000 0.2500 0.3471 Prior biorisons 0.2857 0.4000 0.4000 0.4000 0.2500 0.3471 Prior biorisons 0.2465 0.3171 0.3171 0.3171 0.3182 0.2572 Prine biorisons 0.4197 0.4702 0.5233 0.8479 0.8306 0.6195 Prine biorisons 0.4197 0.2601 0.3982 0.3388 0.2500 Orbor 0.4129 0.2601 0.2601 0.3002 0.3012	Paris verticillata	0.4595	0.3701	0.3701	0.7476	0.5360	0.4966
Fundamental 0.129 0.2000 0.2000 0.4000 0.2500 0.2386 Deficients' resognants 0.221 0.4993 0.4995 0.6344 0.7320 0.5993 Lemations Rupr, 6' 0.3506 0.4194 0.4194 0.9324 0.4525 0.5149 Maxim. 0.3507 0.7221 0.7366 0.8844 0.3267 0.7411 Plan proprint 0.2857 0.4000 0.4000 0.4000 0.2500 0.3471 Pinus duringform 0.2857 0.4000 0.4000 0.4000 0.4000 0.2500 0.3471 Pinus duringform 0.2857 0.4072 0.5293 0.3479 0.3380 0.6195 Stebold & Zucc. 0.2131 0.2983 0.2983 0.2983 0.4611 0.3138 Polysontum 0.4197 0.4207 0.4987 0.4997 0.7268 0.7183 0.5587 Polysinium Interniti 0.2857 0.4000 0.4000 0.4000 0.2500 0.3471 Polysinium Interniti	M.DIED.						
Industry Langebox 0.6221 0.4993 0.4995 0.6834 0.7320 0.5993 Philadelphas transfirs resuptanta 0.3206 0.4194 0.4194 0.9324 0.4525 0.5149 Maxim. 0.5357 0.7221 0.7366 0.8844 0.8267 0.7411 Carrière 0.5357 0.4000 0.4000 0.4000 0.2500 0.3471 Plan morgelica 0.2857 0.4000 0.4000 0.4000 0.4000 0.2752 Prus designers 0.2265 0.3171 0.3171 0.3171 0.1982 0.2752 Prus designers 0.4197 0.4702 0.5293 0.4611 0.3138 Order and the single	Homel	0.1429	0.2000	0.2000	0.4000	0.2500	0.2386
1 0.6221 0.4993 0.4995 0.6834 0.7320 0.5993 Piciliadphus 1 0.4194 0.4194 0.4194 0.9324 0.4525 0.5149 Piciliadphus 1 0.7366 0.8844 0.8267 0.7411 Carribre 0.8257 0.4000 0.4000 0.4000 0.2500 0.3471 Picia incredition 0.2265 0.3171 0.3171 0.3171 0.1962 0.2752 Siebold & Zucc. 0.2265 0.3171 0.3171 0.1972 0.2983 0.2983 0.4611 0.3188 Prings korizonsis 0.4197 0.2261 0.2601 0.9982 0.3388 0.2800 Siebold & Zucc. 0.1429 0.2601 0.2601 0.9982 0.3388 0.2800 Polyticinum branni 0.1429 0.2000 0.4000 0.4000 0.4193 0.5387 Polyticinum branni 0.1429 0.2000 0.2000 0.2150 0.1736 Polyticinum branni 0.2857 0.4000	Pedicularis resuninata						
Pittadiplins Maxim. Display Display Display Display Plan jerowis 05357 07221 0.7366 0.8844 0.8267 0.7411 Plan jerowis 05357 0.7221 0.7366 0.8844 0.8267 0.7411 Version 0.2857 0.4000 0.4000 0.4000 0.4000 0.500 0.3471 Plas misplika 0.2265 0.3171 0.3171 0.3171 0.1982 0.2752 Plus konferioris 0.4197 0.4702 0.5293 0.8479 0.8366 0.6195 Schoold & Zucc. 0.2131 0.2983 0.2983 0.2983 0.2983 0.2983 0.2983 0.2983 0.2980 0.3388 0.2800 Order 0.1429 0.2601 0.2601 0.3982 0.3388 0.2800 0.3471 Attempting iscerum Ming. 0.4297 0.4497 0.7288 0.7183 0.3387 Versing iscerum Ming. 0.2857 0.4000 0.4000 0.4000 0.2000 0.3471	L.	0.6221	0.4593	0.4995	0.6834	0.7320	0.5993
transfilis Rupr, é 0.3506 0.4194 0.4194 0.9324 0.4525 0.5149 Picar jeconsis	Philadelphus						
Maxim. Prior prizonsis. 0.5357 0.7221 0.7366 0.8844 0.8267 0.7411 Plot monoplica 0.2857 0.4000 0.4000 0.4000 0.2500 0.3471 Plot monoplica 0.2265 0.3171 0.3171 0.3171 0.1982 0.2752 Schoold & Zucc. 0.2265 0.3171 0.3171 0.3171 0.1982 0.2752 Plot monoplica 0.2265 0.3171 0.3171 0.3171 0.1982 0.2752 Poly monitoris 0.4197 0.4702 0.5293 0.8479 0.8306 0.6195 Poly monitoris 0.4197 0.2983 0.2983 0.2983 0.2983 0.2983 0.2983 0.2800 0.3471 Ohwi - - 0.4129 0.2601 0.4000 0.4000 0.2500 0.3471 Alterny - 0.2507 0.3471 0.3172 0.3182 0.2755 0.2786 Primis maximaximascita 0.2857 0.4000 0.4000 <t< td=""><td>tenuifolius Rupr. &</td><td>0.3506</td><td>0.4194</td><td>0.4194</td><td>0.9324</td><td>0.4525</td><td>0.5149</td></t<>	tenuifolius Rupr. &	0.3506	0.4194	0.4194	0.9324	0.4525	0.5149
Programsic Carriero Dissipanti A carriero Dissipanti carriero Dissipanti A carriero <th< td=""><td>Maxim.</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Maxim.						
(Sebelok & Zucc.) 0.357 0.7221 0.7366 0.8844 0.8267 0.7411 Plan mogolica 0.2857 0.4000 0.4000 0.4000 0.2500 0.3471 Plan sensifiera 0.2265 0.3171 0.3171 0.3171 0.1982 0.2752 Plans kensifiera 0.2265 0.3171 0.3171 0.3171 0.1982 0.2752 Plans kensifiera 0.4197 0.4702 0.5293 0.8479 0.8306 0.6195 Selebold & Zucc. 0.4197 0.4702 0.5293 0.2983 0.2983 0.2983 0.2983 0.2983 0.2983 0.2601 0.3982 0.3388 0.2800 Ohvi 0.4297 0.4497 0.7268 0.7183 0.5387 Palysichum tripteron 0.3690 0.4297 0.4407 0.7268 0.7183 0.5387 Palysichum tripteron 0.2601 0.3499 0.3449 0.3499 0.2155 0.2786 Protes maximuscini 0.2587 0.4000	Picea jezoensis						
Carrière Pilar mingolitài 0.2857 0.4000 0.4000 0.4000 0.2500 0.3471 Pinus densifiera Siebold & Zucc. 0.2265 0.3171 0.3171 0.3171 0.1982 0.2752 Siebold & Zucc. 0.4197 0.4702 0.5293 0.8479 0.8306 0.6195 Polgonatum and the second of the second	(Siebold & Zucc.)	0.5357	0.7221	0.7366	0.8844	0.8267	0.7411
Plate monopolica 0.2857 0.4000 0.4000 0.4000 0.2500 0.3471 Prinus designa 0.2265 0.3171 0.3172 0.3982 0.3481 0.2800 0.2000 0.3001 0.3071 0.3387 0.3471 0.3471 0.3471 0.3471 0.3471 0.3471 0.3471 0.3471 0.3471 0.3471 0.3172 0.3388 0.2800 0.2800 0.2800 0.2800 0.2801 0.3471 0.3471	Carrière						
Weed. Pitus densifian 0.2265 0.3171 0.3171 0.3171 0.1982 0.2752 Siebold & Zucc. 0 0.5293 0.8479 0.8306 0.6195 Pitus fonziersis 0.4197 0.4702 0.5293 0.8479 0.8306 0.6195 Oblighter function var. 0 0.2131 0.2983 0.2983 0.2983 0.4611 0.3138 Ohvi	Pilea mongolica	0.2857	0.4000	0.4000	0.4000	0.2500	0.3471
Prints administration 0.2265 0.3171 0.3171 0.3171 0.1982 0.2752 Prints korniersis 0.4197 0.4702 0.5293 0.8479 0.8306 0.6195 Polygonatim odoratim var. pluriforum (Miq.) 0.2131 0.2983 0.2983 0.2983 0.4983 0.3388 0.2800 Ohvi	Wedd.						
Sheb Nut. Sheb Nut. <t< td=""><td>Sighald & Zuga</td><td>0.2265</td><td>0.3171</td><td>0.3171</td><td>0.3171</td><td>0.1982</td><td>0.2752</td></t<>	Sighald & Zuga	0.2265	0.3171	0.3171	0.3171	0.1982	0.2752
Initial Science 0.4197 0.4702 0.5293 0.8479 0.8306 0.6195 Polygoutint odoratim var. plurifiorum (Miq.) 0.2131 0.2983 0.2983 0.2983 0.4611 0.3138 Polystichum fraunii 0.1429 0.2601 0.2601 0.3982 0.3388 0.2800 Polystichum fraunii 0.1429 0.2601 0.4000 0.2708 0.7183 0.5387 V(xunze) C.Presl 0.2857 0.4000 0.4000 0.2500 0.4471 Polentilia fragrioides 0.1429 0.3449 0.3449 0.2155 0.2786 Primus maximowiczii 0.1429 0.2000 0.2000 0.2000 0.1250 0.1736 Primus maximowiczii 0.2524 0.2490 0.4092 0.3419 0.2155 0.2753 Primus argentii 0.2266 0.3172 0.3172 0.3172 0.3192 0.2176 Parunus argentii 0.2002 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.20	Dinus korajansis						
Polygonation odordinm vata: 0.2131 0.2983 0.2983 0.2983 0.4611 0.3138 Ohvi 0 0.1429 0.2601 0.2601 0.3982 0.3388 0.2800 Ohvisi 0 0.4297 0.4497 0.7268 0.7183 0.5387 Oppolysichum tripitoron 0.3690 0.4297 0.4497 0.7268 0.7183 0.5387 Oppolysichum tripitoron 0.3690 0.4297 0.4497 0.7268 0.7183 0.5387 Polysichum tripitoron 0.3690 0.4200 0.4000 0.4000 0.2500 0.3471 AtHenry 0.1429 0.3449 0.3449 0.2155 0.2786 Primus provides 0.1429 0.2000 0.2000 0.3982 0.3451 0.2886 Rup: 0.2844 0.2000 0.2000 0.3972 0.3172 0.1982 0.2753 Prums spadis L 0.2266 0.3172 0.3172 0.3182 0.2750 0.1736 Prax ex Sak K Hoffm	Siebold & Zucc	0.4197	0.4702	0.5293	0.8479	0.8306	0.6195
odomium var plurifiorm (Miq.) Ohvi 0.2131 0.2983 0.2983 0.2983 0.4611 0.3138 Polysichum braunii 0.1429 0.2601 0.2601 0.3982 0.3388 0.2800 Polysichum braunii 0.3690 0.4297 0.4497 0.7268 0.7183 0.5387 Polysichum tripteron 0.3690 0.4297 0.4497 0.7268 0.7183 0.5387 Populus maximowiczii 0.2857 0.4000 0.4000 0.2000 0.2000 0.2000 0.2155 0.2786 Arterry	Polygonatum						
plurificrum (Miq.) 0.2131 0.2983 0.2983 0.2983 0.2983 0.4611 0.3138 Ohwi Polysichum braunii 0.1429 0.2601 0.2601 0.3982 0.3388 0.2800 Opsischum braunii 0.3690 0.4297 0.4497 0.7268 0.7183 0.5387 Opsischum tripteron 0.3690 0.4297 0.4497 0.7268 0.7183 0.3471 Allenry Destrichum tripteron 0.3690 0.4297 0.4497 0.3449 0.2155 0.2786 Var. major Maxim. 0.1429 0.3449 0.3449 0.3449 0.2150 0.1736 Primus parkine issoma Miq. 0.1429 0.2000 0.2000 0.2000 0.2000 0.2000 0.2150 0.1736 Primus padus L. 0.2524 0.2490 0.2490 0.6954 0.8644 0.4620 Primus padus L. 0.2526 0.3172 0.3172 0.3172 0.1982 0.2753 Rept. Parolas Ka Ka K Hofm. Parolas Ka Ka K Hofm. Parolas K	odoratum var.						
Ohvin Description branif 0.1429 0.2601 0.2601 0.3982 0.3388 0.2800 Polystichum tripteron 0.3690 0.4297 0.4497 0.7268 0.7183 0.5387 Venzo 0.2780 0.4000 0.4000 0.4000 0.2500 0.3471 Papulis maximozicii 0.2857 0.4000 0.4000 0.4000 0.2500 0.3471 A-Henry Detnrilla fragarioides 0.1429 0.3049 0.3449 0.2155 0.2786 Primula jesona Miq. 0.1429 0.2000 0.2000 0.2000 0.3982 0.3451 0.2856 Primus maximozicii 0.2844 0.2000 0.2000 0.3982 0.3451 0.2856 Primus maximozicii 0.2844 0.4000 0.2000 0.3982 0.3451 0.2856 Primus sargentii 0.2266 0.3172 0.3172 0.3172 0.1829 0.2000 1.250 0.1736 Pseudostellaria - - - - - <t< td=""><td>pluriflorum (Miq.)</td><td>0.2131</td><td>0.2983</td><td>0.2983</td><td>0.2983</td><td>0.4611</td><td>0.3138</td></t<>	pluriflorum (Miq.)	0.2131	0.2983	0.2983	0.2983	0.4611	0.3138
Polysichum braunii 0.1429 0.2601 0.2601 0.3982 0.3388 0.2800 Polysichum tripteron 0.3690 0.4297 0.4497 0.7268 0.7183 0.5387 Populus maximouicai 0.2857 0.4000 0.4000 0.4000 0.2500 0.3471 Attenry Potentilla fragarioides 0.1429 0.3449 0.3449 0.3449 0.2155 0.2786 Primule iscoam Miq. 0.1429 0.2000 0.2000 0.2000 0.1250 0.1736 Primule iscoam Miq. 0.1429 0.2000 0.2000 0.3982 0.3451 0.2856 Rupr. 0.2864 0.2000 0.2000 0.3982 0.3451 0.2856 Prumus sargentii 0.2266 0.3172 0.3172 0.3172 0.1982 0.2753 Paeudostellaria 0.2266 0.3172 0.3172 0.3172 0.1820 0.1736 Paeudostellaria 0.2266 0.3048 0.6185 0.5527 0.4106 Paeudostellaria 0.3092 0.3048 0.6185 0.5527 0.4106	Ohwi						
(Spenn.) Fee 0.142 0.3001 0.3001 0.3002 0.3003 0.1200 Polysicium triptor 0.3690 0.4297 0.4497 0.7268 0.7183 0.5387 Populus maximozicii 0.2857 0.4000 0.4000 0.4000 0.2500 0.3471 A.Henry Potentila fragarioides 0.1429 0.3449 0.3449 0.3449 0.2150 0.1736 Prunus maximowiczii 0.2854 0.2000 0.2000 0.2000 0.2000 0.2000 0.1250 0.1736 Prunus maximowiczii 0.2844 0.2000 0.2000 0.3982 0.3451 0.2856 Prunus sargentii 0.2266 0.3172 0.3172 0.3172 0.1982 0.2753 Pseudostellaria Interophylic (Miq.) 0.1429 0.2000 0.2000 0.2000 0.2000 0.1736 Pax ex Pax & Hoffm. Pseudostellaria Interophylic (Miq.) 0.1429 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 <td>Polystichum braunii</td> <td>0 1429</td> <td>0 2601</td> <td>0 2601</td> <td>0 3982</td> <td>0 3388</td> <td>0.2800</td>	Polystichum braunii	0 1429	0 2601	0 2601	0 3982	0 3388	0.2800
Polysicalum tripteron (kunze) CPresis 0.3690 0.4297 0.4497 0.7268 0.7183 0.5387 Populus maximozicii 0.2857 0.4000 0.4000 0.4000 0.2500 0.3471 Allenry 0.4497 0.3449 0.3449 0.3449 0.2155 0.2786 Primula jesoma Miq. 0.1429 0.2000 0.2000 0.2000 0.2000 0.2500 0.1736 Primus maximozicii 0.2844 0.2000 0.2000 0.3982 0.3451 0.2856 Rupr. 0.2666 0.3172 0.3172 0.3172 0.1982 0.257 Prunus sargentii 0.2266 0.3172 0.3172 0.3172 0.1982 0.257 Pactostellaria Imagentii 0.3092 0.2000 0.2000 0.2000 0.1250 0.1736 Pac ex Pax & Hoffm. Pseudostellaria Imagentii and (Takeda) 0.2725 0.3048 0.6185 0.5527 0.4106 Ohvi One 0.3092 0.3821 0.3821 0.3369 <td>(Spenn.) Fee</td> <td>0.1429</td> <td>0.2001</td> <td>0.2001</td> <td>0.5962</td> <td>0.5500</td> <td>0.2000</td>	(Spenn.) Fee	0.1429	0.2001	0.2001	0.5962	0.5500	0.2000
(Kurze) C.Presl 6.000	Polystichum tripteron	0.3690	0 4297	0 4497	0 7268	0 7183	0.5387
Populas Pode 0.4000 0.4000 0.2500 0.3471 Allerry Potentilla fragarioides 0.1429 0.3449 0.3449 0.3449 0.2155 0.2786 Var. major Maxim. 0.1429 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.3982 0.3451 0.2856 Primus maximowiczii 0.2844 0.2000 0.2000 0.3982 0.3451 0.2856 Rupr. 0.2666 0.3172 0.3172 0.3172 0.3172 0.1982 0.2753 Penuns sargentii 0.2266 0.3172 0.3172 0.3172 0.1982 0.2753 Penuns sargentii 0.1429 0.2000 0.2000 0.2000 0.1250 0.1736 Pase Pas & Hoffm. Pseudostellaria 0.2725 0.3048 0.6185 0.5527 0.4106 Ohvi 0.2725 0.3048 0.3048 0.6185 0.5527 0.4106 Pseudostellaria 0.3092 0.3821 0.3821 0.5302	(Kunze) C.Presl						
maximolocical 0.3897 0.4000 0.4000 0.4000 0.2000 0.2301 Potentilla fragarioides 0.1429 0.3449 0.3449 0.2155 0.2786 Primule jesona Miq. 0.1429 0.2000 0.2000 0.2000 0.2000 0.1250 0.1736 Primule jesona Miq. 0.2844 0.2000 0.2000 0.3982 0.3451 0.2856 Rupr. 0.2266 0.3172 0.3172 0.3172 0.3172 0.1982 0.2753 Rehder	Populus	0.0055	0.4000	0.4000	0.4000	0.0500	0.0451
Arterity Princip Nature Natu		0.2857	0.4000	0.4000	0.4000	0.2500	0.34/1
Defining Ingundants 0.1429 0.3449 0.3449 0.3449 0.2155 0.2786 Primula jesoana Miq. 0.1429 0.2000 0.2000 0.2000 0.1250 0.1736 Primus maximowiczii 0.2844 0.2000 0.2000 0.3982 0.3451 0.2856 Primus padus L. 0.2524 0.2490 0.2490 0.6954 0.8644 0.4620 Primus sargentii 0.2266 0.3172 0.3172 0.3172 0.1982 0.2753 Rehder 0.2200 0.2000 0.2000 0.2000 0.1736 Pax ex Pax & Hoffm. 0.2725 0.3048 0.6185 0.5527 0.4106 Privolavellaria 0.2725 0.3048 0.3048 0.6185 0.5527 0.4063 Pyrola renifolia 0.2020 0.3821 0.3320 0.4278 0.4063 Pyrola renifolia 0.1429 0.2000 0.2000 0.4910 0.3069 0.2681 Quercus mongolica 0.4982 0.5348	A.nenry Potentilla fragarioides						
Name Name 0.1429 0.2000 0.2000 0.2000 0.1250 0.1736 Primula jesona Miq. 0.2844 0.2000 0.2000 0.3982 0.3451 0.2856 Rupr. 0.2524 0.2490 0.2490 0.6954 0.8644 0.4620 Prinus sargentii 0.2266 0.3172 0.3172 0.3172 0.1982 0.2753 Pseudostellaria 0.2000 0.2000 0.2000 0.2000 0.1250 0.1736 Pax ex Pax & Hoffm. 0.2000 0.2000 0.2000 0.2000 0.1250 0.1736 Pax ex Pax & Hoffm. 0.2000 0.2000 0.2000 0.2000 0.1020 0.1736 Pseudostellaria 0.2725 0.3048 0.6185 0.5527 0.4106 Ohwi 0.3042 0.3821 0.3821 0.5302 0.4278 0.4063 Pyrola renifolia	var major Maxim	0.1429	0.3449	0.3449	0.3449	0.2155	0.2786
Pranus maximovicii 0.2844 0.2000 0.2000 0.3982 0.3451 0.2856 Rupr. 0.2524 0.2490 0.2490 0.6954 0.8644 0.4620 Prunus sargentii 0.2266 0.3172 0.3172 0.3172 0.1982 0.2753 Rehder 0.2266 0.3172 0.3172 0.3172 0.1982 0.2753 Pseudostellaria	Primula jesoana Mig.	0.1429	0.2000	0.2000	0.2000	0.1250	0.1736
Rupr. 0.2694 0.2000 0.2000 0.3982 0.3451 0.2856 Prinnus padus L. 0.2524 0.2490 0.2490 0.6954 0.8644 0.4620 Prinnus argentii 0.2266 0.3172 0.3172 0.3172 0.1982 0.2753 Pseudostellaria	Prunus maximowiczii	0.0044	0.0000	0.0000	0.0000	0.0451	0.0057
Prinus padus L. 0.2524 0.2490 0.2490 0.6954 0.8644 0.4620 Prunus sargentii 0.2266 0.3172 0.3172 0.3172 0.1982 0.2753 Rehder Pseudostellaria Interophylla (Miq.) 0.1429 0.2000 0.2000 0.2000 0.1250 0.1736 Pax ex Pax & Hoffm. Pseudostellaria Interophylla (Miq.) 0.1429 0.2000 0.2000 0.2000 0.1250 0.1736 Pax ex Pax & Hoffm. Pseudostellaria Interophylla (Miq.) 0.1429 0.2000 0.2000 0.2000 0.1250 0.1736 Pseudostellaria 0.2725 0.3048 0.3048 0.6185 0.5527 0.4106 Ohwi 0.3092 0.3821 0.3821 0.5302 0.4278 0.4063 Quercus mongolica 0.4982 0.5348 0.7782 0.8367 0.5108 0.6317 Rhododendron Interonulatum var. 0.5280 0.2886 0.3532 0.9478 0.6356 0.5506 ciliatum Nakai	Rupr.	0.2844	0.2000	0.2000	0.3982	0.3451	0.2856
Prunus sargentii 0.2266 0.3172 0.3172 0.3172 0.1982 0.2753 Pseudostellaria heterophylla (Miq.) 0.1429 0.2000 0.2000 0.2000 0.1250 0.1736 Pax ex Pax & Hoffm. Pseudostellaria Pseudostellaria 0.2725 0.3048 0.3048 0.6185 0.5527 0.4106 Ohwi 0.3092 0.3821 0.3821 0.5302 0.4278 0.4063 Pyrola renifolia Maxim. 0.1429 0.2000 0.2000 0.4910 0.3069 0.2681 Quercus mongolica Fisch. ex Ledeb. 0.4982 0.5348 0.7782 0.8367 0.5108 0.6317 Rhododendron exclusoredidron schlippenbachii 0.5280 0.2886 0.3532 0.9478 0.6356 0.5506 Rhododendron exclusoredidron schlippenbachii 0.7110 0.3748 0.5172 0.9672 0.7425 0.6625 Maxim. 0.4209 0.2000 0.3664 0.4504 0.3246 0.3525	Prunus padus L.	0.2524	0.2490	0.2490	0.6954	0.8644	0.4620
Rehder 0.200 0.3172 0.3173 Pseudostellaria 0.2725 0.3048 0.3048 0.6185 0.5527 0.4106 Ohwi 0.3092 0.3821 0.3821 0.3821 0.3821 0.5302 0.4278 0.4063 Pyrola renifolia 0.1429 0.2000 0.2000 0.4910 0.3069 0.2681 Quercus mongolica 0.4982 0.5348 0.7782	Prunus sargentii	0 2266	0 3172	0 3172	0 3172	0 1982	0 2753
Pseudostellaria	Rehder	0.2200	0.5172	0.0172	0.5172	0.1702	0.2755
heterophylla (Miq.) 0.1429 0.2000 0.2000 0.2000 0.1250 0.1736 Pax ex Pax & Hoffm. Pseudostellaria Pseudostellaria 0.3048 0.6185 0.5527 0.4106 Ohwi Pseudostellaria 0.3092 0.3821 0.3821 0.5302 0.4278 0.4063 Pyrola renifolia 0.1429 0.2000 0.2000 0.4910 0.3069 0.2681 Quercus mongolica 0.4982 0.5348 0.7782 0.8367 0.5108 0.6317 Rhododendron mucronulatum var. 0.5280 0.2886 0.3532 0.9478 0.6356 0.5506 ciliatum Nakai 0.7110 0.3748 0.5172 0.9672 0.7425 0.6625 Maxim. 0.4209 0.2000 0.3664 0.4504 0.3246 0.3525	Pseudostellaria						
Pax & Porton Pseudostellaria 0.2725 0.3048 0.3048 0.6185 0.5527 0.4106 Ohwi Pseudostellaria 0.3092 0.3821 0.3821 0.5302 0.4278 0.4063 Pyrola renifolia 0.1429 0.2000 0.2000 0.4910 0.3069 0.2681 Quercus mongolica 0.4982 0.5348 0.7782 0.8367 0.5108 0.6317 Fisch. ex Ledeb. 0.4982 0.2886 0.3532 0.9478 0.6356 0.5506 Ciliatum Nakai 0.5280 0.2886 0.3532 0.9478 0.6356 0.5506 Rhododendron schlippenbachii 0.7110 0.3748 0.5172 0.9672 0.7425 0.6625 Maxim. 0.4209 0.2000 0.3664 0.4504 0.3246 0.3525	heterophylla (Miq.)	0.1429	0.2000	0.2000	0.2000	0.1250	0.1736
Pseudostellaria 0.2725 0.3048 0.3048 0.6185 0.5527 0.4106 Ohwi -	Pax ex Pax & Hoffm.						
pathomana (Takeda) 0.2725 0.3048 0.3048 0.6185 0.5327 0.4106 Ohwi Pseudostellaria 0.3092 0.3821 0.3821 0.5302 0.4278 0.4063 Pyrola renifolia 0.1429 0.2000 0.2000 0.4910 0.3069 0.2681 Quercus mongolica 0.4982 0.5348 0.7782 0.8367 0.5108 0.6317 Rhododendron mucronulatum var. 0.5280 0.2886 0.3532 0.9478 0.6356 0.5506 Rhododendron schlippenbachii 0.7110 0.3748 0.5172 0.9672 0.7425 0.6625 Maxim. 0.4209 0.2000 0.3664 0.4504 0.3246 0.3525	Pseudostellaria	0.2525	0 2048	0.2049	0.(105	0 5527	0.4106
Pseudostellaria 0.3092 0.3821 0.3821 0.5302 0.4278 0.4063 Pyrola renifolia 0.1429 0.2000 0.2000 0.4910 0.3069 0.2681 Quercus mongolica 0.4982 0.5348 0.7782 0.8367 0.5108 0.6317 Rhododendron nucronulatum var. 0.5280 0.2886 0.3532 0.9478 0.6356 0.5506 Rhododendron schlippenbachii 0.7110 0.3748 0.5172 0.9672 0.7425 0.6625 Maxim. 0.4209 0.2000 0.3664 0.4504 0.3246 0.3525	Oburi	0.2725	0.3048	0.3040	0.0103	0.5527	0.4106
1 Schubschink 0.3092 0.3821 0.3821 0.5002 0.4278 0.4063 Pyrola renifolia 0.1429 0.2000 0.2000 0.4910 0.3069 0.2681 Quercus mongolica 0.4982 0.5348 0.7782 0.8367 0.5108 0.6317 Rhododendron	Pseudostellaria						
Pyrola renifolia 0.1429 0.2000 0.2000 0.4910 0.3069 0.2681 Quercus mongolica 0.4982 0.5348 0.7782 0.8367 0.5108 0.6317 Fisch. ex Ledeb. 0.4982 0.5348 0.7782 0.8367 0.5108 0.6317 Rhododendron	setulosa Ohwi	0.3092	0.3821	0.3821	0.5302	0.4278	0.4063
Maxim. 0.1429 0.2000 0.2000 0.4910 0.3069 0.2681 Quercus mongolica 0.4982 0.5348 0.7782 0.8367 0.5108 0.6317 Fisch. ex Ledeb. 0.4982 0.5348 0.7782 0.8367 0.5108 0.6317 Rhododendron	Purola renifolia						
Quercus mongolica Fisch. ex Ledeb. 0.4982 0.5348 0.7782 0.8367 0.5108 0.6317 Rhododendron nucronulatum var. 0.5280 0.2886 0.3532 0.9478 0.6356 0.5506 ciliatum Nakai Rhododendron schlippenbachii 0.7110 0.3748 0.5172 0.9672 0.7425 0.6625 Maxim. 0.4209 0.2000 0.3664 0.4504 0.3246 0.3525	Maxim.	0.1429	0.2000	0.2000	0.4910	0.3069	0.2681
Fisch. ex Ledeb. 0.4702 0.5346 0.7782 0.8507 0.5108 0.6317 Rhododendron mucronulatum var. 0.5280 0.2886 0.3532 0.9478 0.6356 0.5506 ciliatum Nakai Rhododendron schlippenbachii 0.7110 0.3748 0.5172 0.9672 0.7425 0.6625 Maxim. Rhododendron 0.4209 0.2000 0.3664 0.4504 0.3246 0.3525	Quercus mongolica	0.4092	0 5240	0 7792	0.8247	0 5109	0.6217
Rhododendron mucronulatum var. 0.5280 0.2886 0.3532 0.9478 0.6356 0.5506 ciliatum Nakai Rhododendron	Fisch. ex Ledeb.	0.4902	0.3348	0.7762	0.000/	0.5108	0.031/
mucronulatum var. 0.5280 0.2886 0.3532 0.9478 0.6356 0.5506 ciliatum Nakai Rhododendron 8 0.5172 0.9672 0.7425 0.6625 Maxim. Rhododendron 0.4209 0.2000 0.3664 0.4504 0.3246 0.3525	Rhododendron						
ciliatum Nakai Rhododendron schlippenbachii 0.7110 0.3748 0.5172 0.9672 0.7425 0.6625 Maxim. Rhododendron 0.4209 0.2000 0.3664 0.4504 0.3246 0.3525	mucronulatum var.	0.5280	0.2886	0.3532	0.9478	0.6356	0.5506
Khododendron schlippenbachii 0.7110 0.3748 0.5172 0.9672 0.7425 0.6625 Maxim. Rhododendron 0.4209 0.2000 0.3664 0.4504 0.3246 0.3525	ciliatum Nakai						
schuppenbachti 0.7110 0.3748 0.5172 0.9672 0.7425 0.6625 Maxim. Rhododendron 0.4209 0.2000 0.3664 0.4504 0.3246 0.3525	Rhododendron		a a= /a	0 51 50	0.0/77	0 5 105	0.4.75
Maxim. Rhododendron 0.4209 0.2000 0.3664 0.4504 0.3246 0.3525	schlippenbachii	0.7110	0.3748	0.5172	0.9672	0.7425	0.6625
Knowouchuron 0.4209 0.2000 0.3664 0.4504 0.3246 0.3525	Iviaxim.						
	Knououenuron tschonoskii Maxim	0.4209	0.2000	0.3664	0.4504	0.3246	0.3525

Scientific Name

Ribes mandshuricum

 $\times 1$

×2	×3	$\times 4$	$\times 5$	Mean
0.3802	0.3802	0.3802	0.3573	0.3812
0.4558	0.5432	0.5498	0.5126	0.5171
0.2000	0.2000	0.6989	0.3943	0.3678
0.3990	0.3990	0.2517	0.2494	0.3151
0.4040	0.3675	0.8889	0.7396	0.5482
0 3662	0 3662	0 5598	0 2555	0 3680

Ribes mandshuricum (Maxim) Kom	0.4083	0.3802	0.3802	0.3802	0.3573	0.3812
Ribes						
maximowiczianum Kom	0.5241	0.4558	0.5432	0.5498	0.5126	0.5171
Rodgersia podophylla	0.2456	0.2000	0.2000	0.6080	0.2042	0.2678
A.Gray	0.3436	0.2000	0.2000	0.0909	0.3943	0.3678
Rosa davurica Pall.	0.2766	0.3990	0.3990	0.2517	0.2494	0.3151
Rubia akane Nakai	0.3412	0.3662	0.3673	0.0009	0.7596	0.3482
Rubia chinensis Regel	0.2206	0.2000	0.2000	0.2000	0.1020	0.2027
& Maack	0.2208	0.2000	0.2000	0.2000	0.1950	0.2027
Rubia cordifolia var. pratensis Maxim.	0.1429	0.2000	0.2000	0.2000	0.1250	0.1736
Rubus crataegijolius Bunge Pubus idaeus vor	0.2857	0.4000	0.4000	0.4000	0.2500	0.3471
microphyllus Turcz.	0.1429	0.3028	0.2000	0.4820	0.4747	0.3205
Salix caprea L.	0.5149	0.3581	0.5453	0.5453	0.2531	0.4433
Sambucus sieboldiana	0.1.120	0.000	0.0000	0.0010	0.0000	0.0005
var. <i>miquelii</i> (Nakai) Hara	0.1429	0.2000	0.2000	0.3812	0.2383	0.2325
Sambucus williamsii						
var. coreana (Nakai)	0.6465	0.4043	0.6774	0.6108	0.4971	0.5672
Nakai						
Makino	0.2206	0.2000	0.2363	0.3989	0.2432	0.2598
Saussurea gracilis Maxim.	0.4791	0.2324	0.2324	0.7460	0.4339	0.4248
Saussurea grandifolia Maxim	0.4591	0.6427	0.5334	0.5334	0.3334	0.5004
Saxifraga fortunei var.						
<i>incisolobata</i> (Engl. & Irmsch.) Nakai	0.2986	0.5322	0.5322	0.2826	0.2612	0.3814
Saxifraga oblongifolia Nakai	0.1429	0.2000	0.2000	0.4000	0.1250	0.2136
<i>Saxifraga octopetala</i> Nakai	0.1429	0.2000	0.2000	0.4000	0.2500	0.2386
Schisandra chinensis (Turcz.) Baill.	0.3810	0.3200	0.3200	0.4000	0.3333	0.3509
Sedum polytrichoides Hemsl.	0.2857	0.4000	0.4000	0.2000	0.2500	0.3071
Smilacina japonica A.Gray	0.2774	0.5764	0.5764	0.5007	0.3966	0.4655
Solidago virgaurea subsp. asiatica	0.7979	0.3458	0.4939	0.8644	0.7344	0.6473
Kitam. ex Hara						
(Siebold & Zucc.)	0.1429	0.2000	0.2000	0.3600	0.1250	0.2056
Sorbus commixta	0.4706	0.5892	0.6250	0.8114	0.8250	0.6642
Hedl.	011,00	0.0072	0.0200	0.0111	010200	0.0012
chamaedryfolia L.	0.2286	0.3200	0.3200	0.3200	0.5000	0.3377
<i>Spiraea fritschiana</i> C.K.Schneid.	0.2131	0.2983	0.2983	0.3891	0.2355	0.2868
Spodipogon cotulifer (Thunb.) Hack.	0.2286	0.2000	0.3200	0.3200	0.5000	0.3137
Streptopus amplexifolius var.	0.1429	0.3340	0.2000	0.2000	0.2088	0.2171
papillatus Ohwi Streptopus koreanus	0.1.10	0.0705	0.000	0.000	0.4450	0.0500
(Kom.) Ohwi Strentonus ovalis	0.1429	0.3787	0.2000	0.2000	0.4479	0.2739
(Ohwi) F.T.Wang & Y.C.Tang	0.2571	0.2000	0.2000	0.6000	0.3750	0.3264
Symplocos chinensis f. pilosa (Nakai) Ohwi	0.3902	0.3999	0.4704	0.7879	0.4843	0.5065
Synurus deltoides (Aiton) Nakai	0.5387	0.2689	0.2689	0.6805	0.5690	0.4652
Syringa patula	0,3301	0.2638	0.2638	0,3359	0.2249	0.2837
(Palib.) Nakai Tarus cusnidata	0.0001	0.2000		5.0007		0.2007
Siebold & Zucc.	0.4287	0.3665	0.3824	0.7177	0.7628	0.5316
aquilegifolium var. sibiricum Regel & Tiling	0.2183	0.3057	0.3057	0.3057	0.1911	0.2653

Scientific Name	×1	imes 2	$\times 3$	$\times 4$	$\times 5$	Mean
Thalictrum						
filamentosum var.	0.1978	0.3948	0.3255	0.3255	0.2868	0.3061
tenerum (Huth) Obwi						
Thelypteris japonica	0.0057	0.4000	0.4000	0.4000	0.0000	0.0400
(Baker) Ching	0.2857	0.4000	0.4000	0.4000	0.3333	0.3638
Thelypteris	0.6597	0.5766	0.5351	0.8358	0.7782	0.6771
phegopteris (L.) Sioss. Thuja korajensis						
Nakai	0.1947	0.2726	0.2726	0.3554	0.3136	0.2818
Tilia amurensis Rupr.	0.2034	0.5254	0.4835	0.6196	0.5732	0.4810
Trillium	0.1420	0.4007	0.4007	0 5221	0.4570	0.40((
ex Pursh	0.1429	0.4996	0.4996	0.5351	0.4579	0.4266
Trillium tschonoskii	0.1420	0.2000	0.2000	0.2000	0 2222	0 1052
Maxim.	0.1429	0.2000	0.2000	0.2000	0.2352	0.1932
Tripterygium regelii Spraguo & Takoda	0.7049	0.4501	0.5921	0.8652	0.8255	0.6876
Ulmus laciniata	0.0445	0.0000	0.0000	0.000	0.1500	0.0015
(Trautv.) Mayr	0.2445	0.2000	0.2000	0.3689	0.1590	0.2345
Vaccinium hirtum var.	0.4704	0.52/5	0.50/5	0.4505	0.001/	0.4/22
koreanum (Nakai) Kitam	0.4794	0.5267	0.5267	0.4585	0.3246	0.4632
Veratrum maackii var.						
japonicum (Baker)	0.1429	0.4000	0.4000	0.4000	0.1250	0.2936
T.Schmizu						
Veratrum oxysepaium Turcz	0.2822	0.3951	0.3951	0.5685	0.3553	0.3992
Viburnum opulus var.						
calvescens (Rehder)	0.1997	0.2795	0.2795	0.2795	0.1747	0.2426
H. Hara Viola calkirkii Purch						
ex Goldie	0.3487	0.5919	0.5919	0.5222	0.3264	0.4762
Viola verecunda	0 1429	0 2000	0.2000	0.2000	0.2500	0 1986
A.Gray	0.1429	0.2000	0.2000	0.2000	0.2300	0.1700
(Bunge) A DC	0.7171	0.4287	0.5220	0.6481	0.6917	0.6015
Woodsia						
polystichoides	0.3810	0.2000	0.3200	0.5333	0.3333	0.3535
D.C.Eaton						

References

- 1. Rapoport, E.H. Areography: Geographical Strategies of Species; Elsevier: London, UK, 2013; Volume 1, pp. 225–230. ISBN 9780080289144.
- 2. Whittaker, R.H.; Levin, S.A.; Root, R.B. Niche, Habitat, and Ecotope. Am. Nat. 1973, 107, 321–338. [CrossRef]
- 3. Salazar, L.; Homeier, J.; Kessler, M.; Abrahamczyk, S.; Lehnert, M.; Krömer, T.; Kluge, J. Diversity patterns of ferns along elevational gradients in andean tropical forests. *Plant Ecol. Divers.* **2015**, *8*, 13–24. [CrossRef]
- 4. Stevens, G.C. The elevational gradient in altitudinal range: An extension of Rapoport's latitudinal rule to altitude. *Am. Nat.* **1992**, 140, 893–911. [CrossRef] [PubMed]
- Hawkins, B.A.; Diniz-Filho, J.A.F.; Jaramillo, C.A.; Soeller, S.A. Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. J. Biogeogr. 2006, 33, 770–780. [CrossRef]
- 6. Manor, A.; Shnerb, N.M. Facilitation, competition, and vegetation patchiness: From scale free distribution to patterns. *J. Theor. Biol.* **2008**, 253, 838–842. [CrossRef] [PubMed]
- Yeocheon Ecological Research Association. *Modern Ecological Experiment*; Gyomunsa: Seoul, Republic of Korea, 2005; pp. 166–179. ISBN 9788936307516.
- 8. Germino, M.J.; Smith, W.K.; Resor, A.C. Conifer seedling distribution and survival in an alpine-treeline ecotone. *Plant Ecol.* 2002, *162*, 157–168. [CrossRef]
- 9. Mori, A.; Mizumachi, E.; Osono, T.; Doi, Y. Substrate-associated seedling recruitment and establishment of major conifer species in an old-growth subalpine forest in central Japan. *For. Ecol. Manag.* **2004**, *196*, 287–297. [CrossRef]
- 10. Hunziker, U.; Brang, P. Microsite patterns of conifer seedling establishment and growth in a mixed stand in the southern Alps. *For. Ecol. Manag.* 2005, *210*, 67–79. [CrossRef]
- 11. Hasegawa, S.F.; Mori, A. Structural characteristics of *Abies mariesii* saplings in a snowy subalpine parkland in central Japan. *Tree Physiol.* **2007**, *27*, 141–148.
- 12. Han, A.R.; Lee, S.K.; Suh, G.U.; Park, Y.; Park, P.S. Wind and topography influence the crown growth of *Picea jezoensis* in a subalpine forest on Mt. Deogyu, Korea. *Agric. For. Meteorol.* **2012**, *166–167*, 207–214. [CrossRef]
- Park, H.C.; Lee, H.Y.; Lee, N.Y.; Lee, H.; Song, J.Y. Survey on the distribution of Evergreen Conifers in the Major national Park—A case Study on Seoraksan, Odaesan, Taebaeksan, Sobaaeksan, Doegyusan, Jirisan National Park. J. Nat. Park. Res. 2019, 10, 224–231.
- 14. Kong, W.S. Species composition and distribution of Korean Alpine Plants. J. Korean Geogr. Soc. 2002, 37, 357–370.

- 15. The Red List of Threatened Species. Available online: https://www.iucnredlist.org/ (accessed on 1 August 2023).
- 16. Nakagawa, M.; Kurahashi, A.; Hogetsu, T. The regeneration characteristics of *Picea jezoensis* and *Abies sachalinensis* on cut stumps in the sub-boreal forests of Hokkaido Tokyo University Forest. *For. Ecol. Manag.* **2003**, *180*, 353–359. [CrossRef]
- Aizawa, M.; Yoshimaru, H.; Saito, H.; Katsuki, T.; Kawahara, T.; Kitamura, K.; Shi, F.; Sabirov, R.; Kaji, M. Range-wide genetic structure in a north-east Asian spruce (*Picea jezoensis*) determined using nuclear microsatellite markers. *J. Biogeogr.* 2009, 36, 996–1007. [CrossRef]
- 18. Park, S.J. Generality and Specificity of Landforms of the Korean Peninsula, and Its Sustainability. *J. Korean Geogr. Soc.* **2014**, 49, 656–674.
- Park, G.E.; Kim, E.S.; Jung, S.C.; Yun, C.W.; Kim, J.S.; Kim, J.D.; Kim, J.B.; Lim, J.H. Distribution and Stand Dynamics of Subalpine Conifer Species (*Abies nephrolepis*, *A. koreana*, and *Picea jezoensis*) in Baekdudaegan Protected Area. *J. Korean Soc. For. Sci.* 2022, 111, 61–71.
- 20. Park, B.J.; Byeon, J.G.; Heo, T.I.; Cheon, K.; Yang, J.C.; Oh, S.H. Comparison of species composition among *Picea jezoensis* (Siebold & Zucc.) carrière forests in Northeast Asia (from China to South Korea). *J. Asia-Pac. Biodivers.* **2023**, *16*, 272–281.
- Odion, D.C.; Sarr, D.A. Managing disturbance regimes to maintain diversity in forested ecosystems of the Pacific Northwest. *For. Ecol. Manag.* 2007, 246, 57–65. [CrossRef]
- 22. Scott, T.A.; Sullivan, J.E. The Selection and Design of Multiple Species Preserves. Environ. Manag. 2000, 26, S37–S53. [CrossRef]
- Barrows, C.W.; Swartz, M.B.; Hodges, W.L.; Allen, M.F.; Rotenberry, J.T.; Li, B.L.; Scott, T.A.; Chen, X. A Framework for Monitoring Multiple-species Conservation Plans. J. Wildl. Manag. 2005, 69, 1333–1345. [CrossRef]
- The Services of Climatic Data Portal of Korea Meteorological Administration. Available online: https://data.kma.go.kr/cmmn/ main.do (accessed on 1 August 2023).
- 25. Braun-Blanquet, J. *Pflanzensoziologie, Grundzfige der Vegetationskunde,* 3rd ed.; Springer: New York, NY, USA, 1965; pp. 7–16. ISBN 9783540034789.
- 26. Lee, T.B. Coloured Flora of Korea; Hyangmoonsa: Seoul, Republic of Korea, 2003; Volume 1, pp. 1–916. ISBN 9788971871959.
- 27. Korea Fern Society. Ferns and Fern Allies of Korea; Geobook: Seoul, Republic of Korea, 2005; pp. 1–399. ISBN 9788995504925.
- 28. Knowledge System of National Species in Korea. Available online: http://www.nature.go.kr/kpni/ (accessed on 16 August 2022).
- 29. Newton, A.C. Forest Ecology and Conservation: A Handbook of Techniques; Oxford University Press: New York, NY, USA, 2007; pp. 85–146. ISBN 9780198567455.
- 30. Chao, A. Nonparametric Estimation of the Number of Class in Population. Scand. J. Stat. 1984, 11, 265–270.
- Levins, R. Evolution in Changing Environments; Princeton University Press: Princeton, NJ, USA, 1968; pp. 2–120. ISBN 9780691079592.
- 32. PC-Ord Specifications. Available online: https://www.wildblueberrymedia.net/pc-ord-specifications/ (accessed on 22 August 2022).
- Cornwell, W.K.; Schwilk, D.W.; Ackerly, D.D. A trait-based test for habitat filtering: Convex hull volume. *Ecology* 2006, 87, 1465–1471. [CrossRef] [PubMed]
- Kim, G.T.; Kim, H.J. Studies on the Seed Characteristics and Viabilities of Six Acer species in Relation to Natural Regeneration in Korea. Korea J. Environ. Ecol. 2011, 25, 358–364.
- 35. Edward, E.C.C.; Richard, T.B. Secondary Succession, Gap Dynamics, and Community Structure in a Southern Appalachian Cove Forest. *Ecology* **1989**, *70*, 728–735.
- 36. Bray, J.R. Gap phase replacement in maple-basswood forest. Ecology 1956, 37, 598–600. [CrossRef]
- 37. Kimmins, J.P. Forest Ecology: A Foundation for Sustainable Management; Prentice-Hall: Hoboken, NJ, USA, 1997; p. 596. ISBN 9780023640711.
- Benzing, D.H. Vascular Epiphytes: General Biology and Related Biota; Cambridge University Press: Cambridge, MA, USA, 1990; pp. 210–271. ISBN 9780521048958.
- 39. Zotz, G.; Hietz, P. The physiological ecology of vascular epiphytes: Current knowledge, open questions. *J. Exp. Bot.* 2001, 52, 2067–2078. [CrossRef] [PubMed]
- 40. Nadkarni, N.M.; Matelson, T.J. Biomass and nutrient dynamics of epiphytic litterfall in a neotropical cloud forest, Costa Rica. *Biotropica* **1991**, *23*, 225–234.
- Kramer, K.U.; Green, P.S. The Families and Genera of Vascular Plants; Kubitzki, K., Ed.; Springer: Berlin, Germany, 1990; Volume 1, pp. 1–14. ISBN 9780947643430.
- 42. Page, C.N. Ecological strategies in fern evolution: A neopteridological overview. Bot. Rev. 2002, 68, 345–417. [CrossRef]
- 43. Smith, A.R.; Pryer, K.M.; Schuettpelz, E.; Korall, P.; Schneider, H.; Wolf, P.G. A classification for extant ferns. *Taxon* 2006, 55, 705–731. [CrossRef]
- 44. Williams-Linera, G.; Palacios-Rios, M.; Hernández-Gómez, R. Fern richness, tree species surrogacy, and fragment complementarity in a Mexican tropical montane cloud forest. *Biodivers. Conserv.* **2005**, *14*, 119–133. [CrossRef]
- 45. Kim, J.W.; Lee, Y.G. Classification and Assessment of Plant Communities. World Science: Seoul, Republic of Korea, 2006; pp. 1–240. ISBN 9788958810605.
- Park, B.J.; Heo, T.I.; Byeon, J.G.; Cheon, K. Study on Plant Indicator Species of Picea jezoensis (Siebold & Zucc.) Carrière Forest by Topographic Characters—From China (Baekdu-san) to South Korea. J. Environ. Impact Assess. 2022, 31, 388–408.
- 47. Langford, A.N.; Buell, M.F. Integration, identity, and stability in the plant association. Adv. Ecol. Res. 1969, 6, 83–135.

- 48. Li, G.; Gong, Z.; Li, W. Niches and Interspecifc Associations of Dominant Populations in Three Changed Stages of Natural Secondary Forests on Loess Plateau, P.R. China. *Nature* **2017**, *7*, 6604.
- 49. Pickett, S.T.A. Population patterns through twenty years of old-field succession. Vegetatio 1982, 19, 45–59. [CrossRef]
- 50. Oliver, C.D.; Larson, B.C. Forest Stand Dynamics; McGraw-Hill: New York, NY, USA, 1990; pp. 9–38. ISBN 9780070478299.
- 51. Tang, C.Q.; Matsui, T.; Ohashi, H.; Dong, Y.F.; Momohara, A.; Herrando-Moraira, S.; Qian, S.; Yang, Y.; Ohsawa, M.; Luu, H.T.; et al. Identifying long-term stable refugia for relict plant species in East Asia. *Nat. Commun.* **2018**, *9*, 4488. [CrossRef] [PubMed]
- 52. Tang, C.Q.; Ohsawa, M. Tertiary relic deciduous forests on a subtropical mountain, Mt. Emei, Sichuan, China. *Folia Geobot.* 2002, 37, 93–106. [CrossRef]
- 53. Mulch, A.; Chamberlain, C.P. The rise and growth of Tibet. Nature 2006, 439, 670–671. [CrossRef] [PubMed]
- Tang, C.Q.; Yang, Y.; Ohsawa, M.; Momohara, A.; Hara, M.; Cheng, S.; Fan, S. Population structure of relict *Metasequoia* glyptostroboides and its habitat fragmentation and degradation in south-central China. *Biol. Conserv.* 2011, 144, 279–289. [CrossRef]
- 55. He, L.Y.; Tang, C.Q.; Wu, Z.L.; Wang, H.C.; Ohsawa, M.; Yan, K. Forest structure and regeneration of the Tertiary relict *Taiwania cryptomerioides* in the Gaoligong Mountains, Yunnan, southwestern China. *Phytocoenologia* **2015**, *45*, 135–156. [CrossRef]
- 56. Tzedakis, P.C.; Lawson, I.T.; Frogley, M.R.; Hewitt, G.M.; Preece, R.C. Buffered tree population changes in a Quaternary refugium: Evolutionary implications. *Science* **2002**, *297*, 2044–2047. [CrossRef]
- 57. Birks, H.J.B.; Willis, K.J. Alpines, trees, and refugia in Europe. Plant Ecol. Divers. 2008, 1, 147–160. [CrossRef]
- Keppel, G.; Van Niel, K.P.; Wardell-Johnson, G.W.; Yates, C.J.; Byrne, M.; Mucina, L.; Schut, A.G.; Hopper, S.D.; Franklin, S.E. Refugia: Identifying and understanding safe havens for biodiversity under climate change. *Glob. Ecol. Biogeogr.* 2012, 21, 393–404. [CrossRef]
- Morelli, T.L.; Daly, C.; Dobrowski, S.Z.; Dulen, D.M.; Ebersole, J.L.; Jackson, S.T.; Lundquist, J.D.; Millar, C.I.; Maher, S.P.; Monahan, W.B.; et al. Managing climate change refugia for climate adaptation. *PLoS ONE* 2016, *11*, e0159909. [CrossRef] [PubMed]
- 60. Harrison, S.; Noss, R. Viewpoint: Part of a special issue on endemics hotspots, endemism hotspots are linked to stable climatic refugia. *Ann. Bot.* **2017**, *119*, 207–214. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.