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Abstract: In this study, waste olive cake (OC) was utilized as the raw material for the 

production of biosorbents by chemical treatment and its adsorption capacity for zinc ion was 

evaluated. Tests were conducted with the total biomass (T) and with the fraction > 2.00 mm 

(P), in order to determinate the influence of this fractionation step on subsequent 

treatments. Two chemical agents were used: sulfuric acid and sodium hydroxide. The 

parameters studied include physical and chemical properties of materials, contact time, pH, 

adsorbent dose and initial concentrations. The kinetic data were best fitted to the pseudo-

second order model. Zinc binding is strongly pH dependent, with more zinc ions bound at a 

higher pH (5-7 in a range of 3-7). Both Langmuir and Freundlich models are well suited to 

fit the data on sorption of zinc by OC. Data on sorption of zinc by waste olive cake treated 

with sulfuric acid (OC-H) was better described by the Freundlich model. Zinc sorption by 

waste olive cake treated with sodium hydroxide (OC-OH) was better described by the 

Langmuir model. Results show OC-OH is a biosorbent with a superior adsorption capacity 

for zinc than OC-H. The maximum adsorption capacity obtained from the Langmuir 

isotherms increases in the order (mg/g): OC-HT (14), OCT (22) and OC-OHT (27). Results 

also indicate that the previous fractionation step doesn t́ produce a biosorbent with a 

superior adsorption capacity. 
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1. Introduction  

The removal of Zn(II) from effluents is a major problem due to the difficulty in treating such 

wastewaters by conventional treatment methods. The presence of zinc in wastewater is toxic to aquatic 

flora and fauna, even in relatively low concentrations. An excess of zinc in the human body can cause 

depression, lethargy, neurologic signs such as seizures and ataxia, and increased thirst [1]. The main 

sources of zinc in wastewater are discharged waste streams from metals, chemicals, pulp and paper 

manufacturing processes, steel works with galvanizing lines, zinc and brass metal works, zinc and brass 

plating, viscose rayon yarn and fiber production, etc [2,3]. 

Various treatment technologies have been developed for the decontamination of water and 

wastewater contaminated with heavy metals. The most commonly used methods for the removal of 

metal ions from industrial effluents include: chemical precipitation, solvent extraction, oxidation, 

reduction, dialysis/electro dialysis, electrolytic extraction, reverse osmosis, ion-exchange, evaporation, 

cementation, dilution, adsorption, filtration, flotation, air stripping, stem stripping, flocculation, 

sedimentation, soil flushing/washing chelation, etc [2,4]. Most of these methods suffer from drawbacks, 

such as high capital and operational cost or the disposal of the residual metal sludge, and are not 

suitable for small-scale industries. For low concentrations of metal ions in wastewater, the adsorption 

process is recommended for their removal [5]. Activated carbon is one of the most widely employed 

adsorbent. It is mainly composed of carbonaceous material that has highly developed porosity, internal 

surface area and relatively high mechanical strength, making it suitable for the removal of heavy metals 

from wastewaters [1,4,6,7]. As a result, the demand for activated carbon is increasing, although 

remaining an expensive material.  

Presently, low cost forest and agricultural wastes without or with little processing are considered 

promising adsorbents for heavy metals due to their high surface areas, microporous characters and 

surface chemical natures [8]. Besides, they are cheaper and readily available materials. Coconut shell, 

nutshells, oil palm waste, pine needles, sawdust, waste straw, rice husk, peanut hulls, hazelnut shells, 

almond shells, peach stones, tea dust leaves, apple wastes, sugarcane bagasse, coffee grounds, banana 

and orange peels, sugar beet pulp and different other materials were used and investigated [1,2,4-10].  

Waste olive cake is the solid residue obtained from pressing the olives and is one of the most 

abundant agro-industrial wastes in the Mediterranean Region constituting a source of environmental 

problems caused by its accumulation and disposal [11,12]. The waste olive cake is currently used as 

fertilizer, natural or transformed into a more stabilized amendment [13-15], as an additive to animal 

food [16,17] and as a source of heat energy [12,18-25].  

Recently some of these olive oil wastes (in natura or processed) have been tested as biosorbents for 

heavy metals [8,11,26-34]. Conversion of this waste to a useful adsorbent contributes not only for the 

treatment of heavy metals contaminated environment but also to minimizing the solid wastes. These 

research activities indicated promising results but further efforts are still required in order to maximize 

metal removal efficiency and minimize preparation costs. 

In this work, waste olive cake, a major surplus waste produced in Portugal, was utilized as the raw 

material for the production of biosorbents by chemical treatent and its adsorption capacity for zinc ion 

was evaluated. The influence of several operating parameters, such as, particle size, different chemical 

treatment, contact time, pH, initial concentration and adsorbent dose was studied.  
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2. Results and Discussion  

2.1. Characterization 

The properties of the materials used in the adsorption tests, are given in Tables 1 and 2.  

Table 1. Physical-chemical characterization of the materials derived from olive cake. 

 Non activated (OC) Activated with H2SO4 (OC-H) Activated with NaOH (OC-OH) 

Total (T) >2mm (P) Total (T) >2mm (P) Total (T) >2mm (P) 

Ash content  

(% dm) 
21 ± 2 14 ± 1 23 ± 3 18 ± 4 22 ± 1 15 ± 3 

pH 6.5 ± 0.1 7.1 ± 0.3 2.4 ± 0.1 2.3 ± 0.0 8.0 ± 0.1 8.1 ± 0.1 

Iodine Number 

(mg/g) 
135 ± 10 64 ± 5 329 ± 13 247 ± 5 217 ± 39 64 ± 5 

C (% dm) 43 ± 2 41 ± 1 40 ± 2 48 ± 2 37 ± 2 34 ± 2 

H (% dm) 5.9 ± 0.8 6.4 ± 0.2 3.3 ± 0.6 2.9 ± 0.2 6.3 ± 0.3 6.6 ± 0.3 

N (% dm) 1.10 ± 0.03 0.49 ± 0.08 0.90 ± 0.06 0.44 ± 0.06 0.98 ± 0.08 0.50 ± 0.09 

dm – dry matter 

Table 2. Metals content of the materials derived from olive cake. 

 Non activated (OC) Activated with H2SO4 (OC-H) Activated with NaOH (OC-OH) 

Total (T) >2mm (P) Total (T) >2mm (P) Total (T) >2mm (P) 

Ca (% am)  1.8 ± 0.2 1.3 ± 0.2 0.37 ± 0.09 0.25 ± 0.09 < 0.0003 < 0.0003 

Mg (% am)  0.52 ± 0.01 0.51 ± 0.04 0.09 ± 0.01 0.03 ± 0.02 < 0.00006 < 0.00006 

K (% am)  2.8 ± 0.4 1.2 ± 0.1 1.4 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 0.12 ± 0.03 

Na (% am)  1.1 ± 0.1 0.65 ± 0.08 3.3 ± 0.1 4.0 ± 0.9 0.9 ± 0.5 1.2 ± 0.3 

Fe (% am)  2.8 ± 0.3 3.2 ± 0.2 < 0.0012 < 0.0012 < 0.0012 < 0.0012 

Mn (mg/kg am)  79 ± 3 96 ± 7 < 5.8 < 5.8 < 5.8 < 5.8 

Zn (mg/kg am)  214 ± 45 153 ± 7 19 ± 2 101 ± 4 < 2.6 < 2.6 

Cu (mg/kg am)  53 ± 3 88 ± 17 < 8.2 < 8.2 < 8.2 < 8.2 

am – ash material 

 

Results presented in Table 1 indicate that the fractions > 2 mm, chemically or non-chemically treated, 

presented lower iodine numbers than materials without fractionation. The iodine number is a relative 

indicator of porosity in a carbonaceous material and may be used as an approximation of surface area 

for some types of carbons [35]. Correlation between the BET surface area and the iodine number is 

established and well documented [4,26,34]. However, it must be realized that any relationship between 

surface area and iodine number cannot be generalized. It varies with changes in carbon raw material, 

processing conditions, and pore volume distribution [35]. As iodine number gives an indication on 
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microporosity (pores less than 1 nm in diameter), higher iodine numbers reflect better development of 

the microporous structure and higher adsorption abilities for low-molar-mass solutes [26,27]. Results of 

the iodine numbers for the fraction > 2 mm shows that those fractions have lower surface area for 

adsorption than materials that were not submitted to fractionation, resulting in materials with poorer 

characteristics for adsorption of low-molar-mass solutes. In fact, materials that were not fractionated 

are a mixture of particles with different size including smaller particle sizes, which have a greater rate of 

adsorption [6]. According to results presented in Table 1, chemically treated materials presented higher 

iodine numbers than non-chemically treated materials. So, though olive cake can be used as adsorbent 

without further treatment, chemical activation enhances its adsorption capacity. Comparing the different 

chemical activation, results show that material treated with sulfuric acid presented higher iodine 

numbers than material treated with sodium hydroxide, thus resulting in a material with better 

characteristics for adsorption. This is in agreement with the literature that reports that chemical 

activation using sulfuric acid at moderate temperatures produces a high surface area and high degree of 

microporosity [4]. Nevertheless, the iodine number of the materials in this study are lower than the 

iodine number obtained in the characterization of activated carbons from olive-waste cakes and from 

olive stones (waste olive cake activated with H3PO4 + pyrolysis: 583 mg/g [27]; olive stones activated 

with steam and N2 gas mixture: 550 mg/g; solvent extracted olive pulp activated with steam and N2 gas 

mixture: 478 mg/g [34]).  

Results presented in Table 1 show that non-fractionated material have higher nitrogen content than 

fractionated material (> 2 mm fractions), but no significant differences are observed between 

fractionated and non-fractionated materials regarding the C and the H contents. Chemically treated 

materials showed a nitrogen content similar to the waste olive cake in natura. Treatment with sodium 

hydroxide produced a material with less carbon than the waste olive cake in natura and treatment with 

sulfuric acid produced a material with less hydrogen than the waste olive cake in natura. These 

materials presented lower carbon and hydrogen content, but higher nitrogen content than results for the 

waste olive cake reported in [30]. Results presented in Tables 1-2 also show that fractions > 2 mm have 

lower mineral content than materials without fractionation. Chemically treated materials also presented 

lower mineral content, namely calcium, magnesium, potassium, iron, manganese, zinc and copper 

contents, than materials in natura. So, as expected, the chemical treatments removed the inorganic 

matter. But, this removal mainly influences the larger pores [34].  

Material pH may influence the removal efficiency. Material in natura presented a neutral pH, but 

treatment with sulfuric acid resulted in a carbonaceous material (OC-H) with an acid pH and treatment 

with sodium hydroxide resulted in a carbonaceous material (OC-OH) with an alkaline pH (Table 1). The 

very low pH value of OC-H is an indication of the presence of strong acid functional groups on the OC-

H surface and this may hamper the surface properties of the materials to remove the zinc ions from the 

solution [6].  
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2.2. Zinc Adsorption 

2.2.1. Contact time 

The effect of contact time on zinc removal for the three different materials (OCT, OC-HT and OC-

OHT) at natural pH of solution (6-7) is shown in Figure 1. In these experiments, only the non-

fractionated materials were used, at a dose of 1g/L. The concentration of Zn(II) used in those 

experiments was 10 mg/L and the room temperature was 25ºC. The metal concentration retained in the 

adsorbent phase (qe, mg/g) was calculated by using the following equation: 

 
( )o e

e

C C V
q

W


   (1)  

where Co and Ce are the initial and final concentrations of metal ion in solution (mg/L), V is the volume 

of solution (l) and W is the mass of the adsorbent (g).  

Figure 1. Effect of contact time on zinc removal (pH = 6-7; [Zn(II)] = 10 mg/L; biosorbent 

dose = 1g/L). 
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The zinc adsorption increased with time until equilibrium is attained between the amounts of zinc 

adsorbed on the biosorbents and the zinc remaining in solution. The figure shows that the adsorption of 

zinc increased with time from 0 to 120 min and then becomes almost constant up the end of the study. 

The rate of zinc binding with the biosorbents is higher in the initial stage and gradually decreases, 

becoming almost constant after 120 min. The rate behavior of the three different materials is similar, but 

it has been found that under identical conditions the material treated with sodium hydroxide (OC-OHT) 

and the waste olive cake in natura (OCT) presented higher removal efficiency for zinc than the material 

treated with sulfuric acid (OC-HT). The very low pH value of OC-HT (2.4, Table 1) is an indication of 

the presence of acid functional groups on the OC-HT surface. The smaller adsorption values observed 

with the acid material (OC-HT) can be attributed to the competition between the high concentrations of 

H
+
 to be released by the biosorbent surface and the zinc ions in solution. Also the positively charged 
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surface can result in a repulsion of the adsorbing metal ion. Material treated with sodium hydroxide 

showed a higher removal efficiency for zinc than waste olive cake in natura, but these differences were 

not statistically significant (P-value = 0.58, t-Test). 

 

2.2.2. Kinetic modelling 

The sorption kinetics is an important aspect in the control of pollutants removal process, once it 

provides valuable insights into the reaction pathways and into the mechanism of sorption reactions [36]. 

The Lagergren’s first-order kinetic model and the Ho’s pseudo-second-order model are the most 

frequently used in the literature to predict the mechanism involved in the sorption process [36]. The 

Lagergren’s first order model is expressed by the equation: 

 1( )t
e t

dq
k q q

dt
    (2)  

where qt and qe (mg/g) are respectively the amounts of sorbed metal at time t and at equilibrium and k1 

(min
−1

) is the first order rate constant. The more recent pseudo-second-order model has been 

extensively used by several researchers in the same field [26]. This model is expressed by the following 

equation: 

 2

2 ( )t
e t

dq
k q q

dt
    (3)  

where k2 is the pseudo-second-order rate constant (g·mg
−1

·min
−1

). The integration of equations 2 and 3 

and its linearization allows the calculation of the rate constants and the equilibrium removal capacity qe. 

Our results did not fit the Lagergren’s first-order kinetic model but good correlation was obtained with 

the Ho’s pseudo-second-order model (Figure 2). 

Figure 2. Pseudo-second-order plot for zinc removal from aqueous solution (pH = 6-7;  

[Zn(II)] = 10 mg/L; biosorbent dose = 1g/L). 
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The calculated rate constants and qe values and the corresponding linear regression determination 

coefficient R
2
 values for both models are presented in Table 3. According to the results reported in 

Table 3, the first-order kinetic model did not fit well the experimental data. The experimental and the 

calculated values of the equilibrium removal capacity were significantly different. On the opposite, good 

correlation is observed between experimental data and the pseudo-second-order kinetic model with R
2
 

values higher than 0.99. For the three materials, the differences between the experimental and the 

calculated values of the equilibrium removal capacity were not significant. This suggests that the rate-

limiting step in these biosorption systems may be chemical sorption or chemisorptions involving valence 

forces through sharing or exchange of electrons between sorbent and metal [36].  

Table 3. Experimental and calculated values for the first-order kinetic model and for the 

pseudo-second-order model.  

 
 

First-order model Pseudo-second-order model 

qe experimental 

(mg/g) 

qe calculated 

(mg/g) 

k1 (min−1) R2 qe calculated 

(mg/g) 

k2  

(g·mg−1·min−1) 

R2 

OCT  6.7 ± 0.2 2.6 0.021 0.923 6.8 0.038 1.000 

OC-HT  2.7 ± 0.3 1.7 0.011 0.895 2.8 0.023 0.999 

OC-OHT  7.1 ± 0.3 1.6 0.019 0.812 7.1 0.062 1.000 

 

The very fast sorption kinetics observed with the materials studied in this work represents an 

advantageous aspect when water treatment systems are designed, once these materials could be suitable 

for a continuous flow system. Values of the rate constants obtained in this study were compared with 

values reported in the literature for zinc ion adsorption onto agro based waste materials (Table 4).  

Table 4. Comparison of rate constants for Zn(II) adsorption onto agro based waste materials. 

Adsorbent 

First-order model Pseudo-second-order model 
References 

k1 (min−1) k2 (g·mg−1·min−1) 

Activated carbon derived from 

bagasse 
0.0079 - [2] 

Solvent extracted olive pulp 

activated with steam and N2 gas 

mixture 

0.0037-0.0090 - [34] 

Olive stones activated with steam 

and N2 gas mixture 
0.0035 - [34] 

Sugar beet pulp - 0.102 [37] 

Coffee husks - 0.18-0.59 [38] 

OCT  0.021 0.038 This study 

OC-HT  0.011 0.023 This study 

OC-OHT  0.019 0.062 This study 
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According to those results, the materials studied showed a better performance regarding the kinetics 

of the removal of Zn from the solution, compared to activated carbon derived from bagasse and 

compared to materials derived from waste olive cake and olive stones. But, compared to sugar beet 

pulp and to coffee husks, the materials studied presented lower kinetic constants. It should be noted 

also that variable kinetic constants are obtained due to different initial concentrations of metal, to 

different adsorbent dose and to different essay temperatures [2,6,8,31,36-38]. So, in this comparison 

(Table 4) results derived from different experimental conditions and this may be a source of variability 

that is not being considered. 

2.2.3. Effect of solution pH  

The pH of the aqueous solution is an important controlling parameter in the heavy metal adsorption 

process because the surface charge density of the adsorbent and the metallic species depend on the 

hydrogen ion concentration [8]. Thus the role of the pH was studied from solutions at different pH, 

covering a range of 3.0-7.0 for the three different materials (OCT, OC-HT and OC-OHT). In these 

experiments, only the non-fractionated materials were used, at a dose of 1g/L. The concentration of 

Zn(II) used in those experiments was 10 mg/L and the room temperature was 25ºC. The effect of 

solution pH on Zn(II) sorption is shown in Figure 3.  

Figure 3. Effect of initial solution pH on zinc adsorption ([Zn(II)] = 10 mg/L; biosorbent 

dose = 1g/L). 
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The amount of zinc ions sorbed by the materials increased sharply with the increase in pH from 3 to 

4.5-5 and then increased more slowly with the increase in pH from 4.5-5.0 to 6.0. After pH 6.0 to 7.0 

the amount of zinc adsorbed remained constant. Those results are in agreement with results reported in 

the literature which show that the pH range, where maximum adsorption occurs for zinc, lies within pH 

5-7 [39]. From the speciation diagram for zinc [39], in this pH range (3-7) the metal will be mostly 

present in solution in its divalent ionic form, with smaller amounts in the form of ZnOH
+
 at pH’s > 6.0, 

making it favorable for biosorption in an increasingly negatively charged surface. At low pH values 
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there is a competition between H
+
 and Zn

2+
 ion species for the sites of adsorption, due to the high H

+
 

concentration, while at higher pH this effect is diminished. According to these results, as the initial pH 

of sorption tests for the different biosorbents, were in the range 6.0-7.0 (OC: 6.5±0.1; OC-H: 6.0±0.1; 

OC-OH: 6.9±0.1), than maximum adsorption for the zinc ion was expected during the experiments. 

These results also show that no adjustment of the solution pH, for the sorption tests, is necessary in 

order to accomplish the maximum removal of zinc from the solution.  

2.2.4. Effect of initial zinc concentration 

The effect of initial zinc concentration on the adsorption is shown in Figure 4. Those sorption tests 

were conducted at 25ºC at natural pH of solution (6-7). Results presented are average results of the 

tests performed with different adsorbent doses (1, 2.5, 5, 7.5 and 10g/L). It can be seen from the figure 

that with increased Zn(II), the percentage removal of zinc decreased. As seen in Figure 4, while the 

initial Zn(II) concentration increased from 10 to 200 mg/L, the percent zinc removal by OCT, for 

example, decreased from 93 to 40% at equilibrium (average results of the tests performed with different 

adsorbent doses). But the amount of Zn(II) ions adsorbed per unit mass of adsorbent increased with the 

increase of the initial zinc concentrations. For example, for OCT, the adsorption capacity increased from 

3.3 to 22 mg/g (average results of the tests performed with different adsorbent doses). This can be 

attributed to the effective pore diffusitivity decrease with increasing initial metal concentration 31,40 

and to a more efficient utilization of the sorptive capacities of the sorbent due to greater driving force 

(by a higher concentration gradient pressure) 41,42 .  

Figure 4. Effect of initial concentration of zinc on the percentage removal of zinc (average 

results of the tests performed with different adsorbent doses; pH 6-7). 
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2.2.5. Effect of particle size 

The effect of the previous fractionation step on the adsorption has been shown in Figure 4. It can be 

seen from the figure that the > 2.00 mm fraction removes lower zinc than the total biomass (treated 
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chemically or not treated), although these differences are not statistically significant (P-value(OCT; OCP) = 

0.13; P-value(OC-HT; OC-HP) = 0.75; P-value(OC-OHT; OC-OHP) = 0.79; t-Test). Whole material is characterized 

by having not only particles with size > 2.00 mm (corresponding to 42 ± 3% w/w of the whole material) 

but also particles with smaller size (corresponding to 58 ± 3% w/w of the whole material). And those 

smaller particles present in the whole material led to an increase in metal adsorption. This is consistent 

with the literature once the smaller the particle sizes of the sorbents are, the greater the rate of diffusion 

and adsorption 6,11,43. Intra-particle diffusion is reduced as the particle size reduces, because of the 

shorter mass transfer zone, causing a faster rate of adsorption 6. Larger particles with spherical 

shapes, in general, present higher external mass transfer than smaller particles and adsorption from these 

particles is attributed to mass transport inside the sorbent particles 43. When higher metal adsorption 

is verified on smaller particles, as observed with this study materials, the main process of metal 

adsorption onto solid adsorbents are those based on adsorption on the particle surface 43. So, it is 

possible to conclude that the Zn(II) sorption on the materials tested in this study can be attributed to 

adsorption processes on the particle surface, mainly those related to ion exchange or surface complex 

formation 43. According to the generic composition of the waste olive residues reported in the 

literature, smaller particles are especially characterised by cellulose, residual fats and polyphenolic 

substances, while particles with larger dimensions, by lignin and cellulose 44. Thus, smaller particles 

are richer in active sites for adsorption not only due to the larger specific active surface but also to its 

specific composition, namely the acidic sites, such as carboxylic and phenolic groups present in the fat 

and polyphenolic compounds 11. 

According to these results and to the results obtained in the characterization of the materials (2.1), 

this previous step shouldn’t be considered in a commercial project, if the intention is to produce 

biosorbents from the > 2.00 mm fraction. Sorption tests should be done with the < 2.00 mm fraction in 

order to understand if it removes higher zinc than the whole material (with statistical significance). If so, 

fractionation could be considered in a commercial project. The < 2.00 mm fraction, canalized for the 

production of biosorbents and the > 2.00 mm fraction, as a source of heat energy. 

2.2.6. Effect of chemical treatment 

The effect of the chemical treatment on the adsorption has also been shown in Figure 4. It can be 

seen from the figure that treatment with sodium hydroxide resulted in a higher percentage removal of 

zinc. This may reflect not only the surface properties of the biosorbent, characterized by the high iodine 

number, but also the material pH, which was alkaline. Differences in the removal efficiency are not 

statistically significant to the untreated biomass (P-value(OC-OH; OC) = 0.095, t-Test) but they are 

statistically significant to the acid treated material (P-value(OC-OH; OC-H) = 1.9 × 10
-16

, t-Test). Figure 4 

also shows that though treatment with sodium hydroxide enhances the adsorption capacity to zinc of the 

olive cake (although without statistical significance), the treatment with sulfuric acid reduces 

significantly its adsorption capacity. The removal efficiency of the sulfuric acid treated material is 

statistically significantly lower than the removal efficiency obtained with the untreated biomass (P-

value(OC; OC-H) = 4.5 × 10
-10

, t-Test) and with the sodium hydroxide treated material (P-value(OC-OH; OC-H) = 

1.9 × 10
-16

, t-Test). In this case, the low pH of the acid biosorbent influenced negatively the removal 

efficiency although the sulfuric acid treatment produces a high surface area and a high degree of 
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microporosity (as already explained in 2.1 and in agreement with [4]). The very low pH value of OC-H 

(2.3-2.5, Table 1) is an indication of the presence of acid functional groups on the OC-H surface. The 

smaller adsorption values observed with the acid biosorbent can be attributed to the competition 

between the high concentrations of H
+
 to be released by the biosorbent surface and the zinc ions in 

solution. Also the positively charged surface can result in a repulsion of the adsorbing metal ion. Partial 

degradation of the biomass matrix might also have occurred during the treatment with sulfuric acid, 

decreasing the active sites for adsorption and thus lowering the levels of adsorption of the acidic 

material.  

In terms of cost-effectiveness of the process, since alkali treatment didn’t augment the removal 

efficiency of zinc significantly face to untreated biomass, this treatment shouldn’t be considered in a 

commercial process, for the removal of zinc ion from solutions. In fact, this treatment would only 

augment the consumption of chemicals and energy without a significant improvement of the biosorption 

process for zinc. Given that the sulfuric acid treatment produces a high surface area and a high degree 

of microporosity (2.1), it should be interesting to test the adsorption capacity of the acidic material to 

negatively charged ions, like chromate ion, dichromate ion or phosphates. 

2.2.7. Adsorbent dose study 

The effect of adsorbent dosage on the percentage removal of zinc is shown in Figure 5. Those 

sorption tests were conducted at 25ºC at natural pH of solution (6-7). Results presented are average 

results of the tests performed with different initial zinc concentrations (10, 50, 100 and 200 mg/L). 

Figure 5. Effect of adsorbent dose on the percentage removal of zinc (average results of the 

tests performed with different initial zinc concentrations; pH 6-7).  
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It can be seen from the figure that the percentage removal increases with the increase in adsorbent 

dosage (1 – 10 g/L), for the OC and OC-OH materials. As seen in Figure 5, while the adsorbent dose 

increased from 1 to 10 g/L, the percent zinc removal by OCT, for example, increased from 40 to 80% at 

equilibrium (average results of the tests performed with different initial zinc concentrations). This trend 

is expected because as the adsorbent dose increases the number of adsorbent particles increases and 

thus more Zn(II) is attached to their surfaces [6,31,38,45,46]. However, the unit adsorption capacity 

showed a reverse trend to the percent zinc adsorptions. By increasing the adsorbent dose from 1 to 10 

g/L, the adsorption of Zn(II) ion per unit mass of OCT, for example, decreased from 26 to 6.9 mg/g. 

This may be due to overlapping and aggregation of adsorption sites when dose increased [31,46]. By 

increasing the adsorbent dose, the surface area for sorption is increased, although the initial zinc ion 

concentration is constant, thus decreasing the adsorption of Zn(II) ion per unit mass of adsorbent [41]. 

With OC and OC-OH materials, beyond 5 g/L, the percentage removal reaches almost a constant value. 

Therefore, the use of 5 g/L adsorbent dose is justified for economical purposes. As it can be observed in 

Figure 5, the effect of increasing OC-H concentration on the amount of zinc sorbed was not significant. 

As observed in Figure 4, Figure 5 shows that the > 2.00 mm fraction removes lower zinc than the total 

biomass, the treatment with sodium hydroxide enhances the adsorption capacity to zinc of the olive 

cake and the treatment with sulfuric acid reduces its adsorption capacity. Differences observed due to 

the particle size and to the chemical treatment were already discussed in 2.2.5 and 2.2.6. 

2.2.8. Sorption isotherms 

Both Langmuir and Freundlich models were tested for equilibrium description. Langmuir equation, 

based on a theoretical model, assumes monolayer adsorption over an energetically homogeneous 

adsorbent surface [31,38]. It does not take into consideration interactions between adsorbed molecules 

[38]. It can be represented by the equation: 

 max

1

L e
e

L e

q K C
q

K C



  (4)  

where qe corresponds to the amount adsorbed per gram of adsorbent at equilibrium (mg/g), Ce is the 

solute concentration (mg/L) in the aqueous solution after equilibrium was reached, and qmax and KL are 

constants related to the maximum adsorption capacity (mg/g) and the adsorption energy (l/mg), 

respectively. Freundlich’s equation is an empirical model based on heterogeneous adsorption over 

independent sites [38] and is given by: 

 
1

n
e F eq K C   (5)  

where KF is related to binding energy and adsorption capacity and n is related to the intensity of 

adsorption. 
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Figure 6. Sorption isotherms of zinc ions by the different biosorbents studied (biosorbent 

dose = 5g/L; pH 6-7). Solid lines correspond to Langmuir fits. 
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Sorption isotherms are presented in Figure 6. As can be seen, each compound adsorption data 

corresponds to convex upward curves, which are indicative of strong sorption [38,47]. Both Langmuir 

and Freundlich models were evaluated for description of metal sorption isotherms (Table 5). Results 

presented were obtained with the adsorbent dose of 5g/L (dose justified for economical purposes, 

2.2.7).  

Table 5. Lagmuir and Freundlich constants for sorption of zinc ions by the different 

biosorbents studied (biosorbent dose = 5g/L; pH 6-7). 

 Langmuir Freundlich 

 qmax (mg/g) KL (L/mg) R2 KF  n R2 

OCT  22 0.117 0.987 3.23 2.31 0.950 

OCP 15 0.046 0.911 2.05 2.66 0.990 

OC-HT 14 0.008 0.925 0.23 1.39 1.000 

OC-HP 12 0.009 0.876 0.25 1.50 0.998 

OC-OHT 27 0.081 0.987 2.45 1.74 0.830 

OC-OHP 22 0.067 0.992 1.91 1.81 0.856 

 

Both Langmuir and Freundlich models are well suited to fit the data on sorption of zinc by waste 

olive cake without any chemical treatment (OC). Data on sorption of zinc by waste olive cake treated 

with sulfuric acid (OC-H) represented acceptable fit to the Langmuir isotherms equation, though not as 

perfect as to the Freundlich isotherms equation. Zinc sorption from aqueous solutions by waste olive 

cake treated with sodium hydroxide (OC-OH) was better described by Langmuir model in comparison 

to Freundlich model. Zinc uptake capacity, represented by qmax in Langmuir equation, was higher for 

waste olive cake treated with sodium hydroxide (OC-OH) followed by non treated material (OC) and 
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was the lowest for waste olive cake treated with sulfuric acid (OC-H). A comparison of the zinc ions 

uptake capacities obtained in this study were compared with values reported in the literature for zinc ion 

adsorption onto agro based waste materials (Table 6).  

Table 6. Langmuir based maximum adsorption capacity of several agro based waste 

materials for zinc adsorption.  

Adsorbent qmax (mg/g) References 

Activated carbon derived from bagasse 31 [2] 

Waste olive cake extracted and roasted 5.4 [28] 

Solvent extracted olive pulp activated with steam and N2 

gas mixture 
31-33 [34] 

Olive stones activated with steam and N2 gas mixture 16 [34] 

Peach stones activated with steam and N2 gas mixture 6.4 [34] 

Apricot stones activated with steam and N2 gas mixture 13 [34] 

Sugar beet pulp 18 [37] 

Coffee husks 5.6 [38] 

Coir 8.6 [48] 

Papaya wood 14 [49] 

Groundnut shells 7.6 [50] 

Dye loaded groundnut shells 9.6 [50] 

Teakwood Sawdust 11 [50] 

Dye loaded teakwood sawdust 17 [50] 

Rice husk alkali treated and autoclaved 8.1 [51] 

Peanut hulls 9.0 [52] 

Peanut hull pellets 10 [52] 

Corncobs 2.0 [53] 

Corncobs treated with citric acid 7.8-35 [53] 

Corncobs treated with phosphoric acid 32-35 [53] 

Cornstarch 6.9 [54] 

Succinylated cornstarch 13 [54] 

Oxidized cornstarch 37 [54] 

OCT  22 This study 

OCP 15 This study 

OC-HT  14 This study 

OC-HP 12 This study 

OC-OHT 27 This study 

OC-OHP 22 This study 
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However, qualitatively, it is evident that the zinc uptake capacity of the waste olive cake and 

derivates used in this study, in general, exceeds or is comparable to those for other sorbents presented 

in Table 6. These results reinforce the feasibility of employing waste olive cake and chemically modified 

olive cake as biosorbents for zinc ions removal from aqueous solutions, since they present good 

adsorption capacity in comparison to other low-cost sorbents. Aside from the zinc uptake capacity, the 

major advantage of waste olive cake as low-cost sorbents is that they are readily available in large 

quantities (in Portugal) and do not present an alternative profitable use. Also, after zinc sorption, the 

zinc-laden olive cake and chemically modified one can be used as a source of energy through 

combustion [12,18-25].  

 

3. Experimental Section 

3.1. Biosorbents Preparation and Characterization 

The olive cake used for the experiments was obtained from “ProBeira”, a producer of pitted table 

olives and also an olive oil factory, located in Envendos (Portugal). The waste, after an initial drying 

stage at ambient temperature, was roughly ground with a porcelain mortar and pestle. Part of the 

material was sieved in order to collect the fraction with > 2.00 mm, which corresponds mainly to the 

olive stones by-product, present in the olive cake. Both materials were then additionally dried in a 

vacuum oven at 60ºC for further 24 h. Tests were conducted with the total biomass and with the 

fraction > 2.00 mm, in order to determinate the influence that this fractionation has on subsequent 

treatments. 

Two different activated agents were used: H2SO4 and NaOH. Activation with H2SO4 [4]: the 

materials were mixed in a 1:1 wt ratio with concentrated H2SO4, placed in an oven and heated to 200ºC 

for 24 h. After this, the samples were allowed to cool to room temperature, washed with distilled water 

and soaked in 1% NaHCO3 solution to remove any remaining acid. The samples were then washed with 

distilled water until pH of the material reached 6, dried at 105ºC for 24 h and sieved to obtain the 

desired particle size (1.00-2.00 mm). Activation with NaOH [55]: the substrate (0.5 g) was added to 

0.25 M NaOH solution and left for 1 h, after which the samples were neutralized with HCl. They were 

then washed thoroughly with distilled water, dried at 105ºC for 24 h and sieved to obtain the desired 

particle size (1.00-2.00 mm). Moisture content, ash content, elemental analysis and ash elemental 

analysis, pH and iodine number were determined in order to characterize the materials, before and after 

the chemical treatment processes. 

The moisture content was determined after drying the biomaterials at 105 ± 2ºC to constant weight 

[56]. The ash content of all samples was obtained after burning a given amount of material in the 

presence of air at 550 ± 25ºC for 3 h and was calculated on a dry basis [56]. Elemental analysis was 

performed with a CHN 2000 elemental analyzer (Leco) [57]. Ash elemental analysis was determined 

after digestion of the ashes with HNO3 [58]. The concentration of metals in the digested solution was 

measured by Atomic Absorption Spectrophotometry (Unicam Solaar 939). The pH of materials was 

measured after suspending 1 g of the material in 50 mL distilled water for 24 h [59]. The pH 

measurements were made using a micropH2001 meter (Crison). The iodine number is defined in terms 

of the milligrams of iodine adsorbed by 1 g of material when the iodine equilibrium concentration is 0.01 
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M [35]. This test method is based upon a three-point adsorption isotherm. A standard iodine solution 

(0.05M) is treated with three different weights of material under specified conditions. The carbon 

treated solutions are filtered to separate the carbon from the treated iodine solution (filtrate). Iodine 

remaining in the filtrate is measured by titration. The amount of iodine removed per gram of material is 

determined for each weighed sample and the resulting data used to plot a graph. The amount of iodine 

adsorbed (in milligrams) per gram of carbon at a residual iodine concentration of 0.01M is reported as 

the iodine number. 

3.2. Adsorption Tests 

To estimate the applicability of produced biomaterials as adsorbents for wastewater treatment, the 

adsorption tests were performed using zinc ion as the adsorbate. For the preparation of synthetic zinc 

wastewater, ZnCl2 salt was used to make a 1,000 mg/L solution, which was diluted to 10, 50, 100 and 

200 mg/L. 

3.2.1. Effect of contact time 

Batch experiments of biosorption were performed in a 250 mL conical flask. In all sets of 

experiments, 0.1 g of biomaterials was thoroughly mixed with 100 mL solution. In these experiments, 

only the non-fractionated materials were used. The concentration of Zn(II) used in those experiments 

was 10 mg/L. The mixture was agitated at a speed of 200 rpm in a thermostatic shaker bath at 25ºC for 

periods of time that ranged from 0.25 to 10 h. The initial solution pH of the mixtures ranged 6-7. All 

tests were carried out twice. After shaking, the material was separated from solution by filtration. The 

concentration of zinc ion remaining in solution was measured by Atomic Absorption Spectrophotometry 

(Unicam Solaar 939) after diluting the filtrate to an adequate concentration. 

3.2.2. Effect of solution pH 

The adsorption capacity of the materials at different pH was also studied. Batch experiments of 

biosorption were performed in a 250 mL conical flask. In all sets of experiments, 0.1 g of biomaterials 

was thoroughly mixed with 100 mL solution. In these experiments, only the non-fractionated materials 

were used. The concentration of Zn(II) used in those experiments was 10 mg/L. The initial pH of the 

solutions was adjusted to the required value, covering a range of 3.0-7.0, either by sulfuric acid and 

sodium hydroxide. The mixture was agitated at a speed of 200 rpm in a thermostatic shaker bath at  

25ºC for 24 h and all tests were carried out twice. After shaking, the material was separated from 

solution by filtration. The concentration of zinc ion remaining in solution was measured by Atomic 

Absorption Spectrophotometry (Unicam Solaar 939) after diluting the filtrate to an adequate 

concentration.  

3.2.3. Equilibrium isotherms 

Known amounts of materials (0.1, 0.25, 0.5, 0.75 and 1.0 g) were placed in a 250 mL conical flask 

and 100 mL of zinc solution was added. Different initial zinc concentrations were tested in those 

experiments (10, 50, 100 and 200 mg/L). The mixture was agitated at a speed of 200 rpm in a 
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thermostatic shaker bath at 25ºC for 24 h. The initial solution pH of the mixtures ranged 6-7 and all 

tests were carried out twice. After shaking, the material was separated from solution by filtration. The 

concentration of zinc ion remaining in solution was measured by Atomic Absorption Spectrophotometry 

(Unicam Solaar 939) after diluting the filtrate to an adequate concentration.  

4. Conclusions 

The employment of the waste olive cake and chemically modified waste olive cake as biosorbents is a 

useful recycling process. Results showed that chemical treatment by sodium hydroxide produces a bio 

material with a superior adsorption capacity for zinc ion than treatment with sulfuric acid, although no 

significant differences were observed between the basic treated biomaterial and the untreated 

biomaterial. The maximum adsorption capacity obtained from the Langmuir isotherms increases in the 

order (mg/g): OC-HT (14), OCT (22) and OC-OHT (27). But, chemical treatment with sulfuric acid 

produces a biomaterial with better characteristics for adsorption than with sodium hydroxide. 

Furthermore, the superior adsorption capacity of the biosorbents studied, untreated or chemically 

treated with sodium hydroxide, for zinc ions, suggests that the process is potentially marketable. Results 

also indicate that the previous fractionation step, in order to obtain the > 2.00 mm fraction, doesn t́ 

produce an activated material with a superior adsorption capacity. So, this previous step shouldn’t be 

considered in a commercial project.  

Portugal is the 8
th
 largest olive oil producer in the world and is characterized by a predominance of 

small to medium-sized olive oil industries. Most of those olive oil mills don’t have a proper system to 

treat and dispose the waste olive cake. In order to minimize those problems related to the disposal of 

this residue, the development of economic technologies that can reuse these residues should be a 

priority. In this respect, this work tried to address this purpose, by chemically modifying the waste olive 

cake, with minimum processing, and trying to understand the behavior of these materials for the zinc ion 

removal of effluents (also a problem in Portugal). 
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