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Abstract: With the development of smart power grids, communication network technology and
sensor technology, there has been an exponential growth in complex electricity load data. Irregular
electricity load fluctuations caused by the weather and holiday factors disrupt the daily operation of
the power companies. To deal with these challenges, this paper investigates a day-ahead electricity
peak load interval forecasting problem. It transforms the conventional continuous forecasting problem
into a novel interval forecasting problem, and then further converts the interval forecasting problem
into the classification forecasting problem. In addition, an indicator system influencing the electricity
load is established from three dimensions, namely the load series, calendar data, and weather data.
A semi-supervised feature selection algorithm is proposed to address an electricity load classification
forecasting issue based on the group method of data handling (GMDH) technology. The proposed
algorithm consists of three main stages: (1) training the basic classifier; (2) selectively marking the
most suitable samples from the unclassified label data, and adding them to an initial training set;
and (3) training the classification models on the final training set and classifying the test samples.
An empirical analysis of electricity load dataset from four Chinese cities is conducted. Results show
that the proposed model can address the electricity load classification forecasting problem more
efficiently and effectively than the FW-Semi FS (forward semi-supervised feature selection) and
GMDH-U (GMDH-based semi-supervised feature selection for customer classification) models.
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1. Introduction

Electricity load forecasting is a major issue in the planning and operation of modern electricity
networks and electricity markets [1,2]. Electricity load forecasting can be classified into long-term [3],
medium-term [4], short-term [5–7] and ultra-short term [8], and the cut-off points for these four
categories are three years, two weeks, and one day, respectively [9]. The short-term load forecasting
(STLF), which is applied to horizons no more than one day ahead, can result in significant
environmental and economic benefits for energy systems. For reliable and efficient operations, STLF is
used when decision-making has significant impacts on the operations, such as scheduling generating
capacity dispatches, demand side management, security assessments, and generator maintenance
scheduling [5,10–16]. Unsatisfactory STLF can cause the increase in the operational cost, equipment
failures, or systems blackouts, thus resulting in a waste of resources [17–19]. As the implementation of
accurate and timely forecasting methods is important for environmental-friendly, economically sound
operations, STLF research is essential to ensure efficient and reliable power system operations.

STLF involves the electricity load forecasting of total demand and peak demand within one day.
For example, Bessec and Fouquau [19] developed an one day-ahead forecast for half-hourly electricity
loads using a combination of stationary wavelet transformations that yielded 502 daily observations for
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each half-hour in France. Based on the corresponding weather forecasts, Feng and Ryan [20] provided
accurate day-ahead hourly load forecasting for multiple zones within a region using a temporal and
weather conditional epi-splines-based load models. Tong et al. [21] developed a deep learning based
model and established a support vector regression model to forecast the total day-ahead electricity
load, and then refined the features by stacking the denoising auto-encoders with historical electricity
load data and related temperature parameters.

In addition to total electricity load forecasting, the peak load forecasting has also been found to be
related to power network dispatch centers. For instance, dispatching center operators require daily
peak loads for scheduled maintenance or adequate assessments. Therefore, the forecasting of daily
peak loads should be considered in the STLF. However, only a few researchers considered electricity
peak load forecasting in the past. Amjady [22] presented a new time series models that could precisely
forecast the daily peak loads of a power system, and obtained results from extensive tests to confirm the
validity of the developed approach. In reality, because of the hysteresis in generator units, even a large
number of spare generator units fail to meet immediate electricity needs when loads reach a peak and
cause power restrictions. Therefore, it is essential to accurately forecast peak loads in power grids.

There is a little research focusing on electricity peak load forecasting because numerous studies
only seek to predict specific electricity loads [23]. The electricity peak load interval forecasting
has not been investigated so far. On the other hand, the peak load interval forecasting has greater
practical value than that of specific electricity loads, since the power generation from generator sets
has an interval value, which means that operators need to open spare units in advance. When the peak
load lies in different intervals, the power dispatcher needs to configure the corresponding generators
in advance. Therefore, this paper seeks to convert the peak power load into an interval load and then
further translates it into a peak power load so as to forecast peak load classifications.

Previous research has paid close attention to the accurate forecasting of electricity loads,
and multiple methods. For instance, the classical statistical methods [24] and machine learning
methods [25–27] have been proposed for the electricity load forecasting. The classical statistical
methods often assume that the load is a function of several explanatory variables and estimate
the specified functional parameters [28,29]. One of the well-known methods is the seasonal
autoregressive integrated moving average (SARIMA) proposed by Box and Jenkins [30]. To improve
forecasting accuracy, there have been numerous attempts to enhance models. For example, Soares and
Medeiros [31] proposed a SARIMA model for hourly electricity loads in southeast Brazil. Although
SARIMA models are easy to use and are capable of forecasting accurately, they have some limitations.
The machine learning methods such as artificial neural networks (ANNs) and support vector regression
(SVRs) are restricted to specified functions [20]. The SVR-based electricity load forecasting methods
are proposed and show good performance mainly due to the strong non-linear learning capability of
SVR. The comparison between the machine learning methods (ANNs and SVRs) and the discrete-time
univariate econometric models can be found in [32]. Both theoretical and empirical findings have
indicated that a combination of different models could overcome the limitations of single models
and improve forecasting accuracy by harnessing each mode’s merits. Consequently, there have been
several hybrid models developed that incorporate different energy field models for electricity load
forecasting. Some researchers proposed the hybrid method which consists of a neural network and
the evolutionary algorithms [33]. For instance, Mori and Takahashi [34] proposed a hybrid intelligent
method for probabilistic STLF, and Xiong et al. [35] converted hourly load series into a 24 monthly
interval time series and proposed a hybrid approach for forecasting the electricity demand intervals.
Fan et al. [2] proposed a SVR model combining the auto regression with the differential empirical
mode decomposition method for a kind of electricity load forecasting. Although the above methods
may be used to resolve the continuous the electricity load forecasting problem, they are not suitable to
tackle the electricity peak loads classification forecasting issue. Hence, it is necessary for academics to
propose novel methods to solve the classification forecasting problem of electricity peak loads.
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The group method of data handling, which is a family of inductive algorithms for the
computer-based mathematical modeling of multi-parametric datasets, has been found to be an effective
tool for solving the classification problem in machine learning field. It can also be used for short-term
load forecasting [36,37] and traffic flow prediction [38]. The GMDH-type neural network that is the
combination of GMDH and neural networks, can improve forecasting accuracy [39], and solve the
classification problems efficiently [40]. Nevertheless, to the best of our knowledge, there is no research
that has utilized GMDH and neural network for electricity peak load classification forecasting.

This paper investigates the one day-ahead electricity peak load classification forecasting problem.
One major contribution is that it transforms the conventional continuous forecasting into a novel
interval forecasting, and then further converts the interval forecasting into the classification forecasting.
In addition, an indicator system of influencing the electricity load is established from three dimensions,
namely the load series, calendar data and weather data. Another contribution is that a novel
semi-supervised feature selection algorithm is proposed to address the electricity load classification
forecasting problem based on the group method of data handling technology.

The rest of the paper is organized as follows. The related theory and the GMDH-based
semi-supervised feature selection for an electricity load classification model are introduced in Section 2.
Section 3 presents the experimental design and analyzing results in detail. Section 4 draws conclusions
and provides suggestions for the future research.

2. GMDH-Based Semi-Supervised Feature Selection for an Electricity Load Classification Model

2.1. GMDH Network

The group method of data handling (GMDH) is a basic technique for self-organized learning.
It enables the researchers to control the process of the complex model from the input set to the output
data and to determine the model parameters [41–43].

The GMDH network establishes a relationship between input and output, which is referred to as
the Volterra function series or the Kolmogorov–Gabor polynomial function:

y = a0 +
m

∑
i=1

aixi +
m

∑
i=1

m

∑
j=1

aijxixj +
m

∑
i=1

m

∑
j=1

m

∑
k=1

aijkxixjxk + . . . (1)

Suppose that the linear function is set. All items are then taken as the m + 1 initial input variables.
The specific modeling process is as follows. From the transfer function, a new neuron is obtained to
construct the first layer (see Figure 1). The specific expression is as follows:

yk
1 = ak

1 + ak
2vi + ak

3vj.i, j = 1, 2, . . . , m0, j 6= i, k = 1, 2, . . . , t1 (2)

First, the parameters are calculated by the using least squares estimation and the external
criterion value of every intermediate candidate model according to the model selection set. In general,
the accuracy of the intermediate candidate model increases when the external criterion value decreases.
When the confidence level is selected, the external criteria values are measured using the threshold
value measurement. Finally, every two models are paired, which then becomes the input for the
second layer:

yk
2 = ak

1 + ak
2vi + ak

3vj.i, j = 1, 2, . . . , F1 , j 6= i, k = 1, 2, . . . , t2 (3)

Similarly, the intermediate candidate model t2 = C2
F1

is obtained in the second layer. Repeating
the above steps, the model continues working until an optimal complexity model is determined.
Therefore, the termination principle obeys the optimal complexity principle [44]. To identify the initial
model contained in the optimal complexity model y∗, the GMDH network structure can be examined
from the last layer to the initial input layer. As shown in Figure 1, v1, v2, v3, v4, v5 are chosen as the
initial input model. Then, each variable is paired with another in a group to compete with each other.
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Nonetheless, y1, y2, y3, y4 are preserved by the algorithm. Note that v1, v3, v4, v5 remain in the model
to participate in the subsequent competition, however, v2 is eliminated. In other words, x2, x3, x4 are
selected and x1 is deleted.

Figure 1. An illustration of modeling process for the GMDH.

2.2. Basic Modeling Idea

This paper proposes a GMDH-based semi-supervised feature selection (SSFS-GMDH) model
to deal with the electricity load classification forecasting problem. In this model, the labeled and
unlabeled samples are used for the feature selection. Suppose L is the original labeled training set for
the electricity peak load forecasting problem, T is the labeled testing set, and U is the number of an
unlabeled dataset. L is firstly divided into a simulated training set Ltrain and a simulated validation set
Lveri f y. The flowchart of the proposed method is shown in Figure 2. The proposed model contains
three major stages. (1) The classified dataset L is used to train N basic classification models. (2) Label
the labeled samples in the dataset U by using basic classification models. A certain proportion of
marked samples Uα are chosen from Ul and the samples merged in L. These two stages are repeated
until the proportion of selected samples exceeds θ. (3) Train the basic classification model until the
final training set L and the feature set Fs are obtained.

During the modeling process, the building of the external criteria is also crucial. A detailed
description of the SSFS-GMDH model and external criteria are shown in Sections 2.2 and 2.3.
The interpretation for the symbols can be found in Table 1.

Table 1. Interpretation for the symbols.

Symbols Interpretation

L original labeled training set
T labeled testing set
U unlabeled dataset
Uα chosen unlabeled sample
Ul marked unlabeled sample

Ltrain training set
Lveri f y validation set

N the number of basic classification models
Fs feature set
K the number of neighboring samples

p, θ the proportion of samples chosen to be added into training set
δ the confidence level
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Figure 2. Flowchart of the SSFS-GMDH model.

2.3. Detailed Modeling Steps

The basic flowchart of the SSFS-GMDH model is illustrated in Figure 2, and the detailed modeling
steps are as follows:

Input: L, U, T, K, θ, p.
Output: Classification results from the final training of the test set.
Step 1: Divide the original dataset into training set L with a category label and dataset U without

a category label, and test dataset T with a category label. Further divide L into the simulated training
set Ltrain and the simulated validation set .

Step 2: Find N training by mapping the Ltrainsubsets based on the stochastic subspace, and then
train the N basic classification models.

Step 3: Use the training classification model to classify Lveri f y, and then choose the classifier with
highest classification accuracy.

Step 4: Use the selected classification model to mark the catalog tag on the unclassified dataset U,
and find sample Ul with a catalog tag.

Step 5: Calculate and sort the confidence level of each sample; δ is defined as the confidence level
of each marked sample Ul

i in set Ul , the calculation formula is:

δ =
k
K

(4)

where K is the number of neighboring samples chosen from the initial labeled training set L. k reflects
the number of neighboring samples that have the same class labels as samples among K neighbors.
In this paper, the Euclidean distance is used to calculate the distance between samples. It is obvious
that the higher the value of δ ∈ [0, 1] is the higher the confidence level will be. Then, sort the marked
samples based on the confidence level of each sample.

Step 6: Choose a certain proportion of the marked samples with a higher confidence level from
Ul

i and put them into Ltrain.
Step 7: Repeat Steps 2 to 6. The iteration stops when the proportion p of the sample added to

Ltrain in U exceeds θ.
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Step 8: Train the final classification model, select the final character subset Fs and classify the
samples in the testing set T.

2.4. Establishing the GMDH External Criteria

There are two fundamental types of GMDH (group method of data handling) external criteria:
the accuracy criteria and the compatibility criteria. Accuracy criteria focus on the random errors in
different established model parts, and are also referred to as fitting precision, while compatibility
criteria highlight the consistency of the models built for the same system in datasets from different
samples [45]. Ivakhnenko et al. [40] established regularization criteria and a theoretical basis
for symmetric regularization criteria, and proved that the regularization criteria and symmetric
regularization criteria could be used as the external criteria in GMDH theory. Because of the different
application scopes, different external criteria for different GMDH have significant impacts on the
model classification performance [46]. Details of the 13 types of external criteria are as follows:

SSFS-GMDH1: Symmetric mean square error.

d(W) = ∆(A) + ∆(B) (5)

where4(A) =
√
( ∑

t∈A
(yt − ym

t (B))2)/NA,4(B) =
√
( ∑

t∈B
(yt − ym

t (A)2)/NB.

SSFS-GMDH2: Symmetric regularization criteria.

d2(W) = ∆2(A) + ∆2(B) (6)

where ∆2 A = ∑t∈w (yt − ym
t (A))2, ∆2B = ∑t∈w (yt − ym

t (A))2.

SSFS-GMDH3: Average regularization criteria.

d2(W) = ∆2(W) =

(
∑
t∈w

(yt − ym
t (W))

2
)

/Nw (7)

SSFS-GMDH4: Symmetric stability criteria.

d2(W) = ∆2(A) + ∆2(B) (8)

where ∆2 A = ∑t∈w (yt − ym
t (B))2, ∆2B = ∑t∈w (yt − ym

t (A))2.

SSFS-GMDH5: Forecasting criteria.

i2(W) = i2(A) + i2(B) (9)

where i2(A) = ∑
t∈C

(yt − ym
t (A))2, i2(B) = ∑

t∈C
(yt − ym

t (B))2.

SSFS-GMDH6: Symmetric minimum deviation criteria.

η2
bs(W) = ‖ym

t (A)− ym
t (B)‖2

t∈W (10)

SSFS-GMDH7: Symmetric absolute interference criteria.

v2(W) = v2(A) + v2(B) (11)

where v2(A) = ∑
t∈A

(ym
t (A)− ym

t (W))2, v2(B) = ∑
t∈B

(ym
t (B)− ym

t (W))2.

SSFS-GMDH8: Combination criteria minimum deviation criteria + symmetric regularization criteria.

η2
bs(A) + η2

bs(B) + d2(W) (12)

where η2
bs(A) = ‖ym

t (A)− ym
t (B)‖2

t∈A, η2
bs(B) = ‖ym

t (A)− ym
t (B)‖2

t∈B, d2(W) = ∆2(A) + ∆2(B).
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SSFS-GMDH9: Combination criteria (symmetric minimum deviation criteria + average
regularization criteria).

η2
bs(W) + d2(W) (13)

SSFS-GMDH10: Combination criteria (symmetric minimum deviation criteria + minimum square
error criteria).

SSFS-GMDH11: Asymmetric regularization criteria training model on A and calculating the external
criteria on B.

SSFS-GMDH12: Asymmetric stability criteria training on A and calculating the external criteria on W.
SSFS-GMDH13: Asymmetric minimum error criteria.

η2
bs(A) = ‖ym

t (A)− ym
t (B)‖2

t∈A (14)

3. Data Description

The electricity load series were provided by the Electric Power Company in the Sichuan
Province, China and the sample spanned from January 2013 to June 2017, yielding 1270 daily data.
Four representative cities, namely Mianyang, Nanchong, Yibin and Panzhihua, were selected from this
province. The indicator system, consisting of the weather variables, calendar variables, and load series,
is used to forecast the day-ahead electricity load. There are 18 related variables—one calendar variable,
six weather variables, and eleven kinds of load series (Table 2).

- Calendar variables: There is one calendar variable that varies across weekdays, weekends,
and holidays. Calendar variables are crucial, as electricity loads show daily and weekly periodic
variations [47] as well as weekday, weekend, and holiday variations [48].

- Weather variables: There are six weather variables: the maximum temperature, minimum
temperature, maximum temperature variable rate, minimum temperature variable rate, wind
speed, and weather type. As the electricity load is susceptible to changes in weather variables,
it is necessary to understand electricity load volatility under various weather conditions within
different timescales [49]. Weather variables have been seen as the main parameters controlling
energy demand [50,51].

- Load series: There are eleven kinds of load series, namely the peak load, off-peak load, daily
consumption, cumulative consumption, off-peak consumption, load rate, actual peak load,
previous day’s electricity consumption, daily consumption in the same period of the previous
week, daily consumption in the same period in the previous month, and daily consumption in
the same period of the previous year.

- Y: y is defined as the peak load and n as the number of categories, such that Y ∈ [1, n] ∧Y ∈ Z.
The specification for n is as follows:

n =

⌊
ymax − ymin

S

⌋
(15)

where ymax and ymin denote the maximal peak load and the minimal peak load, respectively,
and S is defined as the step length that is set based on the power of generators.
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Table 2. Evaluation indicator system.

Categories of Indicators Sub-Indicators

Weather variables

W1: Maximum temperature (◦C)
W2: Minimum temperature (◦C)
W3: Maximum temperature variable rate
W4: Minimum temperature variable rate
W5: Wind speed (m/s)
W6: Weather type

Calendar variables C1: Calendar, such as holidays, weekdays and weekends.

Load series

L1: Peak load
L2: Off-peak load
L3: Daily consumption
L4: Cumulative consumption
L5: Off-peak consumption
L6: Load rate
L7: Actual peak load
L8: Previous day’s electricity consumption
L9: Daily consumption in the same period of the previous week
L10: Daily consumption in the same period in the previous month
L11: Daily consumption in the same period of the previous year

4. Empirical Analysis

To analyze the performance of the proposed SSFS-GMDH model and different criteria,
the practical datasets from Mianyang, Nanchong, Yibin and Panzhihua in China are empirically
analyzed. The SSFS-GMDH model is compared with the FW-SemiFS (Forward semi-supervised
feature selection) [52] and GMDH-U (GMDH-based semi-supervised feature selection for customer
classification) [46] models.

4.1. Experimental Setting

Table 3 shows the parameters used in the experiment. Each particular dataset is divided into three
subsets: 30% of samples in the dataset is used as a training set L with a class label, and the another 30%
of samples in the dataset is used as a dataset U without a class label, and the remaining 40% of samples
as a testing set T with a class label. The range of K and θ is K ∈ [2, 15] and θ ∈ [0.1, 1], respectively.
In the SSFS-GMDH model, L is utilized to mark the labels of the samples in U. As this procedure has
a significant impact on the performance of the SSFS-GMDH model, it is crucial to choose a proper
basic classification model. Therefor three basic and effective classification models include the Support
Vector Machines [7], Bayesian Networks [53], and Decision Trees [54,55] are employed in this paper.
Each experiment is conducted 30 times via MATLAB2016b.

Table 3. Parameters setting.

Symbols Parameters Setting

L 30%
T 40%
U 30%
N 3
K K ∈ [2, 15]

p, θ θ ∈ [0.1, 1]

4.2. Model Evaluation Criteria

The most common evaluation criterion for evaluating classification forecasting models is the
accuracy on the testing set. Since this is the appropriate way to evaluate the performance of models
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dealing with unbalanced class distributions, the ROC (Receiver Operating Characteristic) curve can
be used to evaluate the model’ classification performance. However, since it is inconvenient to
directly compare each model’s ROC curve, the AUC (the area under the ROC curve ) is usually
taken as the model evaluation criterion. The ROC curve and AUC value are both capable of evenly
handling the minorities and the majorities. Nevertheless, the AUC value can better weigh the minority
recognition rate against the majority recognition rate, and the larger the AUC value, the better the
model performance [56].

The classification evaluation matrix is then introduced. As shown in Table 4, TP denotes the
number of correctly predicted positive classes, FN denotes the number of wrongly predicted negative
classes, FP denotes the number of wrongly predicted positive classes, and FP denotes the number
of correctly predicted negative classes. To deal with the dichotomy, the ROC curve is a true positive
rate–false positive rate figure, in which the horizontal axis of the figure shows the fake positive rate
(=FP/(FP + TN) × 100%) and the vertical axis shows the true positive rate (=TP/(TP + FN) × 100%).

Table 4. Classification evaluation matrix.

Class Predicted to Be Positive Class Predicted to Be Negative

Positive Class TP FN
Negative Class FP TN

4.3. Analysis of the Impacts of the GMDH External Criteria on Classification Performance of the
SSFS-GMDH Model

This paper constructs 13 external criteria and then conducts tests on four datasets to determine
the best external criteria by exploring the relationships between the external criteria classification
performances and the model. Figure 3 shows the impacts of GMDH external criteria on classification
performance of the SSFS-GMDH model in the four datasets, namely the Mianyang, Nanchong, Yibin,
and Panzhihua datasets.

Figure 3. Impacts of GMDH external criteria on classification performance of the SSFS-GMDH model
in the four datasets.

As shown in Figure 3, the SSFS-GMDH3 model on Mianyang dataset has the highest classification
accuracy with a MAUC (mean AUC) value of 0.91748, followed by the SSFS-GMDH4 model
with a MAUC value of 0.91339, and the SSFS-GMDH13 model with a MAUC value of 0.91265.
The SSFS-GMDH6 model has the lowest classification accuracy, with a MAUC value of 0.87516.
The SSFS-GMDH13 and SSFS-GMDH4 models belong to the accuracy criteria model, whereas the
SSFS-GMDH13 and SSFS-GMDH6 models are the compatibility criteria model.
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The SSFS-GMDH3 model on the Nanchong dataset has the highest classification accuracy with
a MAUC value of 0.88320, followed by the SSFS-GMDH4 model with a MAUC value of 0.86295,
and the SSFS-GMDH11 model with a MAUC value of 0.85785. The SSFS-GMDH13 model has the
lowest classification accuracy with a MAUC value of 0.61927. The SSFS-GMDH13, SSFS-GMDH4,
and SSFS-GMDH11 models are the accuracy criteria models, while the SSFS-GMDH13 model is the
compatibility criteria model.

On the Yibin dataset, the SSFS-GMDH9 model has the highest classification accuracy with
a MAUC value of 0.90309, followed by the SSFS-GMDH12 model with a MAUC value of 0.90071,
and the SSFS-GMDH4 model with a MAUC value of 0.89814. The SSFS-GMDH3 model has the lowest
classification accuracy, with a MAUC value of 0.82647. The SSFS-GMDH11, SSFS-GMDH12 and
SSFS-GMDH4 models are the accuracy criteria model.

On the Panzhihua dataset, the SSFS-GMDH9 model has the highest classification accuracy with
a MAUC value of 0.70092, followed by the SSFS-GMDH8 model with a MAUC value of 0.69865,
and the SSFS-GMDH2 model with a MAUC value of 0.64622. The SSFS-GMDH5 model has the lowest
classification accuracy with a MAUC value of 0.64622. The SSFS-GMDH9 and SSFS-GMDH8 models
are the compatibility criteria model, and the SSFS-GMDH2 and SSFS-GMDH5 models are the accuracy
criteria model.

To further examine the impacts of external criteria on classification performance of the
SSFS-GMDH model, an analysis of the variance is conducted, and the results are shown in Table 5.

The SSFS-GMDH3 and SSFS-GMDH4 models perform better compared to other models on the
Mianyang dataset. In particular, the MAUC value for the SSFS-GMDH3 model is the largest on the
Mianyang dataset. The p-value for the SSFS-GMH3 and SSFS-GMDH4 significance tests is 0.073, which
exceeds the significance level of 0.05. The p-values for the SSFS-GMDH3 and the significance tests for
the other eleven external criteria are less than 0.05, and are therefore statistically different. Similarly,
the SSFS-GMDH3 model is also superior to other models on the Nanchong dataset.

The SSSFS-GMDH11 model performs better compared to other models on the Panzhihua dataset,
because it has the largest MAUC value. In addition, the p-values for the SSFS-GMDH11, SSFS-GMDH2,
SSFS-GMDH4, and SSFS-GMDH12 significance testing are respectively 0.118, 0.297, and 0.616,
exceeding the significance level of 0.05. On the Yibin dataset, the SSFS-GMDH9, SSFS-GMDH1,
SSFS-GMDH2, SSFS-GMDH6, SSFS-GMDH7, SSFS-GMDH8, SSFS-GMDH10, SSFS-GMDH11 and
SSFS-GMDH13 models have the same performance according to the statistical testing. Therefore,
the SSSFS-GMDH11 model has the better robust capability on the Panzhihua and Yibin dataset.

Overall, the above analysis indicates that the performance of the SSFS-GMDH3 (average
regularization criteria) is superior to the other external criteria when the dataset has a large sample
size. The SSFS-GMDH 11 (asymmetric regularization criteria) is superior when the sample size is
small. Therefore, the SSFS-GMDH3 and SSFS-GMDH11 models have better robustness and thus are
chosen to be applied into the electricity peak load classification forecasting issue.

Table 5. Analysis of variance.

Mianyang, China

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 0.477 0.000 0.024 0.117 0.000 0.000 0.104 0.000 0.300 0.777 0.582 0.053
C2 0.001 0.122 0.023 0.000 0.000 0.020 0.000 0.745 0.669 0.872 0.222
C3 0.073 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.034
C4 0.000 0.000 0.000 0.000 0.000 0.222 0.049 0.088 0.746
C5 0.000 0.000 0.953 0.000 0.009 0.065 0.034 0.000
C6 0.023 0.000 0.366 0.000 0.000 0.000 0.000
C7 0.000 0.169 0.000 0.000 0.000 0.000
C8 0.000 0.008 0.056 0.030 0.000
C9 0.000 0.000 0.000 0.000

C10 0.452 0.627 0.370
C11 0.790 0.099
C12 0.167
C13
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Table 5. Cont.

Nanchong, China

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 0.608 0.000 0.080 0.000 0.000 0.000 0.001 0.595 0.940 0.276 0.376 0.000
C2 0.000 0.216 0.000 0.000 0.000 0.000 0.296 0.661 0.564 0.710 0.000
C3 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
C4 0.000 0.000 0.000 0.000 0.023 0.094 0.508 0.386 0.000
C5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C6 0.005 0.000 0.000 0.000 0.000 0.000 0.476
C7 0.000 0.000 0.000 0.000 0.000 0.000
C8 0.007 0.001 0.000 0.000 0.000
C9 0.544 0.105 0.157 0.000

C10 0.310 0.418 0.000
C11 0.837 0.000
C12 0.000
C13

Panzhihua, China

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 0.235 0.000 0.087 0.000 0.636 0.000 0.995 0.904 0.599 0.006 0.025 0.745
C2 0.000 0.602 0.000 0.097 0.000 0.238 0.191 0.087 0.118 0.288 0.131
C3 0.000 0.047 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C4 0.000 0.029 0.000 0.089 0.067 0.025 0.297 0.589 0.042
C5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C6 0.002 0.631 0.724 0.958 0.001 0.007 0.882
C7 0.000 0.000 0.002 0.000 0.000 0.001
C8 0.899 0.595 0.006 0.025 0.740
C9 0.685 0.004 0.018 0.838

C10 0.001 0.006 0.841
C11 0.616 0.002
C12 0.010
C13

Yibin, China

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 0.447 0.359 0.230 0.000 0.878 0.822 0.407 0.182 0.820 0.835 0.316 0.508
C2 0.093 0.050 0.000 0.543 0.592 0.946 0.567 0.593 0.580 0.078 0.921
C3 0.777 0.000 0.284 0.253 0.081 0.024 0.253 0.261 0.932 0.114
C4 0.000 0.176 0.154 0.043 0.011 0.153 0.159 0.843 0.063
C5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C6 0.943 0.500 0.238 0.941 0.957 0.248 0.611
C7 0.546 0.267 0.999 0.986 0.220 0.662
C8 0.613 0.548 0.535 0.067 0.868
C9 0.268 0.260 0.020 0.501

C10 0.985 0.219 0.664
C11 0.226 0.650
C12 0.096
C13

4.4. Analysis of the Parameter Sensitivity

θ and K are two essential parameters in the SSFS-GMGH model proposed in this paper. The two
parameters need to be determined to achieve better performance. In the following section, the impact
of θ and K on model performance is analyzed.

(1) Impacts of θ on model performance

Suppose that θ = 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. We set randomly
K = 5, and the experimental results for the SSFS-GMDH3 model in the four datasets are shown in
Figure 4.
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Figure 4. The performances of SSFS-GMDH3 model with different θ values.

As can be seen in Figure 4, the SSFS-GMDH3 model’s performance in the four datasets gradually
reaches a peak and then declines. On the Mianyang dataset, when θ reaches 0.9, the model performance
is the best with a MAUC value of 0.9309. The corresponding MAUC value is 0.9308 when θ equals
0.8, so the small discrepancy can be overlooked. On the Panzhihua and Yibin datasets, when θ = 0.8,
both model performances are optimal. On the Nanchong dataset, parameter θ has little impact on the
model performance. When θ reaches 0.6 and 0.8, the MAUC values are 0.9219 and 0.9215, respectively.
Therefore, the paper suggests setting the θ = 0.8.

(2) Impacts of K on model performance

The experimental results for the SSFS-GMDH3 model in the four datasets are shown in Figure 5
with θ = 0.8, and K ∈ [2, 15].

Figure 5. The performance of SSFS-GMDH3 model with different K values.

Figure 5 indicates that, with an increase in K, the MAUC value first has a fluctuating increasing
tendency, after which it slowly declines. When K = 13, the best model performances are achieved in
Mianyang, Panzhihua and Yibin datasets. When K = 10, the model has an optimal performance on
Nanchong dataset, with an MAUC value of 0.9209. When K = 13, the MAUC value is 0.9114. Therefore,
the SSFS-GMDH3 model has the best performance only when θ = 0.8 and K = 10.

4.5. Comparisons with Other Models

Table 6 shows the MAUC value of the SSFS-GMDH, FW-SemiFS, and GMDH-U models on the
four datasets. Symbols ↓, ↑, ‖ indicate that the result is significantly worse, better, and similar to
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that obtained by the SSFS-GMDH3 model, respectively. Symbols ∼,+,≈ denote that the result is
significantly worse, better, and similar to that obtained by the SSFS-GMDH11 model, respectively.
On the Mianyang dataset, the MAUC values for the SSFS-GMDH3, SSFS-GMDH11, FW-SemiFS and
GMDH-U are, respectively, 0.9452, 0.9381, 0.9308 and 0.9218. Therefore, the SSFS-GMDH model
performs much better than the FW-SemiFS.

Table 6. Comparison between the SSFS-GMDH3, FW-SemiFS, and GMDH-U models in the four datasets.

Classification Model Mianyang Nanchong Yibin Panzhihua

SSFS-GMDH3 0.9452 0.9160 0.8640 0.7188

SSFS-GMDH11 0.9381 0.8621 0.9077 0.7491

FW-SemiFS
0.9308 0.8520 0.8419 0.6188
↓ ≈ ↓ ∼ ↓ ↓ ↓ ↓

GMDH-U
0.9218 0.8548 0.8611 0.6476
∼ ↓ ↓ ∼ ≈ ↓ ↓ ↓

On the Nanchong and Panzhihua datasets, the performance of the SSFS-GMDH model is superior
to that of both the FW-SemiFS and GMDH-U models. Overall, the performance of the SSFS-GMDH
model is the best compared to the FW-Semi FS and the GMDH-U models.

5. Conclusions

This paper investigates a day-ahead electricity peak load classification forecasting problem.
It transforms the conventional continuous forecasting into a novel interval forecasting, and then
further converts the interval forecasting into the classification forecasting. In addition, an indicator
system influencing the electricity load is established from three dimensions, namely the load series,
calendar data, and weather data. A novel semi-supervised feature selection algorithm based on the
group method of data handling technology is proposed to address the electricity load classification
forecasting problem. Furthermore, the parameters of the proposed model and the external criteria are
analyzed systematically, which aims to improve the robustness of proposed model. An empirical test
in real-world peak load forecasting cases shows that the proposed method has better classification
forecasting performance compared to the two other state-of-the-art methods in four typical datasets,
and that the peak classification forecasting problem is solved effectively. It is evident that the time
interval in this paper is one day, but investigating different time intervals according to practical
scheduling tasks, ranging from one hour to one week, and comparing the subtle difference are of
great importance in the future. It is also urgent for researchers to develop more methods solving the
short-term load classification forecasting issues.

Author Contributions: Lintao Yang proposed the problem and obtained the empirical data. Honggeng Yang
established the indicator system and wrote the initial manuscript. Haitao Liu studied and completed the proposed
model. All authors read and approved the final manuscript.
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