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Abstract: Various studies have focused on feature extraction methods for automatic patent
classification in recent years. However, most of these approaches are based on the knowledge
from experts in related domains. Here we propose a hierarchical feature extraction model (HFEM)
for multi-label mechanical patent classification, which is able to capture both local features of phrases
as well as global and temporal semantics. First, a n-gram feature extractor based on convolutional
neural networks (CNNs) is designed to extract salient local lexical-level features. Next, a long
dependency feature extraction model based on the bidirectional long–short-term memory (BiLSTM)
neural network model is proposed to capture sequential correlations from higher-level sequence
representations. Then the HFEM algorithm and its hierarchical feature extraction architecture are
detailed. We establish the training, validation and test datasets, containing 72,532, 18,133, and 2679
mechanical patent documents, respectively, and then check the performance of HFEMs. Finally, we
compared the results of the proposed HFEM and three other single neural network models, namely
CNN, long–short-term memory (LSTM), and BiLSTM. The experimental results indicate that our
proposed HFEM outperforms the other compared models in both precision and recall.

Keywords: text feature extraction; patent analysis; hybrid neural networks; mechanical
patent classification

1. Introduction

The World Intellectual Property Organization (WIPO) developed the International Patent
Classification (IPC) as a standard taxonomy to classify patents and their applications. According
to the report from the WIPO’s intellectual property statistics data [1], the current number of worldwide
patent applications is rapidly increasing. When an enormous number of patent applications come
to the local patent office, it could be a nightmare for the patent examiners. Thus, patent automatic
classification (PAC) tasks have drawn much research interest, with many conferences and campaigns
hosted around this topic [1,2]. A PAC system is designed for classifying patents into corresponding
categories. When a patent application is submitted to a patent office, a search for previous inventions in
the field is required, which can be done by retrieving related patents using the classification labels of the
submitted patent. The result of this retrieval procedure can be used to decide whether a patent should
be granted or not. The patent classification procedure is still time-consuming and labor-intensive work,
even for experienced patent examiners, due to the extremely complicated patent language and the
hierarchical classification scheme.

In order to find relevant prior arts easier and allow patent examiners pay more attention to the
patent innovation content, a PAC system is highly demanded. Significant efforts have been made in
many previous studies [3–7]. Many researchers have made contributions to this topic from different
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perspectives. Some of them focused on the patent text representation [8,9], trying to find the best
solution to represent the patent text, while some of them were dedicated to designing the most
effective classification algorithms [3,4,7]. Besides this, some others worked on extraction semantic
features from patent text [10–12]. Moreover, some researchers tried to identify which parts in a patent
document can provide more representative information for classification tasks [5,13]. Almost all these
studies highly rely on hand-crafted feature engineering, hence researchers have to design sophisticated
feature extractors to extract features from patent documents to achieve competitive performance in the
PAC system.

Previous studies showed that distributed representation has great potential to represent texts from
both semantic and syntactic perspectives without any external domain knowledge [14,15]. Meanwhile,
convolutional neural networks (CNN) can capture salient local lexical-level features and bidirectional
long–short-term memory (BiLSTM) can learn long-term dependencies from sequences of higher-level
representations in the patent text [16,17].

This paper presents a hybrid hierarchical feature extraction model (HFEM) for multi-label
mechanical patent classification. HFEM employs a continuous bag-of-words (CBOW) algorithm
to map words in the patent text into word embeddings, which can well represent each word from
both syntactic and semantic perspectives with low dimensional vectors. Our algorithm adopts CNN
and BiLSTM to capture local lexical-level and long dependency sentence-level features, and uses a
supervised feature learning scheme to automatically extract features from patent documents without
any expert knowledge.

The main contributions of this paper are summarized as follows:

• A novel hybrid hierarchical feature extraction model (HFEM) for multi-label mechanical patent
classification is introduced, which applies deep learning algorithms to patent feature extraction
and classification.

• A CNN-based n-gram feature extractor is proposed to automatically extract features from a lengthy
patent text full of technical and legal terminologies. A long dependency feature extraction model
based on bidirectional LSTM is proposed to uncover sequential correlations from higher-level
sequence representations.

• We compared HFEM with CNN, LSTM, and BiLSTM. It is shown that HFEM outperforms other
compared models in terms of precision, recall and the weighted harmonic mean of precision and
recall (F1) scores.

The remainder of this paper is organized as follows. Section 2 presents some related works.
Section 3 is devoted to the description of the feature extractor based on CNN and depicts the HFEM
architecture. In Section 4, we present the designed datasets and the performance metrics in the
experiments. In Section 5, we first define detailed hyper-parameters of the HFEM models, then
conduct a series of classification experiments to determine the best variant of the HFEM algorithm.
Section 6 presents the comprehensive experiments and analysis. In Section 7, we draw conclusions
and present future study directions.

2. Related Works

2.1. Feature Extraction from Text

Previous approaches to represent patent text in the PAC systems of related studies can be
roughly classified into two categories: statistical based and semantic based. The bag-of-words (BOW)
model [8,18] is a typical, statistically-based text representation approach, which is almost always used
in patent analysis studies [1,18]. After stemming, filtering and stop-word removal, the BOW represents
each document by the words’ occurrences, ignoring their ordering and grammar in the original
document. The empirical results [3,19] showed that phrases (n-gram) contain more information than
single word schemes and could lead to better performance. However, longer phrases may result in
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the curse of dimensionality issue. For example, in Web 1T five-gram [20], Google Inc. (Mountain
View, CA, USA) provides the dataset with its length ranging from unigrams to five-grams. The other
variation of BOW is term frequency–inverse document frequency (TF-IDF), which proposes to reduce
the dimensions of BOW and increases the weight of words which are relevant to the current document.
TF-IDF is often use in patent classification as a text feature extractor [4,5]. However, the BOW discards
a large amount of the information from the original document, such as position in the text, semantics,
and co-occurrences in different documents. Therefore, it only useful as a lexical level feature.

To address these issues, some scholars used syntactic- and semantic-based approaches to alleviate
these problems [9,18,21]. Experienced experts extract representative terms from documents, identify
term patterns, and use these patterns find semantic relationships between these terms. WordNet
often works as a lexical resource for semantic relation establishment and polysemy-based filters.
A semantic-based approach can bring a lot of benefit to the PAC system, but it relies highly on domain
knowledge from human experts.

The emerging word embedding encoding approach has shown its capability to capture important
syntactic and semantic regularities and identify text contents and subsets of the content. Distributed
representation is developed based on the distributional hypothesis, which states that words that appear
in the same contexts share similar semantic meaning. That also means words that occur in similar
contexts may have similar embeddings. Dongwen et al. [22] proposed a method using the skip-gram
algorithm to extract semantic features. When combined with Support Vector Machine for Multivariate
Performance Measures (SVMperf), their algorithm achieved state-of-art performance in a Chinese
sentiment classification task. Xu et al. [23] designed a document classification framework based on
word embedding and conducted a series of experiments on a biomedical documents classification
task, which leveraged the semantic features generated by the word embedding approach, achieving
highly competitive results. Kuang [15] proposed two algorithms based on the CBOW model and
evaluated word embeddings learned from these proposed algorithms for two healthcare-related
datasets. The results showed that the proposed algorithms improved accuracy by more than 9%
compared to existing techniques.

2.2. Patent Classification

Patent classification is mainly based on the IPC taxonomy, which is a hierarchical structure
consisting of sections, classes, subclasses, groups and subgroups. At each sublevel of the hierarchy,
the number of categories is multiplied by about 10. As a result, the IPC contains approximately
72,000 categories. Meanwhile, as patent documents are often lengthy and full of technical and legal
terminologies, it becomes a highly impracticable and almost impossible task for people who are
not from this domain to design a PAC system. Nevertheless, previous methods often come with an
elaborately-designed, hand-crafted features extractor to achieve decent performance. The ultimate
purpose of a PAC system is to find the best candidate IPC labels, as a patent examiner does. However,
the complicated classification taxonomy system and the difficulty of analyzing lengthy patents full of
technical and legal terminologies often make it a challenge to develop a high performance PAC system.

A wide variety of algorithms have been proposed for PAC systems. SVM classifiers, parse network
of winnows (SNoW), Bayesian classifiers, and neural network classifiers have been investigated for
this task. J. Stutzk [5] treated PAC as a multi-label hierarchical classification problem and employed k
Nearest Neighbors (k-NN) and a one-versus-rest SVM to classify patent data with additional geospatial
data. From the results, they concluded that coverage error could be significantly decreased, and the
application classification system can be improved by incorporating the home addresses of the inventors.
Verberne [24] conducted a series of classification experiments with the linguistic classification system
(LCS) based on Naive Bayes, Winnow and SVMlight in the context of Conference and Labs of the
Evaluation Forum Intellectual Property (CLEF-IP) 2011. They found that adding full descriptions to
abstracts gives an improvement for classifying documents at the subclass level. Finally, they reached
the classification precision score of 74.43%. Lim [6] applied a multi-label Naive Bayes classifier to
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classify 564,793 registered patents from Korea at the IPC subclass level, using titles, abstracts, claims,
technical fields and backgrounds narrative text in the patent as their model’s inputs. They found
that when taking advantage of all narrative text, they achieved the highest classification precision at
68.31%. Li, Tate et al. [25] proposed a two-layered feed-forward neural network and employed the
Levenberg–Marquardt algorithm to train the network for 1948 patent documents from United States
Patent Classification (USPC) 360/324. The authors used a stemming approach, the Brown Corpus,
to handle most irregular words. They achieved an accuracy of 73.38% and 77.12% on two category
sets, respectively.

2.3. Deep Learning in Text Feature Extraction

Recently an increasing number of studies employed deep learning models for text classification,
and achieved dominant performance on massive data processing. A CNN is a class of deep, multilayer,
feed-forward and back-propagation artificial neural networks [26]. When comparing to standard
multilayer neural networks with the same number of hidden units, it takes less time to train and has
fewer parameters. A CNN is comprised of one or more convolutional layers and subsampling layers.
Each convolutional layer consists of a set of neurons with learnable weights and biases. Each neuron
performs dot operations with some inputs and optionally follows it with a non-linearity mapping.
The architecture of CNN is designed to learn complex, high-dimensional, nonlinear mapping from
large collections of examples [27]. CNN models have been widely used and achieved top performance
in computer vision, image classification [28], speech recognition, and Natural Language Processing
(NLP) [16], due to their capability of capturing local correlations of spatial or temporal structures.
For text modeling, CNN uses a series of convolutional filters on nearby words to extract n-gram
features at different positions of text. Xiang et al. [29] built a character-level CNN model for several
large-scale datasets to show that it could achieve state-of-the-art or competitive results. They treated
texts as a kind of raw signal at the character level and applied one-dimensional CNN to them. In order
to show CNN’s advantage, they also constructed several large-scale datasets. The results show that
CNN is an effective method for text classification, especially for large-scale datasets.

Another popular deep learning architecture is recurrent neural networks (RNN), which is
designed to handle sequence data and capture long-term dependencies. RNN is able to propagate
historical information via a chain-like neural network architecture, which makes them a natural choice
for processing sequential data. RNN has been successfully applied to a variety of problems: speech
recognition, language modeling, translation, image captioning, etc. While processing sequential data,
it looks at the current input xt as well as the previous outputs of hidden state ht−1 at each time step.
Unfortunately, it would be a disaster for standard RNN when the gap between two-time steps becomes
too large, leading to vanishing/exploding gradients. LSTM [30] is explicitly designed to address
this issue, which consists of three-point wise multiplication gates aiming at controlling the ratio of
information to forget and to store in the cell states. Gates are a way to optionally let information
through. A bidirectional LSTM network is a variation of LSTM which consist of two separate LSTM
networks to store the context in both directions; one forward network reading the input sequence
from left to right and one backward reading the sequence from right to left. The forward network
accumulates any sequence context to the left of each position in the sequence, and the backward
net accumulates the sequence context to the right of each position. After processing a sequence in
both directions, the outputs of the separate networks are used to compute the final output using the
weights and biases from the output neurons. Kiperwasser et al. [17] proposed an approach for feature
extraction for dependency parsing based on a BiLSTM encoder. They trained BiLSTM jointly with the
parser objective. The results demonstrate the effectiveness of proposed parsers, when compared to
the state-of-the-art accuracies on English and Chinese. Ying et al. [16] combined CNN and BiLSTM
to extract Chinese events from unstructured data. They employed CNN and LSTM to capture both
lexical-level and sentence-level features. The proposed method achieved competitive performance in
several aspects on the Automatic Content Extraction (ACE) 2005 dataset.
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3. Deep-Learning-Based Hierarchical Feature Extraction Model for Patent Classification

3.1. N-Gram Feature Extraction Based on CNN

Convolutional neural networks were originally applied to computer vision to capture local
features [27]. CNN architectures have gradually shown effectiveness in various NLP tasks, and
have been used for feature extraction in previous studies, which show that they have the capability
of capturing features by themselves [31]. Due to the extremely complicated patent language and
hierarchical classification scheme, many previous studies have had to design sophisticated feature
extractors to achieve competitive performance for the task. While patent documents are often lengthy
and full of technical and legal terminology, it has become a highly impracticable and almost impossible
task for people who are not from this domain. Therefore, we employ a CNN-based model (see Figure 1)
to extract n-gram features from patent texts.
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Figure 1. Convolutional neural network with multiple convolutional filters for n-gram
feature extraction.

We transform each input text into the concatenation of all word vectors, each of which is a word
embedding that captures the syntactic and semantic meanings of the word. In this way, we can
represent the input text as a vector sequence V = {v1, v2, . . . , vn}. The vector sequence V can be
converted into a matrix T ∈ Rs×d, where d is the dimension of the word embedding and s is the length
of the text. After encoding the input text, we use a convolutional layer to extract the local features,
then apply max-pooling and a non-linear layer to merge all local features into a global representation.

Specifically, the convolutional layer extracts local features by sliding continuously window shaped
filters with full rows of the matrix T. The width l of the filters is the same as width d of the word
embedding. The height h of filters is a number of adjacent rows. Empirical research demonstrates that
sliding filters over 2–5 words at a time could achieve strong performance [31]. The filters slide over
matrix A and perform convolutional operations. Let T[i : j] denote sub-matrix of T from row i to row j;
wi denotes the i-th filter. Formally, the output of the convolutional layer for i-th filter is computed as:

oi = T[i : i + h− 1]⊗ wi (1)

ci = f (oi + b) (2)

where ⊗ is element-wise multiplication, ci is the feature learned by the i-th filter, b is the bias, and
f is the activation function that can be sigmoid, tangent, etc. In our case, we chose Rectified Linear
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Unit ReLU as the nonlinear activation function. After that, we combine all local features map c
via a max-pooling function. The max-pooling function applies to each feature map ci to reduce the
dimensionality and capture the highest value from the features. For n filters, the generated n feature
maps can be treated as the input of BiLSTM,

W = {c1, c2, . . . , cn} (3)

Here, comma represents column vector concatenation and ci is the feature map generated with
the i-th filter.

3.2. Long Dependency Feature Extraction Based on Bidirectional LSTM

The LSTM has a series of repeating modules of a neural network for each time step as in standard
RNN. At each time step, the cell state ct (old hidden state ht−1, the input at the current time step xt)
is controlled by a set of gates, the forget gate ft, the input gate it, and the output gate ot. These gates
using previous hidden state ht−1 and current input xi to jointly make decide how to update the current
memory cell ct and the current hidden state ht. The LSTM transition functions are defined as follows:

Input gates:
it = σg(Wi ⊗ [ht−1, xt] + bi) (4)

Forget gates:
ft = σg

(
W f ⊗ [ht−1, xt] + b f

)
(5)

tput gates:
ot = σc(Wo ⊗ [ht−1, xt] + bo) (6)

Cell states:
ct = ft ⊗ ct−1 + it ⊗ qt (7)

Cell outputs:
ht = ot ⊗ σc(ct ) (8)

Here, σg is the logistic sigmoid function f (x) = 1
1+e−x , that has an output in [0, 1], σc denotes a

hyperbolic tangent function, and ⊗ denotes the element-wise multiplication.
The LSTM is designed for learning long-term dependencies of time-series data, and it is especially

true in the case of bidirectional long–short-term memory networks (BiLSTM), since BiLSTM enables us
to classify each element in a sequence while using information from that element’s past and future.
Figure 2 shows the architecture of BiLSTM. Therefore, we choose BiLSTM to stack to the convolution
layer to learn such dependencies in the sequence of higher-level features.
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3.3. The Architecture of the Hierarchical Feature Extraction Model and Algorithm

Based on the analyses above, a hybrid neural network model based on convolutional and long
short-term memory neural networks, is proposed. The architecture of hierarchical feature extraction
model (HFEM) is shown in Figure 3, and the algorithm can be detailed as follows:

Input: Narrative text in patent documents.
Output: Probabilities of IPC labels for each patent document.

(1) Split the document into four sections, keep the top 150 words of each section.
(2) Initialize the text with pertained word embedding by looking up the word embedding lookup

table, then each patent document is represented by four matrices with dimension 150 × 100.
(3) The four matrices are fed in to four independent CNN channels, each channel applies 128 filters

with the dimensions of 3 × 100. The convolutional operation converts four input channels into
four feature maps with the dimension of 148 × 128.

(4) Concatenation, maximum, average, and summation strategies are employed to join the feature
maps. After four concatenation operations, four kinds of feature maps are obtained with the
dimension of 592 × 128, 148 × 128, 148 × 128, and 148 × 128 respectively.

(5) The four feature maps are fed into four BiLSTM networks with 128 forward and backward LSTM
neurons. After the BiLSTM network, each feature map is reduced to a matrix of 1 × 256.

(6) Sigmoid function is utilized to calculate the feature vector’s probabilities for each label.
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Since each patent document consists of multiple narrative text sections, the classification model
should take various sections into account. We apply a CNN to extract n-gram features from mechanical
patent documents with consecutive window filters. After that, we combine all the local n-gram feature
maps extracted from different sections, via four kinds of concatenation strategies to concatenate local
features into global ones. Especially, we did not employ a max-pooling layer to the convolutional
network due to the fact that a max-pooling operation will break the continuous sequence organization
of selected features. However, the BiLSTM is explicitly designed for sequence data. We do not apply
pooling after the convolution operations since we stack the BiLSTM on top of the CNN.

After the CNN layer, the four channel inputs have been converted into four feature maps. We use
Wtitle, Wabstract, Wclaims and Wdescription to denote the feature maps from the four input channels,
respectively. Then we employ concatenation, maximum, average and summation strategies to
concatenate features into global ones.

WCON = Wtitle ⊕Wabstract ⊕Wclaims ⊕Wdescription (9)
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Here, ⊕ denotes the matrix concatenation operation and WCON denotes the result after
concatenation operation, so the shape of the WCON matrix will be four times that of the feature map.

WMAX = MAX(Wtitle, Wabstract, Wclaims, Wdescription) (10)

where the MAX() operation selects the maximum value from each feature map.

WAVE = AVE(Wtitle, Wabstract, Wclaims, Wdescription) (11)

where the AVE() conducts the sum operation of each feature map first, then averages the value.

WSUM = Wtitle + Wabstract + Wclaims + Wdescription (12)

Here, + denotes the summation operation and WSUM denotes the sum of each feature map. Then,
the WCON , WMAX, WAVE and WSUM channel features are fed into the BiLSTM jointly. Our approach
is different from those methods that use multi-layer CNNs and train the CNN and LSTM separately.
We treat the model as an entire network and train the CNN and BiLSTM layers simultaneously.
We adopt Adaptive Moment Estimation (ADAM) [32] to minimize the objective function to solve
the optimization problem. For the training procedure, we randomly feed the model with a batch of
training set until the results converge.

4. Datasets and Evaluation Metrics

In order to check the performance of the proposed algorithm, we established the training,
validation and test datasets, all of which are subsets of the CLEF-IP 2011 dataset [33]. The CLEF-IP 2011
dataset consists of more than 2.6 million patent documents from the European Patent Office (EPO) and
400,000 patent documents from the World Intellectual Property Organization (WIPO), representing of
1.35 million (each patent may consist of multiple patent documents) patents filed between 1978 and
2009. These 1.35 million patents contain three kinds olanguage contents, namely English, German,
and French.

Generally speaking, a patent document includes bibliographic information, a title, document
number, issued date, patent type, classification information, a list of inventors, a list of applicant
companies or individuals, abstract, claims section, and a full-text description. More specifically, the title
of a patent indicates the name of the patent; the abstract part gives a brief technical description of the
innovation; the patent type explains the patent type, and the classification part presents one or multiple
class labels. The claim section’s main function is to protect the inventors’ rights. The description section
describes the process, the machine, manufacture, composition of matter, or improvement invented, a
brief summary and the background of the invention, the detailed description, and a brief description
of its application. The documents also contain meta-information on the assignee, date of application,
inventor, etc.

In our experiments, we extracted records from the CLEF-IP 2011 dataset that contain at least one
IPC-R classification label, which belongs to section F and the title, abstract, claims, and description
textual content in English, namely M-CLEF. Figure 4 shows the yearly distribution of the patent
document quantities in the M-CLEF dataset. In the IPC hierarchic taxonomy, section F includes
patent applications ranging from the mechanical engineering, lighting, heating and weapons fields.
All different document versions for a single patent are merged into a single document with fields
updated from its latest versions. After data cleaning, the final M-CLEF dataset consists of 107,302
patent documents. In order to approach a realistic patent classification scenario, we split the dataset
into training, validation, and test datasets based on time, so that patents in the training and validation
datasets have timestamps earlier than those in the test datasets. More specifically, we used the patents
published during 2006 to 2008 as test data and randomly split the rest of patents (all before 2006) into
80% and 20%, as training and validation datasets, respectively. Table 1 shows the detailed numbers
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for each dataset used in our experiments. We conduct a series of experiments on the multi-label
patent classification task. On average, each patent in the training set has 1.4 classification labels at the
subclass level.Sustainability 2018, 10, 219 9 of 22 
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Table 1. Brief information of the training, validation and test datasets.

Datasets # of Documents Average # Labels per Document # of Categories

Training dataset 72,532 1.4 96
Validation dataset 18,133 1.4 96

Test dataset 2679 1.5 93

The M-CLEF dataset consists of the four sections of subset title, abstract, claims, and description.
In previous studies, researchers found that methods based on only patent title and abstract score lower
than those based on the full content of patent documents [34]. Therefore, we used the entire document
content as different input channels for our models to determine the effect of various sections in the
patent content on the classification performance.

Figure 5 shows the detailed text preprocessing procedure and research framework. First of all,
we selected the patents from the CLEF-IP 2011 dataset, which are filled in English and belong to
section F. Then, we conducted the followings text preprocessing procedures on the selected patent texts
(M-CLEF): (1) Remove all punctuation and convert to lowercase; (2) Replace all contiguous whitespace
sequences with a single space; (3) Separate unrelated blocks of text with a newline character. After
these text preprocessing procedures, the M-CLEF dataset was converted to the M-CLEF corpus. Then
the corpus was fed to the CBOW model to train word embeddings. The remaining descriptions of
Figure 5 are presented above.

For each experiment, we used the followings evaluation metrics to evaluate various methods,
since we conducted multi-label patent classification experiments. Firstly, we predicted one, five and
10 IPC labels for each patent document respectively. Then we calculated Precisonweighted, Recallweighted,
and F1weighted for each prediction.
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For each patent document, the number of outcome labels of our approach (prediction labels) that
matched the available IPC labels (available labels), without taking the exact order into account, are
considered to be true positives (TP). False positives (FP) are the labels predicted by our approach that
do not match the available IPC labels. As false negatives (FN), we considered the labels that should
have been predicted by our approach, but were not. True negatives (TN) are the labels that, correctly,
were not predicted by our approach. Then the precision and recall could be calculated as follows:

Precisonscore =
|available labels∩ prediction labels|

|prediction labels| (13)

Recallscore =
|available labels∩ prediction labels|

|available labels| (14)

After calculating each Precisonscore and Recallscore for each patent, then the weighted average
Precisonweighted, Recallweighted and F1weighted can be calculated as follows:

Precisonweighted =
1

Total Samples

Total Samples

∑
i=1

Precisoni (15)

Recallweighted =
1

Total Samples

Total Samples

∑
i=1

Recall i (16)

F1weighted = 2×
Precisonweighted × Recallweighted

Precisonweighted + Recallweighted
(17)

The Precisonweighted, Recallweighted and F1weighted are denoted as P, R, and F1 respectively. We use
# to denote the number of topmost labels returned by the model, and then we can denote the measures
as P@#, R@#, and F1@# respectively.
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5. Performance Analysis of HFEM with Different Concatenation Strategies

Since the concatenation strategies influence the performance of our algorithm, we implemented
the HFEM with different concatenation strategies using Keras [35], a Python deep learning library,
which supports efficient symlic dntiation and transparent use of a Graphics Processing Unit (GPU).
To benefit from the efficiency of parallel computation of the tensor, we trained the model on a GPU.

First, since the convolutional layers in our model demand fixed-length inputs, we used
MAX_LEN to denote the maximum length of text for each input section in the training and test dataset.
We employed the CBOW algorithm [36] to pre-train our M-CLEF corpora into word embeddings, with
a dimensionality of 100, 200, and 300.

We initialized each section text that had a length less than MAX_LEN with a
(MAXLEN − CURLEN) × d zero vector at the end of the representation matrix. Nevertheless, for
the texts which had a length longer than MAX_LEN, we simply cut extra words at the end of these
texts to reach MAX_LEN. Therefore, all text was converted to representation matrixes of the same
shape. The shape of the final matrices is MAX_LEN × d. For the classification labels, the whole
number of categories in the M-CLEF dataset was 96. Each patent had at least one classification label.
In the case of multi-label classification task, we represented the joint set of labels with a binary indicator
matrix. For example, given several patents with labels as follows—p1 = {F03G}, p2 = {F16B, F16L},
p3 = {F16B}—the label set should be S = {F03G, F16B, F16L}. Each patent could be represented as

one row of the label matrix with binary values; the label matrix

 1 0 0
0 1 1
0 1 0

 represents label F03G

in the first patent, labels F16B and F16L in the second patent and labels F16B in the third patent.
The non-zero elements correspond to the subset of labels.

In order to determine which concatenation strategy offered the best effect, we implemented four
versions of HFEM with different concatenation strategies. The detailed configuration parameters are
listed in Table 2. Each variant of HFEM takes four input channels and each channel uses 150 word
vectors to concatenate into a text matrix of 150 × 100. A total of 128 convolutional filters with size
of 3 × 100 were applied in the convolutional layer and a ReLU function was subsequently used as
the non-linear activation function. Then the concatenation strategy was employed to concatenate
the extracted feature maps. The jointed feature maps were fed to BiLSTM, consisting of 128 forward
and backward LSTM neurons. Finally, a fully-connected layer with sigmoid activation was used to
calculate the probabilities of 96 IPC labels.

Table 2. The parameters of the HFEM model.

HFEM

channel names title abstract claims description
training epochs 40

input size 150 × 100 150 × 100 150 × 100 150 × 100
# of filters 128
filter size 3 × 100

activation layer ReLU
concatenation strategies Concatenation Maximum Average Summation

memory size 128
activation layer Sigmoid

# of target classes 96

Five experiments were conducted to determine which concatenation strategy can provide the
best performance, and the statistical results are shown in Table 3. As we can summarize from Table 3,
the single channel HFEM achieved decent results, taking the entire text as the single channel input.
At the same time, all the other four multi-channel variants of HFEM improved the performance in
nine evaluation metrics. In the scenario of predicting one IPC label for each patent, the concatenation
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scheme obtained the best performance for three evaluating criteria, namely improving the precision,
recall and F1 scores by 1.61%, 0.42% and 1.17%, respectively, compared with the single channel HFEM.
The maximum scheme had a slight advantage in predicting five IPC labels for each patent, and
achieved the best performance for two out of three criteria. Regarding the prediction of 10 IPC labels,
the best performance was achieved by different concatenation schemes. Nevertheless, we found that
the concatenation scheme obtained the best performance in five out of nine evaluation metrics. Hence,
we choose the HFEM with concatenation scheme as our ultimate version model for all experiments.

Table 3. Performance of HFEM with different strategies using the narrative text as input.

Strategies
Precison

Top 1
(%)

Precison
Top 5
(%)

Precison
Top 10

(%)

Recall
Top 1
(%)

Recall
Top 5
(%)

Recall
Top 10

(%)

F1
Top 1
(%)

F1
Top 5
(%)

F1
Top 10

(%)

Single channel 78.93 31.31 18.21 54.57 89.49 94.6 62.8 45.26 29.71
Concatenation 80.54 31.69 19.04 54.99 90.28 95.59 63.97 46.55 30.8

Maximum 79.81 31.92 19.28 54.77 91.05 96.01 63.52 46.32 30.22
Average 80.26 31.63 19.02 54.89 90.67 95.98 63.58 46.1 30.69

Summation 80.21 31.88 19.04 54.87 90.88 96.31 63.65 45.95 30.82

6. Comparison and Analysis with Other Methods

In this section, we first describe the implementation of three baseline models for the classification
task, consisting of CNN, LSTM, and BiLSTM, then give a detailed description of how to conduct the
experiments. Five groups of experiments are carried out to validate the feasibility and effectiveness of
our HEFM model, and then the results and related analyses are presented.

6.1. Experimental Setup

We compare the HFEM with the following baseline neural network models for mechanical
patent classification.

1. CBOW+CNN: We converted patent text using word embeddings pre-trained with the CBOW
algorithm into the input matrix and then trained a CNN model with 128 filters for classifying
mechanical patent documents.

2. CBOW+LSTM: We converted patent text using word embeddings pre-trained with the CBOW
algorithm into the input matrix and then trained an LSTM model with 128 memory LSTM units
for classifying mechanical patent documents.

3. CBOW+BiLSTM: We converted patent text using word embeddings pre-trained with the CBOW
algorithm into the input matrix and trained a BiLSTM model with 128 forward and backward
LSTM units for classifying mechanical patent documents.

The detailed hyper-parameters are listed in Table 4. For each baseline method, the training epoch
was fixed to 40, and the number of input words was set to 150 when only taking one section from the
entire patent document. The number was set to 600 when the entire text was used by the model, and
finally, a fully-connected layer with sigmoid activation function was connected to 96 categories from
the IPC label matrix.

Table 4. Hyper-parameters for baseline methods.

Hyper-Parameters CNN LSTM BiLSTM

training epochs 40 40 40
input size 600 × 100 600 × 100 600 × 100
# of filters 128 - -

memory size - 128 128
max-pooling size 2 - -
# of target classes 96 96 96
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6.2. Experimental Results and Discussion

We conducted a series of experiments on our HFEM and the baseline models, using the entire
narrative text from the M-CLEF dataset. The results are shown in Figures 6–11 and Tables 5 and 6.

According to Figure 6, it can be seen that HFEM obtained approximate precision, recall, and F1
scores of 81%, 55%, and 64%, respectively, while the best performance of the three baseline models
was 78%, 52%, and 64%.This indicates that HFEM improved the performance by 3% in terms of the
three evaluation criteria. Figure 6a illustrated the precision scores achieved by four models. HFEM
showed its overwhelming advantage in precision when compared with the three baseline methods.
Besides, HFEM also demonstrated its superiority in recall, as shown in Figure 6b. From the evaluation
criterion of F1, the four approaches show very similar performance in terms of precision and recall,
and the results are displayed in Figure 6c. Furthermore, as we can see from Figure 6, the HFEM model
converged faster than the three baseline models. The precision, recall, and F1 scores for HFEM tended
to converge before 15 epochs, while the other models needed at least 20 epochs to reach steady state.

In addition, we report the performance of these four models for nine evaluation indictors in
Table 5. HFEM obtained the best performance in predicting one label for each patent document as well
as in predicting five and ten labels. The experimental results demonstrate and verify the feasibility
and effectiveness of our HFEM model for mechanical patent classification.

Moreover, we were interested in understanding which section in the patent document has more
representative features for classification. We conducted a series of orthogonal experiments by separately
using four sections as input and four models as classifiers. More specifically, we used the title, abstract,
claims and description separately as input for the CNN, LSTM, BiLSTM, and HFEM models.
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Table 5. Results of various models using the narrative text as input.

Algorithms P@1% P@5% P@10% R@1% R@5% R@10% F1@1% F1@5% F1@10%

CNN 71.34 29.89 17.43 50.08 86.81 92.93 57.02 43.09 28.35
LSTM 74.44 30.53 18.44 51.96 86.14 92.96 59.26 43.72 29.73

BiLSTM 77.71 30.96 18.83 53.57 88.1 94.67 61.55 44.53 30.24
HFEM 80.54 31.69 19.04 54.99 90.28 95.59 63.97 46.55 30.8

First of all, we used the title section as the input for the models. Figure 7 illustrates the performance
of the four models on the title section. From the figure, we can find that the LSTM model achieved
quite poor performance whether in terms of precision (see Figure 7a), recall (see Figure 7b), or F1 score
(see Figure 7c). The CNN and BiLSTM models obtained decent results, while the convergence of CNN
was faster than the other models. Although the convergence of our HFEM model was not as fast as
CNN, after 10 epochs, it began to achieve comparable results. After 20 epochs, our model began to
outperform the other methods. The best precision of our model was around 72%, while it was only 5%
for LSTM. We inspected the M-CLEF dataset and found the title section in the patent documents to
be quite short. On average, there are less than ten words in the title section, which explains why the
LSTM model achieved poor performance.
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Then, we conducted experiments using the abstract section. Figure 8 shows the performance of the
four models on the abstract section. As illustrated in Figure 8a below, the best performance for precision
achieved by each model was 60.4%, 63.1%, 67.2%, and 70.3%. At the very beginning, the BiLSTM and
CNN models performed better in recall than HFEM, but the HFEM model obtained better recall scores
than the others after 15 epochs (see Figure 8b). Furthermore, we found that the curves of Figure 8c are
not as smooth as in Figure 7c. After inspecting the M-CLEF dataset, we found that some documents
have a missing abstract section, which may have led to the unsmooth curve phenomenon.
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Figure 8. Performance of four models using the abstract section as input.

After that, the claims section was used in the following experiments. Figure 9 illustrates the
performance of the four models using the claims section as input. As shown in Figure 9a, for the first
10 epochs the CNN and BiLSTM models converged rapidly with decent precision scores, while after
15 epochs HFEM began to show its superiority. The LSTM approach obtained a precision score of at
least 70%, but the CNN model performed worse than the others. We can find similar phenomena in
Figure 9b, where the CNN, LSTM and BiLSTM models show better convergence in the recall scores,
but HFEM achieved the best performance at last. Figure 9c shows the F1 scores achieved by the four
models, after 25 epochs the four curves reached a relatively steady state. We found that our HFEM
model slightly improved the precision, recall, and F1 results. Our results show that the claims section
can produce better classification performance as it contains more information than the title or the
abstract section.
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Figure 9. Performance of four models using the claims section as input.

Furthermore, we used the description section as the input for the four models. Figure 10 displays
the performance achieved by these four models. We found that using the description section as the
input for the models could lead to relatively decent performance. As a result, all the approaches
achieved precision scores of more than 70% (see Figure 10a). In addition, our HFEM model achieved
the best performance among all the approaches. Compared to previous experiments, using the
description section can obtain better performance for all models, because the description section
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consists of more information than the title, abstract or claims sections. Therefore, it can be concluded
that the description section has the most discriminating features for mechanical patent classification.
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Figure 10. Performance of four models using the description section as input.

According to the five experimental results above, we summarize all detailed experimental results
in Table 6. As shown in the table, when predicting one label for each patent document, HFEM achieved
better performance in all evaluation metrics regardless of which input scheme was used.
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Table 6. Results of various models using the narrative text as input.

Metrics Algorithms
Input Schemes

Title Abstract Claims Description Entire Text

Precision
Top 1

CNN 68.67% 60.36% 67.54% 73.21% 71.75%
LSTM 3.08% 62.68% 71.60% 76.98% 73.82%

BiLSTM 71.22% 65.19% 74.16% 79.22% 77.02%
HFEM 72.22% 69.09% 74.81% 79.62% 81.55%

Recall
Top 1

CNN 46.98% 13.44% 41.19% 43.79% 50.07%
LSTM 4.54% 13.74% 42.44% 45.46% 51.96%

BiLSTM 48.66% 13.89% 43.75% 46.50% 53.58%
HFEM 49.06% 14.18% 43.81% 47.29% 55.02%

F1
Top 1

CNN 53.85% 16.26% 48.43% 51.91% 57.02%
LSTM 0.81% 17.16% 50.80% 54.36% 59.27%

BiLSTM 55.40% 17.54% 52.37% 55.98% 61.55%
HFEM 56.18% 18.73% 52.38% 56.55% 63.60%

Next, we provide a comprehensive comparison of the performance of the four models under five
input schemes, as shown in Figure 11, which shows that our HFEM model outperformed the other
models under the same circumstances. From Figure 11a, we can see that HFEM has a slight advantage
when using the title, claims, and description section. Moreover, it shows a clear superiority in terms of
precision when using the abstract section and entire text. From the view of the recall score (Figure 11b),
HFEM still demonstrates its advantages. Additionally, the F1 scores of all these methods show similar
trends (Figure 11c). Since HFEM can take benefits from the CNN and BiLSTM model, thus it could
maximally leverage the local lexical-level and global sentence-level features from patent texts.
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Besides, we found that algorithms using the entire text as input outperformed those that only
used a single section of patent documents. We also found that when the claims and description section
are used as input, all algorithms can achieve decent performance, no matter which model is used.
When only the title and abstract sections are separately used, it leads to relatively low recall and
F1 scores, especially for the LSTM model. When we investigate further, we found that the title and
abstract sections usually contain less than 100 words, particularly for the title sections. This means that
to achieve competitive performance in patent classification, enough information is required, regardless
of which model is used.

7. Conclusions

This study proposed HFEM for multi-label mechanical patent classification, which does not rely
on sophisticated feature engineering, external language knowledge or complicated pre-processing.
The results of extensive experiments on the M-CLEF dataset showed that our approaches can improve
the classification performance of three baseline models, all of which are single neural network models.

A number of insights were obtained when we tried to investigate the features of our algorithm that
led to its better performance. We found that in the architecture of the HFEM model, the CNN layers
are in charge of capturing salient local lexical-level features, while the BiLSTM layer learns long-term
dependencies from sequences of higher-level representations in the patent text. Therefore, our
proposed model can take full advantage of both CNN and BiLSTM to make significant improvements
in precision, recall and F1 scores, respectively.

Secondly, we found that algorithms with the entire text as input always achieved better
performance. When the claims and description sections were used, decent performances were
obtained. Finally, the title and abstract sections when used as input separately all led to relatively
low scores. Simply concatenating four sections as input provided a clear performance improvement
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for all tested patent classifiers. However, our experiment results with HFEM showed that more
significant improvement can be achieved when we separately apply CNN to extract features from four
channels and then use various concatenation strategies to jointly concatenate feature maps as an input
of BiLSTM. The experiment results indicate that our hybrid model can take full advantage of the entire
patent text.

Several additional studies are planned in our future work. One is adding meta-information to
improve the classification performance. Beyond that, classifying a patent to the lowest IPC level is
a crucial step in building a complete multi-label IPC auto-classification system. We plan to design a
hierarchical algorithm, which uses both narrative text and meta-information as input.
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