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Abstract: Steppe is an indispensable component for terrestrial ecosystems and it is of great
significance to systematically analyze steppe sustainability and its driving forces. In this study,
we propose a steppe dynamics ranking method based on Pauta criterion and a steppe sustainability
assessment method with an effect matrix. The natural driving forces on steppe sustainability were
systematically analyzed using the copula model, and the anthropogenic driving factors, including
land use, were analyzed by using spatial overlay and statistical analysis methods. The results
showed the following: (1) in general, steppe sustainability showed a trend of improvement
from 2001 to 2010 in China. However, there were still some degraded areas scattered within the study
area; (2) the consistent effect of steppe dynamics on steppe sustainability was significant on the whole,
although there was a diverse effect on it; (3) among the natural factors, precipitation was the strongest
positive driving force, followed by temperature average, while sunshine duration had strong negative
driving force. The impact caused by land use factors was controlled during that decade, and the steppe
land that evolved from urban and built-up land, cropland, and forest was vulnerable and resulted in
steppe sustainability degradation.

Keywords: steppe sustainability; steppe dynamics; copula; Pauta criterion; effect matrix

1. Introduction

The natural steppe accounts for nearly 40% of terrestrial area in the world [1–3], offers ecological
service functions [4], and plays an important role in ecosystem balance and sustainability [5–9].
However, population growth and economic development during the past few decades [10–12],
rapid urbanization [13–15], excessive deforestation [16,17], massive land reclamation [6,9] and
overgrazing [3,7] have made substantial changes to steppe landscapes and ecosystem functioning.
These human disturbances, coupled with poor natural conditions, have left to approximately 49.25%
of steppe land worldwide suffering from degradation, with nearly 5% of these steppes suffering from
serious degradation [18]. As a result, the sustained development of desertification in some areas has led
to serious environmental and ecological health problems [8,19–24]. Therefore, it undoubtedly is of great
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significance to systematically assess the dynamics of steppe sustainability and reveal the natural and
anthropogenic driving forces for promoting the sustainable development of the global steppe.

Central and Inner Asia is a major dust source and transport region with the potential for significant
impact on human populations, and one reason for the worsening desertification in this area is
steppe degradation caused by natural or anthropogenic factors [18,19]. China has 8% of the world’s
steppe area and is an indispensable component of the Eurasian steppe [7,19,25]. Extending from
northeast to southwest China, the steppe forms a natural ecological barrier [7,26], cultivates important
husbandry bases [22,24,27], constitutes a massive gene pool of flora and fauna [28], and is the original
location of “one belt and one road” initiative [29]. However, because the steppe is mainly located
in arid, semiarid, or desertified regions in China, it is very fragile and vulnerable to the impact
of natural and anthropogenic factors [7,7,19,19–21,25,25,30]. On the other hand, if the steppe in
China improves continuously, it will help reduce dust in the Asian inland and be beneficial to the health
of the population [19,25]. Therefore, the scientific significance of the research on Chinese steppe
sustainability and its driving forces is not only limited to China, but also extends also to the ecological
health of Asia and the world.

Previous studies have focused on steppe monitoring by field sampling and remote sensing [31–35],
while research on monitoring and assessing steppe sustainability systemically and effectively is rare
and hence remains imperative. The traditional methods of field sampling monitoring have gradually
become auxiliary due to their great cost, their long duration, and their small range [36]. Meanwhile,
remote sensing has become the most widely used method for steppe dynamics monitoring due to
the advantages of wide range, short time cycle, and low cost [7,35,37–40]. In recent research, NDVI
has been the most commonly used indicator for monitoring steppe dynamics [17,41–49], and NPP
was the most commonly used indicator for monitoring dynamics of steppe sustainability [33,50–55].
Although NDVI and NPP are applied as steppe monitoring indicators at different spatial scales,
there are still some problems to be solved. The system analysis method with NDVI and NPP remains
to be studied with respect to the effect of steppe dynamics on steppe sustainability [56]. The dynamics
of steppes and steppe sustainability were subjectively ranked in previous studies [23,48,57,58], but there
is no ranking standard or standardized method for assessing the dynamics.

The dynamics of a steppe constitute a complicated ecological process that is influenced by
natural factors and anthropogenic factors and accurate analysis of driving forces on dynamics
of steppe sustainability remains difficult [9,31,40,59]. The most popular method for driving factor
analysis is to distinguish between natural factors and anthropogenic factors in steppe sustainability
changes, by calculating the difference between actual and potential NPP. However, this method is
crude, and erroneous conclusions can be made in some scenarios [18,40,60–64]. Linear regression
and linear correlation analysis are another of the most commonly used methods for assessing
the contributions of natural factors and pasture density to steppe degradation [48,54,63,65,66].
However, steppe sustainability degradation is very complicated [18,55], and its relationships with
these factors are usually nonlinear, so the appropriate result is often distorted when linear modeling is
utilized in analysis. Therefore, the possibility of using nonlinear models to analyze the driving forces
should be explored.

Based on the above, the main goal of this study is to propose a system of analysis methods
for assessing the steppe sustainability and its driving forces and to provide decision support for
sustainable steppe development. In the following sections, the dynamics of steppe sustainability
will be assessed by taking Chinese steppe from 2001–2010 as a study case. Then, the driving forces
of steppe sustainability will be analyzed in terms of both natural factors and anthropogenic factors.
Finally, the method and the research findings will be discussed in detail.
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2. Materials and Methods

2.1. Study Area

The steppes in the north and west of China account for 85% of the total steppe resources in China and
have obvious regional characteristics [67]. Because of this, we chose the steppe land in China as the study
area in this paper (Figure 1). In these steppe areas, the main types of arid/humid regions include arid,
semi-arid, semi-humid, semi-humid/humid and humid. The area of the study area totals 188,515 km2,
and the site’s spatial extents are 3.86◦N–53.55◦N and 73.66◦E–135.05◦E, crossing 20 provinces in northern
and western China (Figure 1). The main land use types include steppe, wetland, woodland, waters,
town and county, industrial and mineral, residential land, and farmland. The steppe in the research
site contains six husbandry bases in China [24], and the livestock carrying capacity and ecological
balance are significantly impacted by natural factors such as precipitation and air temperature, as well as
human-caused factors including land use and overgrazing. The Chinese government started to carry out
projects and programs in 2000 to protect the steppe ecosystem and realize the goal of reasonable utilization
and sustainability for steppe resources [68]. However, few comprehensive studies were conducted to
determine the pattern of steppe dynamics, its effects on steppe sustainability, and its driving factors at
a regional scale within the study area in the 21st century [32,61,69].
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2.2. Data Source and Processing

MODIS land-cover data from 2001 to 2010 were derived from the USGS website https://lpdaac.usgs.gov.
The spatial resolution of the data was 1 km × 1 km, and the data format was HDF. The MODIS tiles
were mosaicked and projected to WGS84 with MODIS Reprojection Tools (MRT). The classifications
of land-cover in the data were combined into 7 classes: water area, forest, steppe, farmland, urban and
built-up land, bare land, and others. The steppe regional data was acquired with land-cover data for
that decade, and the desert regions without steppe land in northwestern China were removed from
the data (Figure 1).

https://lpdaac.usgs.gov
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NDVI and NPP data was the MODIS annual average productions derived from the NASA website
http://modis.gsfc.nasa.gov. The spatial resolution of the data was 1 km × 1 km, and the data format
was HDF. The MODIS tiles were mosaicked and projected to WGS84 with MRT. We applied the steppe
regional data as a mask to execute mask extraction for NDVI and NPP data so that the two types
of data would have an identical spatial extent.

The meteorological data was derived from the China Meteorological Data Service Center
(CMDC) website http://data.cma.cn. For this study, we downloaded the air temperature (0.1 ◦C),
precipitation (0.1 mm), and sunshine duration (1 h) data, obtained from 758 meteorological
stations between January 2001 and December 2010, and we calculated the annual average value
of the meteorological data. Then, we applied the ordinary Kriging method to construct a spatial
interpolation for the climate data. To select semi-variant models for ordinary Kriging, we conducted
cross-validation experiments and found that a spherical model was suitable for temperature data and
the Gaussian model was suitable for sunshine duration and precipitation data. Finally, we applied
the steppe regional data as a mask to execute mask extraction for the interpolated meteorological
data to give the data an identical spatial extent.

The basic geographic data—including China’s national and provincial boundaries, geomorphic data,
and aridity/humidity distribution data—was provided in shapefile format by the Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences (RESDC) website http://www.resdc.cn).

2.3. Assessing Methods on Dynamics of Steppe Sustainability

Steppe dynamics directly affect steppe sustainability, and the dynamics of steppe sustainability
can be well understood by looking at steppe dynamics and their effect. The most popular methods used
recently are to monitor Steppe dynamics with NDVI [17,41–49] and to monitor dynamics of ecosystem
productivity with NPP [33,50–55]. In addition, the most important indicator of steppe sustainability is
ecosystem productivity; therefore, steppe dynamics has been monitored with NDVI, and the dynamics
of steppe sustainability were assessed with NPP in this study. Then, the effects of steppe dynamics on
steppe sustainability were assessed using an effect matrix that we proposed.

2.3.1. Monitoring Method on Steppe Sustainability Dynamics

Standard deviation is a very important parameter for exploratory data analysis [70] and it
has been used successfully to predict the requirement of reserve for wind power [71], appreciate
the reliability of measures in sports medicine and science [72], assess agreement between methods
of clinical measurement [73], estimate noise levels of image, and so on. According to the Pauta criterion,
the standard deviation (namely mean square error in error analysis) multiplied by 1, 2, and 3 can
reflect the fluctuation of NDVI or NPP difference data with different degrees or confidence [74–76],
where positive fluctuation denotes an improved case and negative fluctuation denotes a degraded case.
As a result, the standard deviation can be used as the indicator when evaluating the steppe dynamics.

Firstly, the difference values (NDVI-DV, where DV means difference values) between the NDVI
data in adjacent two years were calculated at the pixel level, and the dynamics of the steppe between
the adjacent two years were inferred with the NDVI-DV. The NDVI-DV obeys an approximately
normal distribution, so the steppe dynamics were ranked into five grades (significantly degraded,
slightly degraded, balanced, slightly improved, and significantly improved) based on Pauta criterion.
The threshold values, respectively, are −3σ, −σ, σ, and 3σ (σ is the standard deviation of NDVI-DV).

Similarly, the difference values (NPP-DV, where DV means difference values) between the NPP
data in two adjacent years were calculated and the dynamics of steppe sustainability were ranked into
five grades based on Pauta criterion.

2.3.2. Effect on Steppe Sustainability Analysis Base on Effect Matrix

Steppe dynamics have a certain effect on steppe sustainability, and the response of steppe
sustainability to this effect can be measured with the spatial correlation between NDVI dynamics

http://modis.gsfc.nasa.gov
http://data.cma.cn
http://www.resdc.cn
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and NPP dynamics [77,78]. In this study, we proposed a method for evaluating the effect of steppe
dynamics on the dynamics of steppe sustainability based on the effect matrix. The effect matrix,
defined as EMatST,SS, is comprised of effect estimations for each combination of steppe dynamics
grade and steppe sustainability grade, and the calculation equation was defined as Equation (1).

EMatST,SS =

 EST1,SS1 · · · EST1,SSn
...

. . .
...

ESTm ,SS1 · · · ESTm ,SSn

 (1)

ESTi ,SSj = ASTi ,SSj /ASSj (2)

In Equation (1), ESTi ,SSj refers to the effect of the grade i zones, in terms of steppe dynamics,
on the grade j zones, in terms of the dynamics of steppe sustainability (i = 1, · · · , m; j = 1, · · · , n).
In ESTm ,SSn , m refers to the number of grades of the steppe dynamics, and n refers to the number
of grades of the dynamics of steppe sustainability. In Equation (2), ASTi ,SSj refers to refers to
the common area between the grade i zone in terms of steppe dynamics and the grade j zones
in terms of the dynamics of steppe sustainability, while ASSj refers to the area of the grade j zones in
terms of the dynamics of steppe sustainability.

2.4. Analysis Methods on Driving Forces of Steppe Sustainability Dynamics

Precipitation, temperature average and sunshine duration are the key natural driving factors
and land use is one of the important anthropogenic driving factors of the dynamics of steppe
sustainability [18,40,55,60–64]. We analyzed the natural driving factors with a copula model based
on precipitation, temperature average and sunshine duration data, and analyzed the anthropogenic
driving factors with the difference analysis method of the land-cover class conversions.

2.4.1. Natural Driving Forces Analysis with Copula Model

Correlation between NPP and meteorological factors can be used to measure the driving
forces of meteorological factors on steppe sustainability [53,54]. However, steppe sustainability
degradation is very complicated, and its relationship with its driving factors is usually nonlinear [18,55],
so the appropriate result is often distorted when linear modeling is applied to make an analysis.
Compared to linear models, a copula model can be applied to analyze nonlinear correlation between
variables with the following advantages: (1) A copula model captures abnormal information by
visually displaying the tail features of the variable distribution, so it can capture abnormal information
about NPP and meteorological factors. (2) A copula model is suitable for variables obeying any type
of distribution, and (3) a copula model is powerful for analyzing the nonlinear correlation between
variables [79–82]. Recently, the copula model has been used to predict flooding using meteorological
factors [69,70] and applied with satisfactory results in geoscience, hydrology, finance, and other
fields [71–73]. Consequently, the copula model was a reasonable choice for analyzing correlations
between NPP changes and meteorological factors in this study.

NPP and precipitation are expressed as X and Y respectively. The process of analyzing driving
forces is based on a copula model and is described as follows. First of all, the marginal distribution
of the random variables X and Y is determined, and the determination methods of random variable
distribution include the parameter method and the non-parameter method. The parameter method
assumes that the random variable obeys some type of distribution with parameters, such as a normal
distribution or t distribution. Then, the parameters in the distribution can be estimated according to
the sample data. Finally, the estimated distribution is tested. When it comes to the non-parameter
method, the experience distribution function of the sample serves as the approximated distribution
of the population random variable, or the distribution of the population random variable is determined
based on the kernel density estimation according to the sample data. After the X marginal distribution
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(U = F(x)) and the Y marginal distribution (V = G(y)) are determined, the suitable copula model
can be selected according to the bivariate histogram. Specifically, the bivariate frequency number
histogram is drawn firstly, and then the frequency histogram is drawn on the basis of the frequency
number histogram. The Gumbel copula model can be selected to describe the correlation structure
of the data when the bivariate frequency histogram has asymmetric tails including high upper tail and
low lower tail. The normal copula model or the t~copula model can be applied when the bivariate
frequency histogram has symmetric tails. If the marginal distribution contains unknown parameters,
as may be the case when the Gumbel copula model is applied with unknown parameters, for instance,
then the unknown parameters should be estimated. The kernel distribution estimation method can be
applied to obtain the marginal distribution of the random variables X and Y, and then the copula fit
function can be called to estimate the unknown parameters. After the copula parameters are estimated,
the copula statistic function is called to obtain the Spearman rank correlation coefficient [83].

According to the result of the correlation analysis between NPP meteorological factors, the driving
forces of meteorological factors on steppe sustainability can be analyzed. The driving forces are stronger
when the correlation is larger and vice versa.

2.4.2. Anthropogenic Driving Forces Analysis Based on Land-Cover Class Conversions

Land-cover/use data is commonly applied to analyze the effect of anthropogenic factors on
steppe dynamics [84–88]. Land-cover/use data contains information on land use by humans,
which has a great effect on steppe sustainability. So the MODIS land-cover data can be applied
to analyze this effect. The MODIS land-cover data was classified into 17 classes (Table 1) defined
by the International Geosphere-Biosphere Programme (IGBP) [89,90]. In order to facilitate statistical
analysis, we condensed these 17 classes into 7 classes (Table 1), of which there were 3 classes (crop land,
urban and built-up land and forestland) related to land use. A spatial statistical method was applied
to analyze the conversion area between steppe and exploited and utilized lands. The differences
within the conversion area indicated steppe sustainability changes caused by land use factors. It is
abbreviated as the difference analysis method of the land-cover class conversions.

Table 1. Comparison between Reclassified classes and IGBP classes.

Reclassified
Class Codes

Reclassified
Class Names

IGBP
Class Codes

IGBP
Class Names

0 water area 0, 11, 15 Water area, permanent wetlands, snow and ice

1 forestland 1, 2, 3, 4, 5, 6, 7
Evergreen needle-leaved forest, evergreen broad-leaved forest,
deciduous needle-leaved forest, deciduous broad-leaved forest,

mingled forest, closed shrub land, open shrub land.

2 steppe 8, 9, 10 Multiple-tree grassland, savanna and grassland

3 crop land 12, 14 Crop land and the mosaic of crop and natural vegetation land

4 urban and
built-up land 13 Urban and built-up land

5 bare land 16 Bare land or low-vegetation coverage area

6 others 255 Unclassified area and charging value

3. Results

3.1. Dynamics of Steppe Sustainablitly in CHINA

The cumulative difference values of NDVI from 2001 to 2010 were calculated (Table 2),
and the mean value of the cumulative difference values was 0.01455, which indicated that steppe
had improved slightly in that decade. The difference values roughly obeyed a normal distribution,
and the standard deviation was 0.03097 (σ = 0.03097 and 3σ = 0.09291), which indicated that the steppe
was stable on the whole. In accordance with the Pauta criterion, the cumulative difference values were
graded into 5 ranks with the following threshold values: −0.09291, −0.03097, 0.03097, and 0.09291.
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As seen in Table 2, the ranks reflected the degree of steppe dynamics. The degraded the areas accounted
for 4.75% of the study area, while the improved areas accounted for 29.01%, so it could be concluded
that the steppe showed a general trend of improvement over that decade. As shown in Figure 2a,
the ranking map displayed the spatial distribution pattern of the dynamics. The degraded areas were
scattered among all types of geomorphic regions, while the improved areas were concentrated as a band
in the semi-arid and semi-humid regions in mainly the eastern and central parts of the study area.

Table 2. The areas of each rank of steppe dynamics and sustainability dynamics.

Rank Ranks of Dynamics
Steppe Sustainability

Area (km2) Percentage Area (km2) Percentage

1 Significantly degraded 2771.66 0.07% 25,733.25 0.67%
2 Slightly degraded 179,166.59 4.68% 139,729.44 3.65%
3 Balanced 2,538,072.19 66.31% 2,900,185.16 75.71%
4 Slightly improved 1,036,173.84 22.33% 696,596.70 18.19%
5 Significantly improved 74,230.11 6.68% 68,169.85 1.78%

The cumulative difference values of NPP from 2001 to 2010 were calculated (Table 2), and the mean
value of NPP was 209.32, which indicated that steppe sustainability in steppe increased slightly
during that decade. The difference values roughly obeyed a normal distribution, and the standard
deviation was 501.98 (σ = 501.98 and 3σ = 1505.94), which indicated that the steppe sustainability
was stable on the whole. In accordance with Pauta criterion, the steppe sustainability changes were
graded into five ranks with the threshold values −1505.94, −501.98, 501.98, and 1505.94. In Table 2,
the ranks reflect the degree of steppe sustainability dynamics. The degraded areas accounted for
4.32% of the study area, while the improved areas accounted for 19.97%, so it could be concluded that
the steppe sustainability also showed a general trend of improvement over that decade. As Figure 2b
shows, the ranking map displays the spatial distribution pattern of the dynamics. The degraded areas
were concentrated at the semi-arid regions in the south and middle of Greater Khingan Range and
the humid regions in Yunnan Plateau. The improved areas were continuously distributed as a band in
the humid regions north of the Yunnan Plateau and the Hanzhong basin; the humid and semi-humid
regions in the eastern Tibet-western Szechwan Plateau; the semi-humid regions in the Guanzhong
basin and southwest of the North China hills; and the semi-arid regions in the Qilian Mountains and
the Jin-Shan-Gan plateau.
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3.2. The Effect of Steppe Dynamics on Steppe Sustainability in China

We proposed a method for estimating the effect of steppe dynamics on steppe sustainability as
mentioned in the previous section. We began by calculating areas of different grade zones of steppe
dynamics and steppe sustainability dynamics (Table 2), and then we put the areas into Equation (1)
and obtained the effect matrix.

EMatST,SS =


0.01932 0.00522 0.00050 0.00012 0.00013
0.20624 0.17696 0.04464 0.02280 0.05574
0.69989 0.70957 0.74050 0.33912 0.54433
0.07445 0.10729 0.21114 0.55308 0.31760
0.00010 0.00096 0.00323 0.08488 0.08219

 (3)

Most of the diagonal values in the matrix were significantly larger than the off-diagonal values,
indicating that the steppe sustainability had significant response to steppe dynamics in general.
The equation EST3,SS3 = 0.74050 demonstrated that the stability of the steppe has played a key
role in the stability and sustainable development of ecosystem productivity. The values in the first
row of the matrix were decremental, and the first value was significantly larger than the other
values, indicating that the significant degradation of the steppe resulted in a significant degradation
of steppe sustainability. The values in the last row of the matrix were generally incremental,
and the sum of the last two values was significantly larger than the sum of the other values,
indicating that the significant improvement of the steppe resulted in the obvious improvement
of steppe sustainability. The off-diagonal values in the matrix measured the fluctuation of the effect
of steppe dynamics on steppe sustainability. The equations EST3,SS1 = 0.69989 and EST3,SS2 = 0.70957
indicated that significant degradation of steppe sustainability occurred in the balance zones of steppe;
in addition, and the equations EST2,SS4 = 0.02280 and EST2,SS5 = 0.05574 indicated that the slight
degradation of steppe could result in minor or significant improvement of steppe sustainability as
well. The fluctuation can be explained by the Carnegie Ames Stanford Approach (CASA) model
for calculating NPP, because the CASA model works with factors—including total solar radiation,
vegetation type, temperature, and water stress—in addition to NDVI. The off-diagonal values also
reflect the comprehensive role of factors other than single NDVI on steppe sustainability dynamics.

According to the effect matrix EMatST,SS, the effect of NDVI dynamics on NPP dynamics was
very great in the same directions, which indicated that the consistent effect of steppe dynamics on
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steppe sustainability was significant on the whole. However, there was also some effect of NDVI
dynamics on NPP dynamics in different directions, which meant that the effects of steppe dynamics on
steppe sustainability were diverse. The spatial distribution of the consistent effects and diverse effects
are shown in Figure 5. The blocks in black, red, sky blue, olive, and dark green represent the consistent
effect regions, while the blocks in light gray, light pink, dark blue, light cyan, light yellow-green,
and light grass green represent the diverse effects of steppe dynamics on steppe sustainability.

As shown in Figure 3, the improved steppe land and steppe sustainability presented great spatial
consistency and were concentrated in humid regions and semi-humid regions, while the degraded
areas presented spatial diversity and were scattered throughout all types of geomorphic regions.
The degraded areas should be the focus of future studies and protection. In the semi-arid regions west
and south of the Greater Khingan Range, both the steppe and the steppe sustainability exhibited
a certain degree of degradation. In the humid regions and semi-humid regions in the eastern
Tibet-western Szechwan Plateau, there was large steppe land degradation, although there was a slight
and significant trend of improvement there. There were concurrent patterns of degradation and
improvement both of steppe and steppe sustainability in the humid regions of the Yunnan Plateau.
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3.3. Natural Driving Forces of Steppe Sustainablitly in China

In this study, we applied a copula model to create a correlation analysis for NPP and precipitation,
air temperature, and sunshine duration in semi-humid/humid area and semi-arid/arid area
from 2001 to 2010. We made a distribution test of NPP and precipitation, air temperature, and sunshine
duration data, and the results indicated that they disobeyed both the normal distribution and
the t distribution. Consequently, we applied a nonparametric method to make the marginal cumulative
distribution function appropriate for NPP, precipitation, air temperature, and sunshine duration
data. At first, we applied the experience distribution function and the kernel smoothing method
to fit the marginal cumulative distribution function for these data. Then we plotted the bivariate
frequency histograms between NPP and meteorological factors according to the marginal cumulative
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distribution functions estimated (Figure 4a,b). From the bivariate frequency histograms, we found
that the histograms between NPP and precipitation and air temperature were asymmetrical and that
their upper tails were high and lower tails were low, so we used the Gumbel copula model to analyze
the correlation between NPP and precipitation and air temperature. The upper tail and lower tail
of the bivariate frequency histograms between NPP and sunshine duration were flat and symmetrical,
so we used the normal copula model to analyze the correlation between NPP and sunshine duration.
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and precipitation; (d) Probability density chart between NPP and sunshine duration. (Note: U denotes
marginal distribution of precipitation or sunshine duration; V denotes marginal distribution of NPP).

We applied the kernel estimation method to estimate the related parameters in copula models
based on the data. Then we applied copula models to calculate the Spearman’s rank correlation
between NPP and the meteorological factors (Table 3) and drew the bivariate probability density
function graphs (Figure 4c,d). From Table 3, it was shown that among the meteorological factors,
precipitation and temperature average had the great positive correlation with NPP, and the correlation
is significantly greater in semi-humid/humid area than semi-arid/arid area. While sunshine duration
had great negative correlation with NPP, the correlation is basically consistent in both type of areas.
So it can be deduced that precipitation and temperature average exerted strong positive driving
forces on the dynamics of steppe sustainability, and the driving forces were significantly stronger in
semi-humid/humid area than semi-arid/arid area; while sunshine duration exerted strong negative
driving forces on the dynamics of steppe sustainability and the driving forces were basically same in
both type of areas.
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Table 3. Coefficient between NPP and precipitation, temperature average and sunshine duration.

Year

Spearman Rank Correlation Coefficient

Precipitation Temperature Average Sunshine Duration

SA SH SA SH SA SH

2001 0.18 0.61 0.20 0.64 −0.31 −0.56
2002 0.21 0.55 0.27 0.67 −0.40 −0.47
2003 0.28 0.56 0.25 0.69 −0.55 −0.40
2004 0.29 0.56 0.31 0.69 0.56 −0.48
2005 0.26 0.57 0.21 0.63 −0.48 −0.49
2006 0.41 0.63 0.21 0.64 −0.59 −0.52
2007 0.27 0.69 0.30 0.64 −0.60 −0.65
2008 0.20 0.50 0.29 0.68 −0.49 −0.53
2009 0.29 0.59 0.21 0.64 −0.55 −0.43
2010 0.38 0.60 0.23 0.61 −0.60 −0.54

Note: SA denotes semi-arid/arid area; SH denotes semi-humid/humid area.

3.4. Anthropogenic Driving Forces of Steppe Sustainablitly in China

According to the difference analysis method of the land-cover class conversions addressed above,
the cumulative conversion area between steppe and other classes was calculated based on MODIS
land-cover data from 2002 to 2010. Because the algorithm and spatial accuracy of MODIS land-cover
data in 2001 was different from those in later years, we used the MODIS land-cover data from 2002.
On this basis, the differences in the conversion area between steppe and other classes were calculated
(Table 4). As the results show, the area of steppe converted into forestland was significantly larger than
the area of forestland converted into steppe. Conversely, the area of steppe converted into cropland
and bare land was significantly smaller than the area of cropland and bare land converted into steppe.
The area of conversion from steppe to urban and built-up land and vice versa was essentially balanced.

Table 4. Differences of conversion area between steppe and other classes.

Class Code Class Name Area Differences (km2)

0 Water area −1063.14
1 Forestland −26,946.57
2 Steppe 0
3 Crop land 19,931.50
4 Urban and built-up land −354.41
5 Bare land 25,683.18
6 Others −20.94

As shown in Figure 5, the steppe land converted into cropland were distributed mainly in
the humid regions in Yunnan Plateau, the semi-humid regions in northeast and northern China,
and the arid region north of Xinjiang. The steppe land converted into forestland were distributed
mainly in the humid regions in Yunnan Plateau, the semi-humid regions in southeast of the Tibetan
Plateau, and the arid regions of the Hotao plains. The steppe land converted into urban and built-up
lands were small and scattered throughout the humid regions of the Yunnan Plateau, the semi-humid
regions of the Songliao plains, the semi-arid regions between Qilian Mountains and the Hoxi Corridor,
and the arid regions north of the Xinjiang province. The steppe land converted into bare land were
concentrated in the Junggar basin, and scattered throughout the other arid regions.

The cropland converted into steppe were mainly distributed in the humid regions in the Yunnan
Plateau, the semi-humid and semi-arid regions in northeastern and northern China, the Hanzhong
basin and the Guanzhong basin, and the arid regions northwest of Xinjiang province. The forestland
converted into steppe were concentrated at the humid regions in the Yunnan Plateau, the semi-arid
regions southwest of the Tibetan Plateau, the humid and semi-humid regions southeast of the Tibetan
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Plateau, and the humid and semi-humid regions in Greater Khingan Range. The areas of urban and
built-up lands converted into steppe were scattered throughout the humid regions in the Yunnan
Plateau, the semi-arid regions southwest of the Tibetan Plateau, the Hoxi corridor, southeast of the Inner
Mongolia plain, and west of Greater Khingan Range, and the arid regions north of Xinjiang. The areas
of bare land converted into steppe were concentrated in all the arid regions, as well as the semi-arid
regions west of the Tibetan Plateau.
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4. Discussion

4.1. Methodology

There were no evaluation criteria for ranking steppe dynamics with remote-sensing monitoring,
and steppe dynamics were subjectively ranked into four or five classes in previous studies [23,48,57,91].
The steppe dynamics can be objectively and quantificationally ranked with the ranking method based
on Pauta criterion that was proposed in this study. This method is applicable to large-sample data that
either actually or approximately obeys normal distribution.

Unlike the correlation analysis between NDVI and NPP based on linear regression models used
in previous studies [77,78], the effect of steppe dynamics on steppe sustainability can be qualitatively
analyzed with the effect matrix regardless of linear or nonlinear correlation. However, the accuracy
of the method is affected by the spatial resolution of NDVI and NPP data. The previous studies
focused on quantitative assessment of the meteorological and anthropogenic driving force by using
the CASA and the Thornthwaite Memorial models [18,55,61–64,69,92]. However, it is hard to acquire
some of the meteorological and anthropogenic data needed for these models, and the driving force
of each meteorological and anthropogenic factors cannot be differentiated specifically with those
models. In addition, some erroneous conclusions can be made in some scenarios [18,55]. The effect
matrix contains information on meteorological and anthropogenic driving forces on the dynamic
of steppe sustainability. These driving forces can be well analyzed with the effect matrix by combining
with the copula model and the difference analysis method of the land-cover class conversions.

Compared to the linear regression and linear correlation analysis methods used for assessing
the contributions of natural factors to steppe degradation [48,55,63,65,66], the copula model can capture
abnormal information about NPP and meteorological factors and effectively analyze the nonlinear
correlation between them, but it is not applicable to small samples [79–82].
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4.2. Dynamics of Steppe Sustainability

The results in this study show that the steppe sustainability presented a trend of improvement
between 2001 and 2010, and we inferred that the governmental steppe protection policies and programs
played a great promoting role. There were previous studies demonstrating similar results and
conclusions such as increasing trend of vegetation productivity and coverage in China’s major steppe
from 2001 to 2013 [24] and the rise in the total amount of NPP in China’s terrestrial ecosystem
from 1981 to 2008 [93]. However, there was opposite conclusion indicating that the overall change
of vegetation NPP showed a degraded trend throughout northwest China in the same decade [69].
The main reason of the opposite conclusion was that the study area in this paper was larger than
the one in northwest China and included some humid regions in the Yunnan Plateau and humid
regions and semi-humid regions of the Greater Khingan Range and northeast China, and excluded
the desert regions in Xinjiang. The other conflicting opinion expressed the general trend of farmland
and grassland area in China having declined from 2001 to 2009 [94]. The different opinion resulted
from the whole of China being used as the study area and farmland and grassland as the research
objects, the study area was larger and research objects were fewer.

The previous studies mainly focused on steppe degradation in arid and semiarid regions [51,52,54,58,84–86,95].
However, we found the spatial diversity of steppe sustainability degradation distributed in all types of geomorphic
regions as the Figures 2 and 3 shown. In addition to the arid and semi-arid regions, in the humid
regions and semi-humid regions in the eastern Tibet-western Szechwan Plateau, there were large areas
of steppe land degradation, although there was a trend of improvement there. There were concurrent
patterns of degradation and improvement both of steppe and steppe sustainability in the humid
regions of the Yunnan Plateau. These regions should be paid more attention and well managed in
the future.

In previous studies, linear regression models were applied to research the correlation between
steppe sustainability and related factors [48,54,63,65,66] or between NDVI and NPP [77,78]. However,
the CASA model did not indicate simple linear correlation between them [55,60,61,96], so we proposed
the method base the effect matrix to analyze the effect of the steppe dynamics on steppe sustainability.
Based on the effect matrix and distribution map, we found that the general consistent effect and
scattered diverse effect of steppe dynamics on steppe sustainability.

4.3. Driving Forces of Dynamics of Steppe Sustainability

In this study, the meteorological driving forces on steppe sustainability dynamics were
separately analyzed in semi-humid/humid area and semi-arid/arid area. We got two key points,
one of which was that precipitation and air temperature had a great positive driving forces on
steppe sustainability dynamics, while sunshine duration had great negative driving forces on it.
The other was that the driving forces of precipitation and air temperature were significantly stronger in
semi-humid/humid area than semi-arid/arid area, while the driving force of sunshine duration
were basically same in both type of areas. There were similar conclusions with the first point
at the global and national scales in previous studies [7,22,54,97,98], while the driving forces on
ecosystem productivity dynamics at smaller scales presented obvious spatial heterogeneity in different
regions [58,69,93,99–102]. The second point reveals that steppe sustainability is more susceptible to
disturbances resulting from precipitation and temperature factors in semi-humid/humid area than
semi-arid/arid area, but the effect of sunshine duration is stable in both type of areas. However,
few results in previous studies are similar to the second one, and the difference in meteorological
driving forces between semi-humid/humid area and semi-arid/arid area needs to be researched
more deeply.

By comparing the results in this study to previous studies, we can find that anthropogenic driving
factors on steppe sustainability dynamics have been changing during the past few decades [14].
Rapid urban expansion led to great loss of ecosystem service values and agricultural land before
2003 [11–15,103]. However, our results show that the area of conversion from steppe to urban and
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built-up land and vice versa was roughly balanced. This demonstrated that the land use by urban
expansion was controlled effectively by the steppe protection programs and conservation policies
in place in China between 2001–2010 [40,62,64]. However, there was still some steppe degradation
caused by building activity [49,63], such as in the Liao River basin [63], as shown in Figures 3 and 5,
which indicates that the steppe protection programs and conservation policies should be continued.
We found that the effect of deforestation and farming dropped off over the course of the decade,
which revealed that the Grain for Green Project has performed well [16,64].

5. Conclusions

We explored a kind of systematic and effective analysis methods for assessing steppe sustainability
and its driving forces using abundant remote sensing data and meteorological data. Steppe dynamics
can be objectively and quantificationally ranked based on the Pauta criterion, and that also provides
a basic objective ranking method for other similar issues. The characteristics of the effect of steppe
dynamics on steppe sustainability can be intuitively revealed with the effect matrix. Copula model can
be used to effectively catch the abnormal information about NPP and meteorological factors, and to
analyze the nonlinear correlation between them. The effect of some anthropogenic factors, such as
building, deforestation, and farming, can be clearly revealed based on the difference analysis method
of the land-cover class conversions.

We found that the dynamics of steppe sustainability presented a trend of general improvement
over the study period and the consistent effect of steppe dynamics on steppe sustainability was
significant on the whole. However, there were still some degraded areas that were spatially
diverse and scattered across all types of geomorphic regions. Moreover, the diversity effect can be
revealed with the effect matrix and the difference analysis method of the land-cover class conversions
(Figures 4 and 5). Therefore, we can infer that the effect caused by anthropogenic factors was controlled
effectively over the study period, and that the steppe land that evolved from urban and built-up land,
cropland, and forestland was vulnerable and impacted steppe sustainability.

Another discovery in this study is that precipitation and temperature average exerted significantly
stronger driving forces on the dynamics of steppe sustainability in semi-humid/humid area than
semi-arid/arid area; while sunshine duration exerted basically the same driving force in both
type of areas. According to this, we can make the conclusion that steppe sustainability is more
susceptible to disturbances in precipitation and temperature factors in semi-humid/humid areas than
in semi-arid/arid areas, but that the effect of sunshine duration is stable in both types of areas.

Some degraded steppe regions were scattered and their area was not large, we so suggest that
these regions, especially the abandoned lands, are suitable to be accurately monitored and managed
with modern equipment and facilities such as video, temperature and humidity sensors, unmanned
aerial vehicles, and irrigation wells, so that these regions will gradually develop into improved steppe.
There was still some large steppe degradation that can be improved continuously with the steppe
protection programs and conservation policies, such as Grazing Withdrawal Program and Green for
Grain Project.
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