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Abstract: The efficiency and sustainability of a cellular manufacturing system (CMS) in batch
type manufacturing is highly valued. This is done using a systematic method of equipment into
machine cells, and components into part families, based on the suitable similar criteria. The present
work discusses the cell formation problem, with the objective of minimizing the cumulative cell
load variation and cumulative intercellular moves. The quantity of parts, operation sequences,
processing time, capacity of machines, and workload of machineries were considered as parameters.
For the grouping of equipment, the modified artificial bee colony (MABC) algorithm is considered.
The computational procedure of this approach is explained by using up to 40 machines and 100 part
types. The result obtained from MABC is compared with the findings acquired from the genetic
algorithm (GA) and ant colony system (ACS) in the literature.

Keywords: cellular manufacturing system; sustainability; modified artificial bee colony algorithm;
intercellular moves; cell load variation

1. Introduction

Group technology (GT) is a production strategy where the similar components are picked
out and grouped together to gain the benefits of their similarities in design and/or production
character [1]. Cellular manufacturing (CM) is based on the principles of group technology. Cellular
manufacturing system plays a major role in the application to industries. It is an important technique
to cope with the rapid changing industrial demands and new innovations. In CM, the equipment
is located in close proximity, and sacrificed to make all necessary operations into the particular
part family, and provide smooth flow of materials within the cell which lead to high productivity.
The equipment in CM system permits the equipment to be changed or relocated whenever new part
designs are incorporated, and product demand changes with minimum effort, in terms of cost and
time [2]. GT concept has been implemented in various factories like machineries, automobiles, defense,
and electrical industries [3]. There are many advantages in cellular manufacturing system (CMS)
which include minimizing the processing cost, material handling cost, machine duplication cost,
cycle times, material handling times, work-in-process inventory levels, factory space requirements,
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product defect rates, and machine idle times [4,5]. There have been many investigations done on part
families and machine cell problems during the past three decades. Opitz [6] described a method of
part classification and coding analysis for effective production planning and control. Burbidge [7]
explained the material flow system with process organization and process to product organization
in production flow analysis. The problem comprises of a group of equipment, group of components,
and assigning of components and equipment into the part families. Rank order clustering method
was proposed by King [8]. The main purpose is to devise a generalized procedure that would convert,
in a finite number of iterations, any original machine–part matrix into a clustered diagonal form,
if one exists. Srinivasan et al. [9] discussed the similarity coefficient method, which describes that
this method is more flexible for incorporating production data, such as production volume, sequence
of operation, and operational time, into the machine cell formation. Heuristic algorithms [10,11]
have been implemented for many cell formation (CF) solutions. In the present days, most of the
cell formation problems have been solved by using meta-heuristic algorithms. Meta-heuristic search
approaches, such as simulated annealing [12–14] and a genetic algorithm [15], have also been used
to solve various cell formation problems. Prabhakaran [16] has discussed the cell load variation and
intercellular moves in cell formation problem using genetic algorithm (GA). Sarac and Ozcelik [17]
formulated a genetic algorithm with proper parameters for manufacturing cell formation problems.
In their paper, the cell formation in cellular manufacturing systems is considered with the objective of
maximizing the grouping efficacy. Arkat et al. [18] employed the minimization of exceptional elements
and voids in the cell formation problem using a multi-objective genetic algorithm, and presented
a bi-objective mathematical model to simultaneously minimize the number of exceptional elements
and the number of voids in the part machine incidence matrix. An e-constraint method is then applied
to solve the model and to generate the efficient solutions. Other metaheuristics, like tabu search [19,20],
ant colony optimization (ACO) [21,22], particle swarm optimization [23,24], and scatter search [25]
have also been proposed for designing CMS. Chattopadhyayet et al. [26] discussed machine–part
cell formation through visual decipherable clustering of self-organizing map. Their paper deals with
the self-organizing map method, an unsupervised learning algorithm in artificial intelligence which
has been used as a visually decipherable clustering tool of machine–part cell formation. Ghezavati
and Saidi-Mehrabad [27] proposed an efficient hybrid self-learning method for stochastic cellular
manufacturing problems. It addresses a new version of stochastic mixed-integer model to design
cellular manufacturing systems under random parameters, described by continuous distributions.
Ying-Chin and Ta-Wei [28] explained about the concurrent solution for intra-cell flow path layouts and
I/O point locations of cells in a cellular manufacturing system. In this study, the authors propose a
layout procedure that can solve these two problems at the same time, so that the sum of the inter-cell
flow distance and the intra-cell flow distance can be minimized. Venkumar and Haq [29] discussed
the complete and fractional cell formation using neural network methodology. The other recent
approaches of CMS design include a new branch-and-bound algorithm [30], and the firefly-inspired
algorithm [31]. Mohammad and Kamran [32] proposed an integrated bi-objective layout and cell
formation problem. In this problem, the main aim is to minimize the total inter- and intra-cell
material handling costs, and the second aim is to maximize the total similarity between machines.
Behrang et al. [33] explained mathematical models in cellular manufacturing systems for clustering
workers and machines in product mix variation case. Sakhaii et al. [34] developed a robust optimization
approach for a new integrated mixed-integer linear programming model to solve a dynamic cellular
manufacturing system with unreliable machines and a production planning problem simultaneously.
Brown [35] proposed optimized manufacturing model to minimize costs associated with exceptional
elements. Costs are minimized through intercellular transfer, machine duplication, and subcontracting.
Kia et al. [36] explained a mixed-integer programming model for a multi-floor layout design of cellular
manufacturing systems (CMS) in a dynamic environment. Yung Chin et al. [37] explained a design
procedure for improving the effectiveness of fractal layouts formation aiming at minimization of
routing distances. Zahra et al. [38] explained the task scheduling Non-polynomial (NP) hard problem
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in grid computing system using particle swarm optimization–gravitational emulation local search
(PSO–GELS). In this problem, the PSO–GELS combined algorithm has provided better results than
other approaches. Mohammad et al. [39] discussed the job scheduling problem in cloud computing,
using the methodology of fuzzy theory and genetic algorithm. In this paper, the main aim is to perform
optimal load balancing considering execution time and cost. Mohammad et al. [40] described a fuzzy
reputation-based model for trust management in semantic P2P grids. Javanmardi et al. [41] present a
hybrid job scheduling approach, which considers the load balancing of the system, and reduces total
execution time and execution cost using genetic algorithm and fuzzy theory.

In the recent years, there are so many population based meta heuristic evolutionary algorithms
used to solve cell formation problems due to their ease of implementation. However, these intelligence
algorithms are sensitive to value and precision. It inspired us to use modified artificial bee colony
(MABC) for cell formation problem. In this paper, the MABC algorithm, a meta heuristic population
based algorithms is used in cell formation problem with the aim of reducing cumulative cell load
variation and cumulative intercellular moves. The outcome of this approach is compared with that of
both GA and ACO.

2. Problem Formulation

In this problem, the most cited performance measures, such as cumulative intercellular moves
and cumulative cell load variation, are to be calculated. The constraint used is a minimum of two
machines in a cell.

2.1. Cumulative Intercellular Moves

The movement of parts between the cells is known as intercellular movement. It deals with the
impact of processing sequence and cell layout, which is explained [42].

Cumulative moves =
P

∑
i=0

k−1

∑
i=0

k = 1|Ck − Ck+1| (1)

where Ck = cell number and processing k is carried out on component i, considering the operation
sequence; Ck+1 = cell number in which and processing k + 1 is carried out on component i, considering
the operation sequence; ki = total number of processes carried out on component i to finish its necessary
operations; C = cell counting; P = part counting.

2.2. Cumulative Cell Load Variation

The cell load variation is calculated by the difference between the equipment workload and the
machine cell average load. A lower value of cell load variation is preferable, since it leads to efficient
flow of parts and lowers the inventory level. The cumulative cell load variation is measured using the
formula suggested [15].

Cell load variation =
m

∑
i=1

c

∑
l=1

xil

p

∑
j=1

(wij −mij)
2 (2)

where m = machine counting; c = cell counting; p = part counting.
W = [wij] is an m × p workload matrix, where

wij =
(tij × Nj)

Ti
, (3)

where tij = manufacturing time (hours/piece) of job j on equipment i; Ti = available time on equipment
i for the allotted time period; Nj = manufacturing demand of part j for the allotted time period; X = [xil]
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is an m × c cell membership matrix, where xil = 1 if the i-th equipment is in cell 1, and 0 otherwise;
M = [mlj] is a c × p matrix of the average machine cell load.

Where

ml j =

m
∑

i=1
(xil × wij)

m
∑

i=1
xil

. (4)

2.3. The Combined Objective Function

Min Z = W1

{
P

∑
i=0

K−1

∑
i=0

K = 1|Ck − CK+1|
}
+ W2

{
m

∑
i=1

c

∑
l=1

xil

P

∑
j=1

(
wij −mij

)2
}

(5)

where W1 and W2 are weights. By varying the values of W1 and W2, the decision maker can decide
which function should be given a high priority.

2.4. Existing ABC Algorithm

Karaboga [43–46] proposed that ABC algorithm has been generated by imitating the behavior of
the honey bee swarm intelligence. This algorithm has been implemented for numerous engineering
problems. Its development was instigated through the intelligent foraging character of bees
in their colony, and their performance was measured by the benchmark optimization function.
Kalayci et al. [47] clearly explained the behavior of bees to solve disassembled line balancing problems.
Particularly, the number of control parameters in ABC is fewer than the other population-based
algorithms. Moreover, the optimization characteristics of ABC are comparable, and in some cases,
much better than the state-of-the-art meta-heuristics. Hence, ABC is applied to the many types of
optimization problems.

In this problem, bees represent a solution. There are three types of bees available in the ABC
colony. They are employed bees, onlookers, and scout bee. It is assumed that there is only one artificial
employed bee for each food source. In other words, the number of employed bees in the colony is
equal to the number of food sources around the hive. Employed bees go to their food source, and come
back to the hive and dance in this area. The employed bee whose food source has been abandoned
becomes a scout, and starts to search for a new food source. Onlookers watch the dances of employed
bees, and choose food sources depending on dances. The main steps of the algorithm are given below:

Initial food sources are produced for all employed bees.

REPEAT

Each employed bee goes to a food source in her memory and determines a neighbor source,
then evaluates its nectar amount and dances in the hive.

Each onlooker watches the dance of employed bees and chooses one of their sources depending
on the dances, and then goes to that source. After choosing a neighbor around that, she evaluates
its nectar amount.

Abandoned food sources are determined and are replaced with the new food sources discovered
by scouts.

The best food source found so far is registered.

UNTIL (requirements are met)

2.5. Proposed Modified ABC Algorithm

The basic ABC algorithm was originally designed for continuous function optimization.
But especially for the NP hard combinatorial optimization problems, some modifications are
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required in the basic ABC approach. The modified ABC approach (MABC) is described in the
following subsections.

2.6. Representation

The length of a solution string represents the number of equipment considered in the problem.
Each place in the solution string indicates the machine number, and the position number indicates the
equipment present in that position. The position of any equipment represents its location.

Example: 1 3 5 2 4 8 7 6 9

Here, the length of the solution string is 9, which indicates that the number of equipment
considered in the problem is 9. The places in the solution string take the values 1 to 9, which indicate
the equipment number. Position of equipment 1 is 1, 3 is 2, and so on.

2.7. Population Initialization

The size of the initial population is formulated randomly. An initial population of the desired size
is generated randomly. In this proposed MABC, 40 solution strings are randomly generated and used
as initial population. Each solution string is converted into a 3 × 3 matrix, and the objective value is
calculated using the objective function equation.

Example: 1 3 5 2 4 8 7 6 9  1 3 5
2 4 8
7 6 9

 (6)

2.8. Employed Bee Phase

The employed bees initialize food origin near their present locations. In this phase, insert and
swap manipulators are used to produce nearby findings. The insert manipulator of a string, Si,
is explained by taking away a bit from its initial location j, and inserting it into another location, k,
such that (k ∈ {j, j − 1}), where as the swap manipulator generates a nearby of Si by exchanging two
bits of Si in various positions. To improve the neighborhood structure and spread out the population,
the following two neighboring approaches are utilized to generate neighboring food sources for the
employed bees.

Approach 1. Perform one insert operator to a solution Si.

Initially, the 3rd bit is selected randomly. Then, the selected bit was inserted into 5th bit.
Before insert operation: 1 3 5 2 4 8 7 6 9;
After insert operation: 1 3 2 4 5 8 7 6 9.

Approach 2. Perform one swap operator to a solution Si.

Initially, the 3rd and 7th bits are selected randomly, and swapping is performed.
Before swap operation: 1 3 5 2 4 8 7 6 9;
After swap operation: 1 3 7 2 4 8 5 6 9.

One of the neighboring approaches is selected randomly to produce new food sources. If the new
food source is better than the current food source, then the new food source is accepted.

2.9. Onlooker Bee Phase

In the basic ABC algorithm, an onlooker bee selects a food source, xi, depending on its winning
probability value pi, which is similar to the wheel selection in genetic algorithms [16]. In this MABC,
the tournament selection with the size of 2 is used, due to its simplicity and ability to escape from
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local optima. In the tournament selection, an onlooker bee selects a food source, xi, in such a way that
two food sources are picked up randomly from the population, and compared to each other, and then
the better one is chosen. In addition, the onlooker utilizes the same method as used by the employed
bee to produce a new neighboring solution. If the new obtained food source is better than, or equal
to the current one, the new food source will replace the current one, and become a new member in
the population.

2.10. Scout Bee Phase

In the basic ABC algorithm, a scout produces a food source randomly in the predefined search
scope. This will decrease the search efficacy, since the best food source in the population often carries
better information than others during the evolution process, and the search space around it could be
the most promising region. In the MABC algorithm, the scout generates a food source by utilizing
the same method as used by the employed bee to produce a new neighboring solution on the best
food source.

2.11. Steps for Computational Procedure of the Proposed MABC Algorithm

Step 1: Initialize the parameters SN, PS, Limit, and PL. (In MABC, SN is equal to PS and number of
Onlookers.)

Where SN denotes the size of the population, PS indicates the food source count, limit specifies
control parameter and PL denotes the cycles count.

Step 2: Initialize population S = {s1, s2, . . . , sPS} and calculate every result in the population.

Step 3: Employed bees:

For i = 1, 2, . . . , PS, repeat the following sub-steps:

Produce a new solution Si* for the i-th employed bee who is associated with solution Si
by using the strategy presented in the subsection employed bee phase, and evaluate the
new solution.
If Si* is better than or equal to Si, let Si = Si*.

Step 4: Onlooker bee:

For each i = 1, 2, . . . , PS, repeat the following sub-steps:

Select a food source in the population for the onlooker bee, Si, by using the tournament
selection presented in the subsection onlooker bee phase.
Generate a new solution, Si*, for the onlooker by using the strategy presented in the sub
section employed bee phase and evaluate it.
If Si* is better than or equal to Si, let Si = Si*.

Step 5: Scout bee:

For each i = 1, 2, . . . , PS, repeat the following sub-steps:

If a solution Si in the population has not been improved during the last limit number of
trials, abandon it.
Generate a new solution onlooker by using the strategy presented in the subsection
Employed bee phase on the best solution.

Step 6: Store the best result achieved so far.

Step 7: If the termination criterion is reached, return the best solution found so far; else go to step 3.
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3. Results and Discussion

The proposed algorithm is coded in C++ language on a personal computer with a 1.3 GHz
Pentium IV CPU processor (Intel, Bengaluru, India) and 16 GB RAM memory (Intel, Bengaluru,
India). Different parameters, such as machine workload, operation sequences, unit processing times on
every equipment, and manufacturing quantity, among others, are considered in this study. From the
literature [16], 20 data sets have been taken, and the experimental works have been carried out using the
proposed MABC algorithm, and the outcomes were compared with those of the other two approaches,
GA [16] and ACO [21]. The parameter settings selected for the problem, its implementation, and the
results obtained are discussed below:

MABC Parameter Setting: For the given problem structure, the parameter settings are shown in
Table 1.

Table 1. MABC parameter setting.

PS PL Limit

40 500 10
(no. of food sources) (no. of cycles) (no. of trials)

PS denotes the food source count, PL denotes the cycles count and Limit specifies control parameter.

The modified ABC algorithm is implemented, and the results are simulated for different problem
sizes. The result obtained for the MABC problem, with respect to the problem sizes considered, are
given below. The problem sizes considered for the present investigation is 8× 20, 10× 12, and 10 × 15.

Figure 1 shows the MABC convergence curve for intercellular moves of problem size 8 × 20.
As can be seen in the figure, the increase of cycles minimizes the intercellular movement. Further,
the result indicates that number of cells consisting of 2 indicates the minimum intercellular moves.
Normally, the increase of cycles tries to minimize the intercellular move. Whereas for the 3 cell problem,
the trend is almost linear up to 300 cycles, after which it tries to minimize, up to 400 cycles. The 400
to 500 cycles result does not indicate the possible variations. That is, variations obtained for cycles
400–500 are very minimal. For the cell number 4, drastic changes are observed in intercellular moves
from the cycles 100 to 200, and minimum variation from the cycle of 200 to 500.
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Figure 1. MABC convergence curve for intercellular move of problem size 8 × 20.
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Figure 2 shows the MABC convergence curve for cell load variation of problem size 8 × 20.
The result from the graph indicates that the increase in cycles minimizes the cell load variations. In the
above figure, the result indicates that cell number 4 has minimum cell load variations. In the case of
3 cell problem, the curve is almost linear from the cycle of 100 to 300, after which it tries to minimize,
up to 500 cycles. But in the 2 cells problem, there is a drastic change from 100 to 200 cycles, and then a
linear decrease of cell load variation continues up to 500 cycles.Sustainability 2018, 10, 42 8 of 20 
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Figure 3 shows the MABC convergence curve for intercellular move for the problem size 10 × 12.
In the above figure for the cell number 2, 3, and 4, the curve is almost linear from 100 to 300 cycles.
But for the cell number 5, there is drastic change of curve from 400 to 500 cycles.
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Figure 4 shows the MABC convergence curve for cell load variation of problem size 10 × 12.
The above figure indicates that in cell 4, cell load variation is minimized from the cycle of 100 to 300,
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and there is no significant improvement from the cycle of 300 to 500. For cell number 2, 3, and 5,
the curve is linear from the cycle of 100 to 300.Sustainability 2018, 10, 42 9 of 20 
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Figure 5 shows the MABC convergence curve for intercellular move for the problem size 10 × 15.
In the above figure, all the curves are linear from the cycle of 100 to 300. In this figure, cell number 2
reaches zero intercellular moves at the cycle of 500.
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Figure 5. MABC convergence curve for intercellular move of problem size 10 × 15.

Figure 6 shows the MABC convergence curve for cell load variation of problem size 10× 15. In the
above figure, for the cell number 2, there are some improvements in minimizing cell load variation
from cycle 100 to 300, and considerable improvement from cycle 300 to 500. For the cell numbers 3, 4,
and 5, the curves are located very close to each other.

Comparison of results for minimum-sized problems, medium-sized problems, and bigger-sized
problems from the literature [16] are mentioned in the following tables. Tables 2–4 show the results
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that were obtained by the other methods in the literature using genetic algorithm (GA) [16], ant colony
optimization (ACO) [21], results acquired by MABC, and MABC CPU time for intercellular move and
cell load variations.Sustainability 2018, 10, 42 10 of 20 
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Figure 6. MABC convergence curve for cell load variation of problem size 10 × 15.

From Table 2, it has been inferred that there are 5 different matrix-sized problems and 21 cells.
The cumulative intercellular moves provide better results in 16 cases (Serial number: 1, 2, 4, 5, 6, 7, 10,
11, 12, 13, 14, 15, 18, 19, 20, 21 from Table 2) out of 21 cases (76%), than that of any of the other methods.
It yields equal results in 5 cells (Sl. No.: 3, 8, 9, 16, 17) to the best one of other methods. The cumulative
cell load variation provides better outcome in 11 cases (Sl. No.: 4, 5, 10, 11, 12, 13, 14, 15, 17, 19, 20 from
Table 2) out of 21 cases (52%) than that of any of the other methods. It produces equal results in 9 cells
(Sl. No.: 1, 2, 3, 6, 7, 8, 9, 16, 18) to the best of the other methods.

Table 2. Results comparison for minimum-sized problems.

Sl. No Pbm.Size No.of Cell
Intercellular Move Cumulative Cell Load Variations MABCCPU

Time in SecGA [16] ACO [21] MABC GA [16] ACO [21] MABC

1
8 × 20

2 9 9 7 5.63 5.63 5.63 0.593
2 3 17 17 15 3.35 3.35 3.35 0.516
3 4 26 26 26 2.13 2.13 2.13 0.578

4

10 × 12

2 7 7 5 9.09 9.09 7.53 0.344
5 3 13 19 9 8.24 3.46 3.46 0.454
6 4 20 20 15 2.48 2.48 2.48 0.905
7 5 22 22 21 3.24 3.24 3.24 0.686

8

10 × 15

2 0 0 0 5.08 5.08 5.08 0.343
9 3 7 7 7 2.39 2.39 2.39 0.453
10 4 17 13 15 2.18 2.17 2.17 1.129
11 5 26 24 25 3.14 2.35 2.35 0.676

12

11 × 22

2 13 8 7 7.27 6.22 6.22 0.406
13 3 18 17 15 4.30 5.11 4.92 0.468
14 4 29 25 25 2.83 3.81 3.52 1.895
15 5 45 26 36 2.33 3.76 2.55 1.609

16

14 × 24

2 0 0 0 11.37 11.37 11.37 0.593
17 3 5 0 0 10.67 8.91 8.91 0.625
18 4 3 3 2 6.51 6.51 6.51 1.765
19 5 10 9 9 5.94 6.33 4.59 0.954
20 6 17 14 12 4.41 4.30 4.3 1.327
21 7 22 22 18 3.89 3.89 4.14 23.625
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Table 3. Result comparison for medium-sized problems.

Sl. No Pbm. Size No. of Cell
Intercellular Move Cumulative Cell Load Variations MABCCPU Time in

SecGA [16] ACO [21] MABC GA [16] ACO [21] MABC

1

Boctor 1

2 16 15 14 11.33 9.47 9.47 0.938
2 3 35 26 30 8.98 8.65 8.44 2.188
3 4 35 35 42 8.41 8.41 8.05 2.593
4 5 49 49 49 6.43 6.43 6.43 2.655
5 6 62 58 60 6.18 6.23 6.21 1.374
6 7 72 72 72 5.44 4.84 4.84 2.719
7 8 77 77 77 4.31 4.31 4.31 79.36

8

Boctor 2

2 4 4 3 15.45 15.45 15.45 0.876
9 3 9 9 8 14.30 12.46 12.46 1.031
10 4 30 14 13 12.78 10.63 11.01 1.093
11 5 33 23 23 8.56 9.40 9.4 1.372
12 6 40 38 37 9.18 7.92 8.6 1.312
13 7 54 52 50 6.75 7.02 7.93 2.563
14 8 62 61 62 6.28 6.42 6.28 78.782

15

Boctor 3

2 6 1 1 13.76 14.03 14.03 0.921
16 3 9 6 6 10.86 11.08 10.94 1.313
17 4 23 15 18 9.63 6.59 6.59 1.999
18 5 24 20 21 5.61 6.02 6.1 2.141
19 6 33 29 29 6.34 5.04 5.52 1.312
20 7 40 37 39 5.35 4.13 4.93 2.876
21 8 47 47 47 4.35 4.35 4.35 75.03

22

Boctor 4

2 13 13 13 15.88 15.88 15.75 0.937
23 3 25 25 16 14.51 14.51 14.38 1.328
24 4 53 36 37 10.66 12.59 11.28 1.486
25 5 68 50 50 10.75 10.42 10.39 1.656
26 6 68 70 72 8.65 8.37 8.87 1.374
27 7 82 76 95 6.96 7.53 7.81 2.859
28 8 88 86 86 6.15 6.50 6.5 75.422

29

Boctor 5

2 7 7 2 10.70 10.70 10.70 0.923
30 3 20 14 8 10.00 9.06 8.79 1.265
31 4 19 19 18 6.77 6.77 6.77 1.969
32 5 40 30 21 7.46 5.74 5.68 1.947
33 6 38 38 31 5.28 5.15 5.07 1.345
34 7 49 45 47 4.75 4.65 4.53 2.765
35 8 57 56 58 4.10 4.12 4.25 75.829
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Table 3. Cont.

Sl. No Pbm. Size No. of Cell
Intercellular Move Cumulative Cell Load Variations MABCCPU Time in

SecGA [16] ACO [21] MABC GA [16] ACO [21] MABC

36

Boctor 6

2 8 2 2 12.18 11.50 11.55 0.906
37 3 10 4 5 9.64 9.20 9.24 1.25
38 4 20 12 12 8.93 6.51 6.56 1.656
39 5 17 17 18 5.94 5.94 5.98 1.656
40 6 34 27 31 5.16 5.52 4.96 1.297
41 7 44 39 45 4.74 5.53 4.69 2.765
42 8 55 55 55 4.59 4.59 4.59 119.50

43

Boctor 7

2 3 3 2 6.65 6.65 6.65 1.001
44 3 10 9 9 5.51 4.71 4.71 1.094
45 4 24 14 15 4.31 3.91 3.66 1.5
46 5 23 23 28 3.96 3.96 3.8 1.358
47 6 46 46 46 2.39 3.25 3.2 1.343
48 7 56 55 59 3.13 2.44 2.93 2.656
49 8 68 69 69 2.73 2.86 2.86 126.17

50

Boctor 8

2 23 12 11 14.26 12.95 12.95 1.001
51 3 22 22 20 10.87 10.87 10.87 1.249
52 4 33 28 32 10.09 9.95 10.08 1.485
53 5 39 38 39 9.17 8.87 9.17 1.485
54 6 54 49 49 7.55 8.09 8.09 1.391
55 7 63 65 65 7.06 6.81 6.76 2.828
56 8 74 74 74 5.41 5.51 5.51 119.33

57

Boctor 9

2 10 5 5 5.11 5.44 5.12 1.015
58 3 31 18 9 4.85 4.47 4.27 1.328
59 4 24 24 23 3.08 3.08 3.09 1.51
60 5 41 31 34 2.78 3.04 3.01 1.762
61 6 45 45 49 2.93 2.93 2.92 1.438
62 7 58 57 57 2.54 2.65 2.57 2.858
63 8 69 71 71 2.15 2.17 2.18 115.14

64

Boctor 10

2 13 6 5 4.83 4.08 4.08 0.891
65 3 18 18 18 3.85 3.30 3.19 1.297
66 4 29 23 28 3.38 2.66 2.66 1.623
67 5 37 33 41 2.75 2.57 2.45 1.909
68 6 46 41 49 2.28 2.39 2.25 2.347
69 7 58 58 58 2.03 2.08 2.08 2.765
70 8 65 65 65 1.85 1.85 1.85 78.829
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Table 4. Result comparison for bigger-sized problems.

Sl. No Pbm. Size No. of Cell
Intercellular Move Cumulative Cell Load Variations MABCCPU

Time in SecGA [16] ACO [21] MABC GA [16] ACO [21] MABC

1

16 × 43

2 6 6 7 20.45 20.45 20.45 1.219
2 3 16 15 10 19.00 19.11 17.46 1.453
3 4 27 27 21 16.33 16.33 14.24 1.626
4 5 31 32 31 16.26 16.39 16.26 2.101
5 6 50 45 50 12.56 15.04 12.56 1.86
6 7 65 57 57 10.92 10.70 10.7 2.969
7 8 68 69 68 9.39 8.97 9.39 45.407

8

20 × 37

2 14 12 10 37.22 38.04 38.08 1.343
9 3 40 28 24 38.95 32.25 32.94 1.657

10 4 47 47 46 29.10 23.44 24.84 2.046
11 5 61 64 61 21.69 18.30 21.23 2.504
12 6 68 67 68 21.13 14.91 24.63 2.882
13 7 78 73 78 16.87 17.28 17.01 3.12
14 8 98 81 81 17.46 14.29 14.29 3.39
15 9 98 99 98 12.82 13.46 13.47 16.843
16 10 117 117 117 12.05 12.05 12.05 3015.17

17

20 × 55

2 41 30 30 59.25 61.35 60.28 1.751
18 3 74 48 50 51.35 57.81 57.50 2.281
19 4 101 93 85 47.72 47.22 47.19 3.281
20 5 114 110 100 43.46 45.47 43.64 3.507
21 6 133 130 135 40.51 36.27 37.92 3.784
22 7 149 150 150 38.20 34.81 34.81 3.944
23 8 175 164 170 31.71 31.98 29.82 4.344
24 9 198 180 198 25.39 27.96 25.39 12.797
25 10 213 203 200 24.72 25.27 25.13 393.483
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Table 4. Cont.

Sl. No Pbm. Size No. of Cell
Intercellular Move Cumulative Cell Load Variations MABCCPU

Time in SecGA [16] ACO [21] MABC GA [16] ACO [21] MABC

26

25 × 50

2 18 0 26 57.76 58.53 56.44 2.031
27 3 51 12 26 53.66 51.87 51.38 2.064
28 4 48 30 32 51.26 49.05 45.98 2.751
29 5 78 53 52 33.80 37.71 36.36 3.889
30 6 102 63 54 33.17 35.44 39.96 3.964
31 7 78 93 81 32.40 22.68 29 4.021
32 8 114 99 107 28.95 21.44 25.03 4.245
33 9 113 100 100 25.66 26.07 26.07 5.741
34 10 128 132 125 20.13 17.50 20.77 9.361
35 11 131 128 129 20.69 18.73 19.28 63.24
36 12 138 136 138 18.24 16.41 18.24 3112.20

37

40 × 100

2 62 37 55 175.6 170.14 172.36 5.984
38 3 84 56 40 156.21 132.20 153.37 6.906
39 4 117 113 90 126.64 114.54 109.55 7.268
40 5 129 163 145 97.54 114.58 81.42 7.781
41 6 218 147 127 123.69 86.67 84.23 8.548
42 7 259 241 115 108.22 96.09 69.18 8.921
43 8 232 169 172 88.58 76.36 83.39 12.812
44 9 249 247 257 84.75 84.39 66.66 12.999
45 10 268 278 310 75.20 65.14 75.17 15.984
46 11 247 272 327 69.00 60.78 74.52 17.395
47 12 288 291 290 61.51 59.00 57.01 20.974
48 13 339 307 302 75.19 58.23 58.11 30.054
49 14 425 303 293 66.31 57.91 57.32 51.947
50 15 413 420 408 65.28 69.24 55.57 62.578
51 16 390 360 360 60.30 53.05 53.57 75.172
52 17 447 381 390 60.56 52.75 53.45 81.138
53 18 463 413 447 57.04 49.22 55.9 89.644
54 19 412 415 48.40 48.54 105.367
55 20 451 462 50.81 53.72 3568.459



Sustainability 2018, 10, 42 15 of 21

From the analysis of Table 3, it has been known that there are 10 different matrix-sized problems
and 70 cells are considered for results comparison. The cumulative intercellular moves provide better
results in 40 cases out of 70 cases (57%) than that of any other method, and yield equal results in
18 cells compared to the best of the other methods. The cumulative cell load variation provides better
outcome in 44 cases out of 70 cases (63%) than that of any of the method, and produces equal results in
18 cells to the best one of the other methods.

Table 4 indicates that there are 5 different matrix-sized problems and 55 cases. The cumulative
intercellular moves provide better results in 41 cases out of 55 cases (75%) than that of any one of
the other methods, and yields equal result in 7 cells compared to the best of the other methods.
The cumulative cell load variation provides better outcome in 42 cases out of 55 cases (76%) than that
of any one of the other methods, and produces equal results in 4 cells compared to the best of the
other methods. Based on the analysis and results, the bar charts are plotted for clarity of results for
the intercellular moves and cell load variations for the problem sizes 8 × 20, 10 × 12, and 10 × 15,
to compare the results of MABC with GA and ACO.

Figure 7 indicates that in cell numbers 2 and 3, MABC intercellular moves are considered to be
at a minimum, as there is a better convergence compared to GA and ACO. In cell number 4, MABC
produces results that are on par with GA and ACO, and there is no appreciable difference observed
when using MABC.
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Figure 7. Results comparison of intercellular moves for the problem size 8 × 20.

Figure 8 indicates that in cell numbers 2, 3, and 4, MABC produces almost the same cell load
variations as that of GA and ACO.
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Figure 8. Results comparison of cell load variation for the problem size 8 × 20.

Figure 9 indicates that MABC intercellular moves are considered to be a minimum for cell number
2, 3, 4, and 5, as compared with GA and ACO.
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Figure 9. Results comparison of intercellular move for the problem size 10 × 12.

Figure 10 indicates that in cell number 2, MABC produces minimum cell load variation as
compared with GA and ACO. In cell number 3, MABC exhibits minimum cell load variations as
compared with GA, and produces the same result with ACO. For cell numbers 4 and 5, MABC yields
the same cell load variations as that of GA and ACO.
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Figure 10. Results comparison of cell load variation for the problem size 10 × 12.

Figure 11 indicates that for cell numbers 2 and 3, MABC produces the same intercellular moves
as that of GA and ACO. For cell numbers 4 and 5, MABC produces minimum intercellular moves as
compared with GA.
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Figure 11. Results comparison of intercellular moves for the problem size 10 × 15.

Figure 12 indicates that in cell numbers 2 and 3, MABC produces same cell load variation as that
of GA and ACO. In cell numbers 4 and 5, MABC produces minimum cell load variations as compared
with GA, and the same result as that of ACO.
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(minimized) than the other methods, or it is equal to the best one. The outcome obtained in the 
computational experiences carried out show that the proposed algorithm MABC deserves to be well 
placed among the three approaches in studies on machine cell formation. The work can be further 
extended in the future, incorporating parameters like demand of parts, cost factor, etc., enhancing it 
to a more generalized sustainability in manufacturing environments. 
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Figure 12. Results comparison of cell load variations for the problem size 10 × 15.

Figure 13 represents the MABC CPU time variation for cell 4 for the minimum-sized problems of
sizes 8 × 20, 10 × 12, 10 × 15, and 11 × 22. The figure depicts that the increase of problem size (search
space) leads to increase of CPU time.
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4. Conclusions

The main purpose of this paper is to compare the performance of the MABC approach with the
other two heuristic algorithms in the literature GA [16] and ACO [21] to minimize the cumulative
intercellular moves and the cumulative cell load variation. From the results obtained, it has been
indicated that, in most of the problems discussed in the literature, cumulative intercellular moves and
cumulative cell load variations obtained by the proposed method, MABC, is either better (minimized)
than the other methods, or it is equal to the best one. The outcome obtained in the computational
experiences carried out show that the proposed algorithm MABC deserves to be well placed among the
three approaches in studies on machine cell formation. The work can be further extended in the future,
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incorporating parameters like demand of parts, cost factor, etc., enhancing it to a more generalized
sustainability in manufacturing environments.
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