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Abstract: Under the international background of the transformation and promotion of manufacturing,
the Chinese government proposed the “Made in China 2025” strategy, which focused on the
improvement of a quality-based innovation ability. Moreover, predicting manufacturing quality is one
of the crucial measures for quality management. Accurate prediction is closely related to the feature
learning of manufacturing processes. Therefore, two categories of intelligent learning approaches,
i.e., shallow learning and deep learning, are investigated and compared for manufacturing quality
prediction in this paper. Specifically, the feed forward neural network (FFNN) with one hidden layer
and the least squares support vector machine (LSSVM) with no hidden layers are selected as the
representatives for shallow learning, and the deep restricted Boltzmann machine (DRBM) and the
stack autoencoder (SAE) are chosen as the representatives for deep learning. The manufacturing
data is collected from a competition about manufacturing quality control in the Tianchi Data Lab
of China. The experiments show that the deep framework overwhelms the shallow architecture in
terms of mean absolute percentage error, root-mean-square error, and threshold statistics. In addition,
the prediction results also indicate that the performances depend on the length of the training data.
That is, the bigger the sample size is, the better the performance is.

Keywords: manufacturing quality prediction; made in China 2025; intelligent learning;
comparative study

1. Introduction

To achieve the transformation and upgrade of China’s manufacturing, the “Made in China
2025” plan [1] proposed a basic guideline with innovation-driven, quality first, green development,
structure optimization, and talent-oriented objectives. Therefore, quality, as the lifeline in
manufacturing, has attracted the attention of manufacturers and researchers. To control and
improve manufacturing quality, many techniques are implemented into the manufacturing process.
Among them, manufacturing quality prediction, as one of the effective ways to control and improve
manufacturing quality, has been developed using various data mining techniques.

Statistical quality control [2] based on cause–effect relationships, e.g., linear regression [3],
non-linear regression [4], inference learning [5], and expert systems [6], has been widely used to
assess the quality performance of manufacturing processes. The successful application of these
approaches is attributed to certain stable or constant production processes, which thus makes them
unsuitable for the fast-increasing complexity and high-dimensionality of modern manufacturing.
To address this issue, artificial intelligence (AI) is stepping into the academic field of these researchers
due to its self-learning ability without taking into account manufacturing processes [7–10]. Artificial
neural networks (ANNs) and machine learning (ML) are two typical representatives of AI techniques,
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and have achieved successful application in manufacturing quality prediction, e.g., self-organizing
neural networks [11], back propagation neural networks (BPNNs) [12], radial basis function neural
networks [13], probability neural networks [14], support vector machines (SVMs) [15], and extreme
learning machines [16]. Affected by multiple parameters from multi-stage manufacturing processes,
ANN and ML modeling exhibit feature learning difficulties and network calculation complexities
due to their “shallow” architecture, i.e., the model has one hidden layer or none at all (a traditional
ANN has one hidden layer and classical ML is based on a kernel function without a hidden layer).
To improve prediction accuracy, it is thus imperative to enhance the feature learning capability using a
“deep” representation technique.

In 2006, the deep learning (DL) technique was proposed [17] and it has become a hot research
topic in AI. It has been proven to be effective for many fields, e.g., fault diagnosis [18], pattern
recognition [19], and time series forecast [20,21]. Compared with the “shallow” models, DL has many
hierarchical levels in a hidden layer, that is, the information representation is delivered from lower
levels to higher levels, which makes the information representation more abstract and nonlinear
for the higher levels. Through representations by the hierarchical levels, the “deeper” feature of
multi-parameter manufacturing quality can be fitted by regression models sufficiently [22]. To our
best knowledge, there has been little literature that has reported on applications for manufacturing
quality prediction using the deep framework. Therefore, the DL technique can provide a possibility
for manufacturing quality prediction.

This paper attempts to make a comparison of two feature learning patterns to investigate their
performances for predicting manufacturing quality, including the feed forward neural network (FFNN),
the least squares support vector machine (LSSVM), the deep restricted Boltzmann machine (DRBM),
and the stack autoencoder (SAE). To reveal the feature learning capacity of the four models, two kinds
of manufacturing data with multiple parameters are involved.

The rest of the paper is organized as follows. Section 2 introduces the FFNN, the LSSVM,
the DRBM, and the SAE, respectively. Section 3 presents the application data. Section 4 gives the
results with relevant discussion. Section 5 concludes this study.

2. Methodologies

As stated in the Introduction, both shallow and deep learning belong to the ANN and related
machine learning algorithms. The significant difference is the structure depth (Figure 1), i.e., shallow
learning includes only one hidden layer or none at all, and deep learning contains more than one
hidden layer.
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From Figure 1, one can clearly find that deep learning adopts a cascade of many hidden layers for
feature extraction and transformation, and higher level features are derived from lower level features
to form a hierarchical representation. Hence, deep learning can be regarded as an intensified version
of shallow learning. To investigate learning performance, four typical approaches are introduced
briefly in the following subsections, i.e., FFNN with one hidden layer, LSSVM with no hidden layers,
and DRBM and SAE with many hidden layers.

2.1. Feed Forward Neural Network

The classical FFNN propagates inputs through a network with one input, one hidden, and one
output layer to make a prediction (Figure 1a). In the FFNN architecture, the artificial neurons
are organized as layers, the information strictly flows forward, and the errors of the network are
propagated backwards. The expressions of the FFNN are as follows [23]

hj = fhidden(∑m
i=1 wijxi), yk = foutput(∑n

j=1 wjkhj), (1)

where xi (i = 1, 2, . . . , m) represents the inputs, hj (j = 1, 2, . . . , n) represents the outputs of the hidden
layer, yk (k = 1, 2, . . . , p) represents the outputs, wij and wjk represent the weight matrix between
two adjacent layers, respectively, and fhidden(.) and foutput(.) are transfer functions in the hidden layer
and the output layer, respectively. To update the weights w effectively, a back propagation algorithm
(BP), a well-known method, is used for training the FFNN [24].

2.2. Least Squares Support Vector Machine

For a given dataset, the goal of the LSSVM for regression is to find an optimal relationship
between inputs x and outputs y in the feature space y =ωT ϕ(x) + b (Figure 1a), where ϕ(x) denotes
the nonlinear mapping function,ω is the weight vector, and b is the bias vector. Moreover, the objective
function of the LSSVR is given by

minJ(ωTξ) =
1
2
ωTω+

γ

2

q

∑
i=1

ξ2 (2)

where ξ is the error variance, and γ > 0 is the penalty coefficient.
Transforming this quadratic programming problem to its corresponding dual optimization

problem and introducing the kernel function in order to achieve non-linearity yields an optimal
regression function as [25]

y =
l

∑
i=1

αik(x, xi) + b (3)

where q is the length of dataset, αi is the Lagrange multiplier, and k(.) represents the kernel function.
Generally, the radial basis function (RBF) is chosen as the kernel function, and is given by

k(x, xi) = exp
[
−x− xi

2λ2

]
(4)

where λ is the kernel bandwidth.

2.3. Deep Restricted Boltzmann Machine

As introduced above, a DRBM is a stack of restricted Boltzmann machines (RBMs). After an RBM
(Figure 2) has been learned, the activities of its hidden units can be used as the data for learning a
higher-level RBM. Note that when l = 1, h◦ = x (also called visible nodes v in RBM).
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For an RBM, the energy function E(v, h| θ) taking consideration of the real data normalized into
[0, 1] is given by [26]

E(v, h|θ) = −
V

∑
m=1

H

∑
n=1

wmnhn
vm

σ2
m
−

V

∑
m=1

(vm − bm)
2

2σ2
m

−
H

∑
n=1

anhn (5)

where θ = (w, b, a) is the parameter set, w is the symmetric weight between the hidden layers l-1 and
l, b and a are their bias, σ is the standard deviation, and V and H denote the number of visible and
hidden units, respectively.

The conditional probability distributions P are as follows:

P(hn = 1|v) = Sigm(
H

∑
m=1

wmn
vm

σ2
m
+ an), (6)

P(vm = v|h) = Z(v|bm +
H

∑
n=1

wmnhn, σ2
m) (7)

where Z(b, σ) represents a Gaussian probability density function.
To solve these functions above, Hinton [27] proposed a contrastive divergence algorithm:

(1) initialize v using the input data, and compute h according to the conditional probability distributions
(Equation (6)); (2) obtain reconstruction state v′ based on Equation (7) using h, and repeat Equation (6)
to update the hidden nodes using v′, obtaining h′. The update in a weight is given as follows:

∆wmn = η(

〈
vm

σ2
m

hn

〉
−
〈

v′m
σ2′

m
h′n

〉
) (8)

where η is the learning rate, and < . > refers to the expectation of the training data.
Then, one can stack several RBMs together into a DRBM following the structure in Figure 1b,

and this process is continued until a prescribed number of hidden layers in the DRBM have
been trained.

2.4. Stack Autoencoder Network

Training an SAE for regression is similar to the DRBM [28]: (1) from the lower to top layers (layer
1 to layer l), operate generative unsupervised learning layer-wise on the autoencoder (AE) (Figure 3);
(2) from the top to lower layers (layer l to layer 1), fine-tune by a supervised learning method (back
propagation algorithm) to tweak the parameter sets (w, b); and (3) from the hidden (top) to output
layer, perform regression using the pre-training parameter sets (w, b).
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According to Figure 3, the AE model is described as follows briefly [29]. The purpose of the AE is
to reconstruct inputs hl−1 (h◦ = Y) into new representations r with a minimum reconstruction error

RE(hl−1, r) = −
M

∑
m=1

[hl−1
m log(rm) + (1− hl−1

m ) log(1− rm)]. (9)

To solve this problem, the encoder fe(.) and decoder fd(.) functions are operated step-by-step until
they achieve the optimal parameter sets (w, b) based on a minimal loss function (Equation (11)).

hl = fe(hl−1) = Sigm(whl−1 + b), r = fd(h
l) = Sigm(wThl + bT) (10)

where Sigm(.) means the sigmoid activation function.

L(w, b) = ∑ RE(hl−1, R) (11)

3. Application to Manufacturing Quality Prediction

3.1. Dataset

The data is collected from a competition about manufacturing quality control in the Tianchi
Data Lab of China (https://tianchi.aliyun.com/competition/gameList.htm). They have the same
technique parameters (19 process parameters as shown in Table 1) with a different setting, thus the
quality index (one key-quality index with range [0, 1] as shown in Figure 4) exhibits diversity in
different batches. There are two kinds of samples, one is a small sample including 100 batches
(total sample (19 + 1) × 100, as shown in Figure 4a), and the other is a big sample including
1000 batches (total sample (19 + 1) × 1000, Figure 4b). These data are divided into two categories,
80% for training and 20% for testing. Note that all the data have been desensitized.

Table 1. Statistical information of the multiple parameters in different processes.

Multi-Parameter Process Range

Parameter 1 (x1)

Material selection

Adjustable 0, 1, 2, 3, 4, 5
Parameter 2 (x2) 0, 1
Parameter 3 (x3)

Non-adjustable
[7, 30.304]

Parameter 4 (x4) [7, 30.304]
Parameter 5 (x5) 0, 1

https://tianchi.aliyun.com/competition/gameList.htm


Sustainability 2018, 10, 85 6 of 15

Table 1. Cont.

Multi-Parameter Process Range

Parameter 6 (x6)

Manufacturing

Adjustable

0, 1
Parameter 7 (x7) 342, 343
Parameter 8 (x8) 0.065, 0.075, 0.28
Parameter 9 (x9) 0.4, 1

Parameter 10 (x10) 1, 1.05, 1.3
Parameter 11 (x11) 0, 0.34, 0.35
Parameter 12 (x12) 0, 1, 2
Parameter 13 (x13) 0, 1, 3, 4
Parameter 14 (x14) 0, 1

Parameter 15 (x15)

Non-adjustable

4, 6
Parameter 16 (x16) [1,110]
Parameter 17 (x17) 0, 1
Parameter 18 (x18) 0, 1, 2, 3, 4, 5
Parameter 19 (x19) 3, 3.1, 3.6
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samples with 1000 batches.

3.2. Model Development

In this subsection, the investigated models are developed using the real manufacturing data.
Note that all of the data are normalized into [0, 1] firstly according to the following equation

Normalization =
data− datamin

datamax − datamin
(12)

where datamin and datamax denote the minimum and maximum of each parameter in the dataset shown
in Table 1. Then, the experimental method is applied to establish four models, and the details are
listed in Table 2. The optimal model with the simplest structure is identified based on the paired t-test
results [30] except for the LSSVM (it has no hidden layers). For convenience, the models of the DRBM
and the SAE are named with a sequence number (18 models in total), e.g., 1 (l = 2, hidden nodes = 10),
2 (l = 2, hidden nodes = 20), 6 (l = 2, hidden nodes = 60), 7 (l = 3, hidden nodes = 10), 12 (l = 3, hidden
nodes = 60), 13 (l = 3, hidden nodes = 10), and 18 (l = 3, hidden nodes = 60). All of the results in
the following experiments are the best values of ten independent runs. In addition, the computation
software is Matlab 2014 with the computation environment Intel Core i5-2450M CPU @2.50 GHz,
and Memory 4.00 GB.
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Table 2. Experimental design of each approach.

Model Experimental Design

FFNN Inputs = 19, output = 1, hidden nodes = [4, 15], fhidden(.), foutput(.) = ’Sigm’, learning rate 0.05,
goal 0.0001, and iteration 200.

LSSVM Inputs = 19, output = 1, γ and λ is optimized by 10-cross validation [25].
DRBM Inputs = 19, output = 1, l = [2, 3, 4], hidden nodes = [10, 20, 30, 40, 50, 60] (the same number in

each hidden layer), dropout 0.5, learning rate 1, and iteration 200.SAE

FFNN: feed forward neural network; LSSVM: least squares support vector machine; DRBM: deep restricted
Boltzmann machine; SAE: stack autoencoder.

3.3. Performance Criteria

Three criteria, mean absolute percentage error (MAPE), root-mean-square error (RMSE),
and threshold statistics (TS), are employed to assess the forecasting performances. The definitions of
the three criteria are listed as follows:

MAPE =
100
N

N

∑
i=1

∣∣∣∣ obi − pri
obi

∣∣∣∣, RMSE =

√√√√ N

∑
i=1

(obi − pri)
2/N, TSa =

na

B
× 100 (13)

where N is the length of the prediction, obi and pri represent the i-th observation and prediction,
respectively, and na is the number of data predicted having relative error in forecasting less than a%.
In this paper, TSa is calculated for five levels of 1%, 5%, and 10%.

Moreover, a Pearson correlation analysis [31] is employed to evaluate the correlation degree of
the observation and prediction.

4. Results and Discussion

4.1. FFNN Results

Figure 5 plots the MAPE using the FFNN with different hidden nodes of two cases, respectively.
As shown in Figure 5, the hidden nodes with the lowest MAPE are 10 (Case 1) and 4 (Case 2)
respectively, regarding the control models based on the multiple comparison procedures [31]. Through
carrying out the paired t-test, one can choose the simplest model’s structure that is not significantly
different from the control model so as to obtain better generalization ability. Table 3 gives the results
of the paired t-test at the confidence level of 5%. Note that the models in Table 3 are remarked as the
hidden nodes.
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the observation and prediction. 
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percentage error.

From Table 3, one can find that for Case 1, the models with 11–15 hidden nodes are considered
not significantly different from the control model (Significance > 0.05), and those with 4–9 hidden
nodes are significantly different from the control model (Significance < 0.05). Therefore, the model
with 10 hidden nodes should be selected as the optimal model in this paper. The training time is 2.92 s.
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For Case 2, the models with 4–5 hidden nodes are not significantly different, and the models with
6–15 are significantly different from the control model. The model with four hidden nodes should be
selected as the optimal model in this paper. The training time is 4.04 s. Figure 6 shows the prediction
results using the optimal FFNN for two cases, respectively.

Table 3. Paired t-test results of the FFNN.

Sample Control Model Paired Model Significance (Asymptotic) Paired Model Significance (Asymptotic)

Case 1 10

4 0.048 11 0.146
5 0.044 12 0.358
6 0.029 13 0.348
7 0.028 14 0.165
8 0.045 15 0.345
9 0.038

Case 2 4

5 0.075 11 0.007
6 0.029 12 0.010
7 0.032 13 0.000
8 0.022 14 0.013
9 0.022 15 0.002

10 0.001
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4.2. LSSVM Results

Figure 7 plots the prediction results using the LSSVM optimized by the 10-cross validation method
for two cases, respectively. The training times of the two cases are 5.65 min and 12.22 min, respectively.
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4.3. DRBM Results

Figure 8 plots the MAPE using the DRBM with different hidden structures of two cases,
respectively. According to Figure 8, model numbers 7 (Case 1) and 8 (Case 2) have the lowest
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MAPE, thus the hidden structures 10-10-10 and 20-20-20 are chosen as the control model for the paired
t-test. Table 4 gives the results of the paired t-test at the confidence level of 5%.
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As shown in Table 4, for Case 1, the control model is significantly different from the models 1–6,
9–10, 14, and 16, hence model 7 has the simplest structure. The training time is 3.08 s. For Case 2,
the control model is not significantly different from models 12 and 13, hence model 8 has the simplest
structure. The training time is 8.28 s. Figure 9 shows the prediction results using the optimal DRBM
for two cases, respectively.

Table 4. Paired t-test results of the DRBM.

Sample Control Model Paired Model Significance (Asymptotic) Paired Model Significance (Asymptotic)

Case 1 7

1 0.049 11 0.124
2 0.021 12 0.190
3 0.050 13 0.071
4 0.035 14 0.011
5 0.024 15 0.100
6 0.018 16 0.084
8 0.097 17 0.090
9 0.007 18 0.052
10 0.002

Case 2 8

1 0.039 11 0.039
2 0.005 12 0.120
3 0.000 13 0.205
4 0.002 14 0.000
5 0.001 15 0.001
6 0.003 16 0.007
7 0.004 17 0.005
9 0.015 18 0.001
10 0.000
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Figure 9. Prediction results using the optimal DRBM. (a) 19-10-10-10-1 for Case 1, and (b) 19-20-20-20-1
for Case 2.

4.4. SAE Results

Figure 10 plots the MAPE using the SAE with different hidden structures of two cases, respectively.
According to Figure 10, model numbers 9 (Case 1) and 2 (Case 2) have the lowest MAPE, thus the
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hidden structures 30-30-30 and 20-20 are chosen as the control model for the paired t-test. Table 5 gives
the results of the paired t-test at the confidence level of 5%.
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As shown in Table 5, the control models (model 9 for Case 1 and model 2 for Case 2) have the
simplest structure following the selection principle aforementioned (The training times of the two cases
are 6.19 s and 12.08 s, respectively). Figure 11 shows the prediction results using the optimal SAE for
two cases, respectively.

Table 5. Paired t-test results of the SAE.

Sample Control Model Paired Model Significance (Asymptotic) Paired Model Significance (Asymptotic)

Case 1 9

1 0.046 11 0.022
2 0.040 12 0.110
3 0.033 13 0.108
4 0.037 14 0.044
5 0.041 15 0.117
6 0.046 16 0.015
7 0.018 17 0.015
8 0.034 18 0.014
10 0.045

Case 2 2

1 0.000 11 0.033
3 0.000 12 0.025
4 0.122 13 0.009
5 0.021 14 0.013
6 0.000 15 0.036
7 0.033 16 0.001
8 0.060 17 0.001
9 0.010 18 0.000
10 0.007
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4.5. Comparison Studies

As shown in Figures 6, 7, 9, and 11, one can find that: (1) the performances of the four models have
clear differences, illustrating that the results are not related to the multi-parameter inputs, but related
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to the inputs’ feature learned by different patterns; (2) the predictions using the deep learning
technique have smaller fluctuations than those using the shallow learning technique, illustrating
that the parameters have little impact on the deep learning framework; and (3) all four models fail
at the peak values, demonstrating that both shallow and deep learning have insufficient ability in
peak information learning. To compare the models’ performances from the quantification, a residual
analysis and a statistical analysis are employed in the following text.

The residual analysis is plotted in Figure 12. From Figure 12a, one can find that the range of
the residual errors is [−0.2, 0.2] of two cases, and there is 1 (accounting for 5%) prediction outlier
(Case 1) and 15 (accounting for 7.5%) outliers (Case 2) shown in the triangle because the interval
around the residual errors does not contain zero. This implies that the five residual errors caused by the
unfortunate fitting, beyond the 95% confidence interval, account for 5% of the testing data. As shown
in Figure 12b, one can find that the ranges of the residual errors are [−0.2, 0.15] and [−0.15, 0.2],
respectively, and there is 1 (accounting for 5%) prediction outlier (Case 1) and 16 (accounting for 8%)
outliers (Case 2). From Figure 12c, one can find that the ranges of the residual errors are [−0.15, 0.1]
and [−0.1, 0.2], respectively, and there are 2 (accounting for 10%) prediction outliers (Case 1) and
11 (accounting for 5.5%) outliers (Case 2). As shown in Figure 12d, one can find that the ranges of
the residual errors are [−0.15, 0.1] and [−0.1, 0.15], respectively, and there are 2 (accounting for 10%)
prediction outliers (Case 1) and 12 (accounting for 6%) outliers (Case 2). Compared with the shallow
learning architecture, the deep learning framework has smaller error fluctuations in the two cases,
illustrating that deep learning has better performance over the entire testing dataset. However,
the exhibition in the prediction outliers is different, that is, shallow learning is better than deep
learning for small samples (Case 1) in terms of the number of the outliers, and deep learning is better
than shallow learning for big samples (Case 2). This phenomenon can be attributed to the sample size,
demonstrating that the feature learning ability of the deep technique is closely related to the sample
size. That is, the bigger the sample size is, the better the performance is.

The evaluation criteria are summarized in Table 6. Note that PCC refers to Pearson correlation
coefficient, and the labels ** and * represent 0.01 and 0.05 levels of significant correlation, respectively.
As shown in Table 6, the statistical indexes of the two case applications demonstrate the following.
First, in terms of the lowest MAPE and RMSE, the deep framework (DRBM and SAE) has a strong
capacity for capturing the features of the manufacturing parameters and the quality sufficiently.
However, the shallow architecture (FFNN and LSSVM) has a weaker capacity for feature learning
and regression. Second, in terms of the highest TS, the error distributions of the deep framework
are concentrated in the range of less than 5% (accounting for 90%) and 10% (accounting for 100%)
for Case 1, and 5% (accounting for 92%, 92.5%) and 10% (accounting for 99.5%, 100%) for Case 2.
However, the shallow architectures have good performance in TS1 and worse performance in TS5 and
TS10 compared with deep learning. Third, in terms of the PCC, the degree of correlation is higher
using the deep framework (passed the correlation test at 0.01 (SAE) and 0.05 (DRBM) levels) than that
using the shallow architecture.

Table 6. Comparison of the prediction performances using different models.

Sample Model
Performance

MAPE (%) RMSE TS1 TS5 TS10 PCC

Case 1

FFNN 3.323 0.044 30 75 95 0.261
LSSVM 2.939 0.035 20 85 95 0.316
DRBM 2.242 0.031 20 90 100 0.504 *

SAE 2.216 0.026 20 90 100 0.825 **

Case 2

FFNN 2.485 0.023 27.5 88.5 97.5 0.101
LSSVM 2.361 0.024 26.5 91 99 0.192
DRBM 2.306 0.019 26.5 92.5 99.5 0.348 *

SAE 2.094 0.018 29 92 100 0.514 **

PCC: Pearson’s correlation coefficient; RMSE: root-mean-square error. Labels ** and * represent 0.01 and 0.05 levels
of significant correlation, respectively.



Sustainability 2018, 10, 85 12 of 15

Sustainability 2018, 10, 85  11 of 14 

for 8%) outliers (Case 2). From Figure 12c, one can find that the ranges of the residual errors are 
[−0.15, 0.1] and [−0.1, 0.2], respectively, and there are 2 (accounting for 10%) prediction outliers (Case 
1) and 11 (accounting for 5.5%) outliers (Case 2). As shown in Figure 12d, one can find that the  

(a)

(b)

R
es
id
ua
ls

(c)

(d)

Figure 12. Residual analysis of different models for the two cases. (a) FFNN; (b) LSSVM; (c) DRBM; 
and (d) SAE. 

The evaluation criteria are summarized in Table 6. Note that PCC refers to Pearson correlation 
coefficient, and the labels ** and * represent 0.01 and 0.05 levels of significant correlation, 
respectively. As shown in Table 6, the statistical indexes of the two case applications demonstrate 

Figure 12. Residual analysis of different models for the two cases. (a) FFNN; (b) LSSVM; (c) DRBM;
and (d) SAE.

Additionally, although deep learning overwhelms shallow learning according to Table 6,
the network complexity and computing burden increases. Therefore, the paired t-test is also applied
for evaluating the significant difference to investigate its feasibility. Table 7 gives the significant
differences of the four models at the 5% level. As shown in Table 7, one can find that shallow learning
is significantly different from deep learning, and the two sets of models (the FFNN and the LSSVM,
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and the DRBM and the SAE) have no significant difference. Therefore, the deep framework can be
regarded as an effective approach for multi-parameter manufacturing quality prediction.

Table 7. Paired t-test results between each model.

Sample Paired Model Significance (Asymptotic) Paired Model Significance (Asymptotic)

Case 1
FFNN-LSSVM 0.522 LSSVM-DRBM 0.017
FFNN-DRBM 0.024 LSSVM-SAE 0.072

FFNN-SAE 0.041 DRBM-SAE 0.943

Case 2
FFNN-LSSVM 0.093 LSSVM-DRBM 0.001
FFNN-DRBM 0.029 LSSVM-SAE 0.004

FFNN-SAE 0.000 DRBM-SAE 0.541

In conclusion, according to the qualitative analysis and the quantitative analysis, deep feature
learning is beneficial to explore sophisticated relationships between multiple parameters of
manufacturing and quality, and display better prediction capacity for manufacturing quality. Moreover,
sample size is a vital factor affecting the deep framework’s performance.

5. Conclusions

The capability of shallow and deep learning to predict manufacturing quality is tested and
compared in this paper. The candidates include the FFNN with one hidden layer, the LSSVM with
no hidden layers, the DRBM, and the SAE. For this purpose, the trial and error method is adopted to
select the optimal model with the simplest structures (except for the LSSVM), which are specified by
the paired t-test results. Two cases, i.e., small samples (100 batches) and big samples (1000 batches),
are investigated. The comparison of the model results has shown that: (1) the performances of
the deep framework consisting of two or three hidden layers are better than those of the shallow
architectures in terms of the MAPE, the RMSE, the TS, and the PCC criteria; (2) the performances
of the deep framework depend on the sample size in terms of the number of the prediction outliers,
i.e., the bigger the sample size is, the better the performance is; and (3) the deep framework and the
shallow architecture are significantly different statistically. Based on the findings of this study, it can be
stated that the deep learning techniques considered can be successfully applied to establish accurate
manufacturing prediction models, especially for big data. In a future study, the authors will focus on
the popularization and application of the deep learning techniques in other manufacturing enterprises.
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