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Abstract: The influence of Information Communication and Technology (ICT) in power systems
necessitates Smart Grid (SG) with monitoring and real-time control of electricity consumption. In SG,
huge requests are generated from the smart homes in residential sector. Thus, researchers have
proposed cloud based centralized and fog based semi-centralized computing systems for such
requests. The cloud, unlike the fog system, has virtually infinite computing resources; however,
in the cloud, system delay is the challenge for real-time applications. The prominent features of fog
are; awareness of location, low latency, wired and wireless connectivity. In this paper, the impact of
longer delay of cloud in SG applications is addressed. We proposed a cloud-fog based system for
efficient processing of requests coming from the smart homes, their quick response and ultimately
reduced cost. Each smart home is provided with a 5G based Home Energy Management Controller
(HEMC). Then, the 5G-HEMC communicates with the High Performance Fog (HPF). The HPFs
are capable of processing energy consumers’ huge requests. Virtual Machines (VMs) are installed
on physical systems (HPFs) to entertain the requests using First Come First Service (FCFS) and
Ant Colony Optimization (ACO) algorithms along with Optimized Response Time Policy (ORTP)
for the selection of potential HPF for efficient processing of the requests with maximum resource
utilization. It is analysed that size and number of virtual resources affect the performance of the
computing system. In the proposed system model, micro grids are introduced in the vicinity of
energy consumers for uninterrupted and cost optimized power supply. The impact of the number of
VMs on the performance of HPFs is analysed with extensive simulations with three scenarios.

Keywords: cloud and fog computing; response time; requests service; smart grid; microgrid;
virtual machine

1. Introduction

Increasing demand for electricity and environmental pollution create an alarming situation for
governments and electricity producing companies. The companies are encouraged to utilize renewable
energy sources to overcome carbon emission. Unfortunately, more than 65% of electricity is wasted
during the production, transmission and distribution [1]. Efficient power system consists of control,
information and communication technologies called Smart Grid (SG). Energy in SG is managed on
the supply side for production, transmission and distribution. On the demand side, consumers are
educated to optimize their energy demand to reduce cost.

SG is the combination of Information Communication and Technology (ICT) and the conventional
power grid. SG monitors and controls the power flow for efficient and reliable electricity provision
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than the traditional power grid. The heterogeneous architecture of SG welcomes new technologies
to tackle a variety of technical challenges. To manage millions of energy consumers with billions
of requests, utilities extend ICT systems with the cloud. A cloud based environment is equipped
with high storage, maximum resources with efficient resource utilization and high performance [2,3].
However, a huge amount of traffic of requests on the network for cloud based centralized computing
system creates a bottleneck for bandwidth. In SG, an extensively huge number of requests with low
bandwidth challenges real-time based SG applications.

In SG, on the demand side, energy in SHs is efficiently managed on the bases of information of
appliances load demand and tariff rates from the supply side. Delayed information sharing between
supply and demand sides keeps the inefficient operation of appliances. Cloud based SG suffers from
latency and security issues; to overcome this, fog is introduced. The fog extends the cloud services
on the edge of the network. In SG, fog is placed between utility and end users to provide computing
services for energy requests. End users or energy consumers receive responses of computed requests
from fog in near-real-time. In this paper, High Performance Fog (HPF) is introduced for each group of
buildings with multiple SHs to process their requests of energy, generated every hour. The processed
requests are responded back in near-real-time.

In computing systems, resource sharing techniques are used for efficient resource utilization.
In cloud and fog computing environments, virtual resources are created on the physical resources
for high performance and efficient resource utilization. Multiple virtual resources are created and
scheduled to entertain the huge heterogeneous data.

In this paper, the cloud-fog based system model is proposed to tackle delayed responses and
permanent storage of consumers’ data for energy demands. In the system model, the requests of energy
are received on HPF to get processed and responded back in near-real-time instead of processing on the
cloud. Six regions with groups of residential buildings connected with HPFs are considered. HPFs are
connected with Micro Grids (MGs), residential buildings and the cloud. MGs are placed closer to
the buildings. The utility is connected with the cloud. A huge number of requests from groups of
residential buildings are generated and receive on HPFs to get processed. Provision of energy to the
buildings either from SG or utility is decided on the fog. HPFs reduce the computing burden of the
cloud as well as tackle the latency and data security issues [4].

In computing systems, resource sharing techniques are used for efficient resource utilization.
In cloud and fog computing environments, the virtual resources are created on the physical resources
for high performance and efficient resource utilization. Multiple virtual resources are created and
scheduled to entertain the huge heterogeneous data. In this paper, the cloud-fog based system model is
proposed to tackle delayed responses and permanent storage of consumers’ data for energy demands.
In the system model, the requests of energy are received on HPF to get processed and responded back
in near-real-time instead of processing on the cloud. Six regions with groups of residential buildings
connected with HPFs are considered. HPFs are connected with Micro Grids (MGs), residential
buildings and the cloud. MGs are placed closer to the buildings. The utility is connected with the
cloud. A huge number of requests from groups of residential buildings are generated and received
on HPFs to get processed. Provision of energy to the buildings either from SG or utility is decided
on the fog. HPFs reduce the computing burden of the cloud as well as tackle the latency and data
security issues [4].

The selection of potential data center, installed with Virtual Machines (VMs), is made by service
broker policies. The service broker policies route the requests to the potential data center for efficient
processing and response. These policies use different constraints like the location of the data centers
from the user base and performance of the data centers. VMs are allocated with a number of requests
to process; however, efficient allocation with a balanced load on each VM is maintained with variety of
algorithms. In this paper, Optimized Response Time Policy (ORTP) selects the data center or the fog to
route the requests on it. The algorithms, First Come First Serve (FCFS) and Ant Colony Optimization
(ACO) allocate VMs to the requests. The simulations of three scenarios validate the appropriate
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number of VMs in comparison to the capacity of physical system enhance the performance of Response
Time (RT), Processing Time (PT) and the cost.

1.1. Motivation

In [5], a cloud based model is proposed to facilitate the consumers within a limited geographic
area. A hybrid of a genetic algorithm and particle swarm optimization algorithm is proposed to
balance the load of requests on VMs. The experimental outcomes of hybrid algorithms validate
the efficient processing cost as compared to state-of-the-art algorithms. However, the authors in [6]
resolved the issue of resource allocation by implementing the ant colony system, named “MORA-ACS“.
The performance is evaluated based on PT, energy consumption and standard deviation with round
robin service broker policy. A cost oriented model for demand side management by optimum allocation
of the cloud resources is proposed in [7]. This model gives the consumers a flexibility in resource
optimization and cost minimization.

The state-of-the-art system models are inefficient to cater the huge amount of heterogeneous data.
The cloud and fog resources consume high energy for processing of huge requests and compromise the
performance. A paradigm is needed for an optimized performance on both cloud and fog based SG
systems. The proposed system model reduces the RT, PT and the cost. In this paper, a system model
with service broker policy and load balancing algorithm is proposed to tackle the latency and resource
allocation problem.

1.2. Problem Statement

In SG, energy crises have been a serious concern for many years. The researchers are
addressing such issues by proposing energy management techniques using load shifting and dynamic
pricing [8]. The authors in [9] extend energy management with efficiency and reliability of HEMS
in [8]. Towards improvement on [9], in [10], the authors proposed an infrastructure to allocate cloud
resources with flexibility and cost efficiency for demand side management in smart homes. However,
delayed responses from the cloud are not suitable for the delay sensitive applications. Thus, authors
in [11–13] support fog computing over cloud because of increasing demands. VMs are installed on
computing environments for efficient resource utilization and processing. In [14], experimental analysis
is conducted to evaluate the number of VMs for a physical machine in energy efficient way. However,
the authors concluded that the capacity of VMs and their collocation reduce the job completion time.
To check the effects of the number of dynamic VMs placement on physical machines for time and cost
sensitive applications of SG is the challenging task that is not addressed in the papers mentioned above.

1.3. Contributions

The contributions of this work are summarized as follows:

• For monitoring energy management, residential buildings are classified into six regions based
upon continents of the world using the “CloudAnalyst” simulator [15].

• Integration of HPF between the cloud and residential buildings reduces the cost and latency.
• HPF processes the requests and responses back instead of sending the requests to the cloud which

suffers from latency and data security issues.
• Energy consumption and user demands are monitored in near real-time.
• RT, PT and computational cost are reduced by optimizing the VMs with a load of requests on

the HPFs.
• The management and processing of the requests are optimized on the VMs using FCFS and

ACO algorithms.
• We have dynamically selected of the number of VMs on the HPFs for efficient performance and

the reduced cost of the system.
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1.4. Paper Organization

The remainder of the paper is organized as follows: related work is described in Section 2.
The proposed framework is presented in Section 3. Service broker policy and VM load balancing
algorithms are presented in Section 4. Results and discussion are explained in Section 5. In Section 6,
the conclusions are provided.

2. Related Work

Cloud and fog computing provide a virtual environment to provide efficient resource sharing to
the connected consumers. These resources are allocated to increase the use of VMs instead of using
physical machines, for energy consumption reduction. However, fog computing extends the concept
of cloud computing by reducing the load on cloud. To maintain the load of requests of connected
consumers on cloud and fog, different load balancing algorithms are applied. These algorithms are
used to schedule the requests and allocate the number of requests to VMs. Mostly, both heuristic and
static algorithms are used for load balancing among VMs as in [16–20].

The author in [21] proposed a cloud load balancing algorithm for load balancing on cloud and
compare the results with previously used algorithms applied for the same scenario. The performance
of the proposed algorithm is better than the other algorithms. Therefore, load is balanced when a
multiple number of users logged in at the same time. The authors present a new communication
model using two models: the cloud based demand response model and distributed demand response
model for computing the communication efficiency with reference to optimal resource allocation [22].
This scheme procures the high cost by incorporating the high demand response scenarios. The authors
presented a cost oriented model for demand side management by optimally allocating the cloud
resources [7]. This model gives consumers the flexibility in resource optimization which results in
cost minimization.

The authors proposed a new load balancing algorithm in [23]. For efficient task allocation, the load
is balanced using a proposed algorithm. The mathematical model is used to allocate low power
tasks and others are allocated to human resources. However, the proposed algorithm improves
the throughput by reducing the tardiness. However, the authors in [24] compared multiple service
broker policies to estimate the PT. However, the round robin scheduling algorithm is used to compare
broker policies. Three service broker policies are compared for RT and request PT. These policies
include service proximity, optimise RT and dynamically reconfigure with load service broker policies.
In [25], a Service Oriented Middleware (SOM) model is proposed for the integration and utilization of
fog and cloud of things (CoTs). The smart city ware summarized the components and services used
for applications accessed through the service oriented model in a smart city.

In [26], the author proposed an architecture which is decentralized cloud based architecture.
The authors aimed to schedule the requests coming from consumer side in a real-time environment.
For this purpose, they have done simulations for real-time electric load data of Toronto city in Canada.
However, a pricing model is proposed for energy load optimization during the on peak hours by
maintaining stability of MG. A new service broker policy is proposed for data center selection in [27].
The authors conduct master fuzzy context for provisional fuzzy logic and fuzzy rules are designed for
SG RT and data center priority.

The authors monitor the bulk power grids with grid cloud concept [28]. This concept is an open
source platform for real-time data estimation. In grid cloud, SG is supported on Amazon web services
and is similar to the cloud platform. The authors used cloud tools for cost reduction, software oriented
redundancy to overcome the failures and different methods to secure the sensitive data. The authors
proposed a Privacy Preserving Fog-enabled Aggregation (PPFA) architecture in [29]. The fog node
collect data from smart meters and estimate the cost on fog level aggregation; however, cloud or the
utility supplier calculates the total cost while aggregating all fogs. In [30], authors have conducted
an analysis that shows that cloud based utilities improve the SG ecosystem and how services on
fog computing work for the same scenario. The algorithms on fog work while interplaying with cloud
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computing and check that is it applicable on a real-time environment by providing delay free services
to SG.

The author in [31] proposed a certificate-less provable data possession method. The method
is proposed for cloud based SG applications. The main focus of the paper is to provide sufficient
storage, processing capacity and security using data management system proposed to support SG
applications. In addition, the authors in [32] used Wavelet Recurrent Neural Network (WRNN)
predictors. The solutions are given for a cloud distributed model and balance for energy management
is also achieved for available devices by means of prediction. The power is used according to the
requests coming from consumer side due to predictions made using WRNN predictors.

The cloud facilitates the consumers with: computing, storage and highly centralized connectivity.
However, it suffers from latency, security and downtime issues. For improving the latency, flexibility,
resiliency and reliability of the cloud computing services, a new scheme is proposed in [33] and
implemented using devices profile for web services, which presents energy management as a service
using fog computing environment. Two energy management prototypes are developed in this
methodology: home energy management prototype and MG energy management prototype for
cost minimization and latency reduction.

Table 1. Related work.

Technique (s) Features (s) Limitation (s)
Proposed hybrid of AMLB and
Throttled [16]

Improved RT, PT, throughput and
reduced operational cost Static data implementation

Proposed, Autonomous Agent Based
Load Balancing algorithm [17]

Increase throughput, resource
utilization, reliability and scalable

Dynamic iterative technique has high
time and space complexity

Proposed, PSO based load balancing
algorithm [18]

Reduce task overhead and enhance
resource utilization

Redundant and costly, evaluation of
a VM has to wait until first completes

Proposed, linear programming based
Dynamic Weighted Live Migration
(DWLM) mechanism [19]

Runs information based policy,
improved migration time, throughput
and RT

Dynamic evaluation has high time
and space complexity while LP waits
until dynamic migration evaluation is
performed. Costly and complex

Proposed, load and processing efficient
architecture with two load balancing
algorithms [21]

The load balancing architecture
validates virtual and physical servers’
performance

The high number of connections
compromise the performance

Proposed colorful ants based load
balancing algorithm [23]

Dynamic load balancing, HR ranking
based tasks queue

The time complexity of the algorithm
is high due to iterative nature and not
appropriate for huge requests

3 service broker policies and 3 load
balance algorithms [24]

RT and PT using closest Data Center
policy is optimized as compared to rest

Static requests data limit the
understanding of performance with
Closest Data Center policy

Proposed, Service oriented architecture
and design of middleware for cloud and
fog computing in smart city [25]

Mobility, heterogeneity, real-time
response and dta security

Limitation of fog resource, limit of
number of devices registration, Java has
limitation for implementation

Proposed, an open source GridCloud
platform for bulk interconnected power
grid [28]

Data security, reduced cost and software
based failure overcome

Geographic diversity compromise
performance of the cloud, Latency

Proposed, Cloud and Fog level
aggregation for SG [29]

data security, robust, Direct link of smart
meters with fog node

Security key sharing for huge number
of users is expensive, limitation of
downstream bandwidth

Proposed the fog based model for
SG [30]

Mix of fog and cloud computing assures
high computation with security and
mobility

Redesign and development of delay
sensitive applications for fog node
with migration characteristics, New
SG service services need to develop,
Security challenges between cloud and
fog nodes

Proposed, Management architecture
predictive system for power generation
from integration system and power
consumption using cloud distribution
for energy dispatch [32]

Real-time processing, Prediction of
power generation and load demand

Number of nodes between power
generation and cloud node and between
cloud node to power consumers cause
latency issues

Proposed, fog computing as energy
management platform [33]

Open source hardware and software
for customized services, scalability,
adaptability, interoperability, scalability
and connectivity of devices with fog,
energy management

System deployment of residential
sector is challenging due to low budget,
operational and maintenance cost
are additive cost and important for
residents
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Similarly, a Transmission Control Protocol/Internet Protocol (TCP/IP) based single hop network
is proposed in fog data centers with adoptive resource scheduler for energy efficiency in [34].
The requests of traffic arrive at fog data center where scheduler configures the VMs for minimum
energy dispatching. Moreover, requests are instantaneously processed and responded to vehicular
clients. In [35], a platform of fog-of-everything with Internet-of-everything is proposed for the required
satisfactory quality-of-service. The proposed algorithm in the platform saves more energy as compared
to existing state-of-the-art algorithms for the fog data centers. Fog and Internet-of-everything are also
integrated in [36] and formed fog-of-everything like [35]. However, the authors of [36] performed
simulations to study the reduced energy and enhanced the performance of fog computing for huge data.

The literature discussed above is summarized in Table 1. From the literature, it is analysed that
fog computing helps to maintain and reduce the load of cloud efficiently. Multiple algorithms are
introduced for load balancing and new service broker policies are proposed in different paper. However,
using VMs, the results are improved and cost is reduced as compared to using physical machines.

3. System Model

In the proposed system model Figure 1, six geographic regions with groups of buildings are
considered for simulation. Each building has multiple Smart Homes (SHs) or apartments with Internet
of Things (IoT) based appliances. Every home has a smart meter with 5G enabled controller to monitor,
control the IoT based appliances and communicate with the controller of the building. Each building
communicates using the controller with fog node in the region for processing of energy requests of
SHs. Fog is connected with MG and the cloud. If demands of SHs are not met by MG, then fog
requests the utility via the cloud to fulfill the demand. Fog transmits the data of consumers to cloud
for permanent storage and future usage. The communication takes place between home appliances
and smart meter, building controller and smart meters, fog and the controllers, MG and fog, utility and
fogs, and cloud and fogs; however, power flows from utility and MG to the buildings. It is assumed
that every communicating device has an IoT module to share data over the Internet. Parameters for
the group of buildings considered for the proposed system model are given in Table 2.

Cloud

Fog forward the request to 
MG for energy requirement 

with consumer id and 

When MG is unable to fulfill 

the requirement then fog 

communicate to Utility 

company

Power Flow

Data and 

Information 

Flow

Figure 1. Proposed system model.
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Fog receives requests from the building controller for energy demands. Fog prefers MG, due to
cheaper energy as compared to utility and instructs to facilitate the required SH in the building. If MG
has insufficient power, then it responds to the fog accordingly. The fog requests the utility via the
cloud to meet the energy demand of the building. SHs generate frequent energy requests and send
to respective fog node in the region for energy demands. When hundreds of SHs generate hundreds
of thousands of requests for a day then computational performance becomes challenging. HPFs are
introduced between cloud and buildings (end users). HPF, unlike cloud, has low latency, lesser PT and
RT with data security. The communicating modules in the system model are monitored and controlled
using IoT based applications over web services.

Fog is like a small cloud; however, it has limited resources as compared to the cloud. It is placed
close to the end devices (end users) and extends the cloud services on the network edge with high
performance and real-time responses. The resource sharing techniques are used for efficient resource
utilization in cloud and fog computing. VMs are installed on the fog for resource sharing to efficiently
process the huge number of energy requests. Load of requests on VMs affect the performance, hence
load optimizing algorithms are used. In this paper, FCFS and ACO algorithms are implemented
for load balancing over VMs. However, selection of potential data center on fog node is made by
service broker policies; ORTP. The simulations are performed with the simulator “CloudAnalyst” [15],
in which calibration of fog parameters are tuned, as shown in Table 3.

VMs are the programs that mimic the operations of physical machines. Resources of physical
computing machines are divided logically to create VMs. Hence, physical resources are shared using
VMs to enhance the performance and unbound the specifications of resources. However, too many
VMs on physical resources limit the capacity of the resources; hence, it is assumed that overall
performance of the system should not be compromised. In this paper, the system model is proposed
for SG applications, in which a huge number of requests are generated in a day for every hour from
residential buildings and are sent to the HPFs. The load of requests is routed on data servers for RT
optimization as well as on VMs which are allocated with balanced load of requests to reduce the PT.
Three scenarios are implemented with the same specification of hardware; however, VMs are doubled
in scenario 2 as compared to scenario 1 and doubled in scenario 3 as compared to scenario 2.

MGs are equipped with Renewable Energy Sources (RES) which are placed closer to consumers to
save power losses. In this paper, five MGs, as shown in Equation (1), are taken with a battery storage
system, RESs: photovoltaic arrays and wind turbines. MGs are preferred to use when the utility has
on-peak hours, while, during off-peak hours, RESs store the energy. The set of regions (R) with a set of
buildings (GB) are given in Equations (2) and (3):

MG = MG1, MG2, ..., MGn, where n = 5, (1)

R = R1, R2, ..., Ri, where i = 6, (2)

GB = GB1, GB2, ..., GBj, where j = 6. (3)

Table 2. Parameters for groups of buildings.

Group of Buildings Region Number of Buildings Requests/Building/hour Data Size/Request (bytes) Number of MGs Available
G1 R1 100 100 128 3
G2 R2 90 70 128 4
G3 R3 72 66 128 5
G4 R4 59 59 128 2
G5 R5 86 80 128 4
G6 R6 70 60 128 2

In the proposed scenario, each region has one group of buildings with SHs or apartments.
On average, 1000 are off-peak users and 100 are on-peak users. Cost of energy consumption is reduced
in off-peak hours—this is why most users are off-peak consumers. Each region has an HPF computing
node with memory, storage, number of processors, operating system and VM manager, etc. HPFs store



Sustainability 2018, 10, 3592 8 of 24

data temporary and transfer to the cloud for permanent storage. Parameters of HPFs are given in
Table 3. A huge number of requests are processed on HPFs; however, an efficient load of requests over
VMs and selection of potential data centers reduces PT and RT for the consumers’ requests. Moreover,
the groups of buildings generate peak load of requests in a day. The peak hours of “G1”, “G2”, “G3”,
“G4”, “G5” and “G6” are during 4:00 p.m. to 11:00 p.m., 8:00 a.m. to 5:00 p.m., 7:00 p.m. to 11:00 p.m.,
6:00 p.m. to 10:00 p.m., 3:00 a.m. to 11:00 a.m. and 3:00 a.m. to 11:00 a.m., respectively. Peak load of
requests also affects the performance and overall computation cost which ultimately electricity users
have to pay. Tuning the parameters of Table 2 along with the peak load of request time in a day in the
CloudAnalyst is implemented with three scenarios.

Table 3. Input parameters regarding HPF.

Parameter Value

VM
Image Size 10,000 MB
Memory 512 & 1024 MB
Bandwidth 1000 Mbps

HPF

Architecture X86
Operating System Linux
VM manager Xen
Number of Machines 20

Machines

Memory 2048 MB
Storage 100 GB
Available BW 10,000
Number of processors 4
Processor speed 100 MIPS
VM Policy Time Shared
Homes Grouping Factor 1000
Requests Grouping Factor 100
Executable Instruction Length 100

4. Problem Formulation

A huge number of energy requests x arrive at HPF to get processed with minimum processing
and RT. The set of all x requests is RQ = {Rq1, Rq2, ..., Rqx} and the set of all v VMs installed on HPF
is VM = {V1, V2, ..., Vv}. Minimization of PT is the goal and is shown in Equation (4):

Minimize

Tavg
P =

∑v
i=1 TPr(i)

v
(4)

subject to

TPr(i) =
∑x

a=1 Rql(a)
PRspeed(i)

, ∀ iε1, 2, ..., v, (5)

Rq ≥ 1. (6)

Average PT of all VMs is calculated as shown in Equation (7):

Tv
AvgPr =

∑v
i=1 TPr

v
. (7)

When a request is sent to the computational environment for processing, the sum of network
delay, PT and the very first response to the consumer is called RT. It is also defined as the difference of
arrival and finishing time of the task at fog addition to network or transmission delay time. The RT of
a task j is calculated as Equation (8) where FT(j) is finishing time of task j, AT(j) is arrival time and
Tdelay(j) is the transmission delay. Average RT of all x requests is calculated as in Equation (4):

RT(j) = FT(j)− AT(j) + Tdelay(j), ∀jε1, 2, ..., x, (8)
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RTavg =
∑x

j=1 RT(j)

x
. (9)

Transfer of all data requests depends on the size of bandwidth BW. Transfer time of all data
requests is calculated as in Equation (10),

TTrans f er =
Datasize

BW
. (10)

4.1. Operational Cost

Operational cost is added in the user’s bill and computed as the cost of VMs, DT and MG.
VMs have fixed or one time and recurring cost. Fixed cost is associated with the physical equipment
and its installation. The recurring cost associated with the storage size, temporary memory, size and
number of requests received or sent and bandwidth of VM. In this paper, the recurring cost is taken as
VM cost and calculated as shown in Equation (11):

VM_Cost = Storage_Cost×VM_size + RAM_Cost×
RAMVM + BW_Cost×VM_BW.

(11)

Cost of MG also has fixed and recurring costs. Fixed cost depends on type and size of energy
sources and their installation. The cost of energy produced depends on efficiency of production,
maintenance and energy demand which is recurring cost of MG. Each MG has own recurring cost
depending on size and demand; however, average cost of all MGs is calculated as in Equation (12):

MGAvgCost =
∑m

i MGi

m
, (12)

where m are number of MGs in a region. Cost of DT depends on total data size and cost per unit data.
Total cost of data to be transferred is calculated as in Equation (13),

DatatCost = Datasize ∗ CostuData, (13)

where DatatCost is the total cost of all data Datasize times cost per data size CostuData. Operation cost is
the total cost of VM, MG, DT and calculated as in Equation (14). Total operational cost is the sum of
costs of VM, MG and DT, as shown in Equation (14),

TOpCost = VMCost + MGCost + DatatCost. (14)

4.2. Service Broker Policy

Service broker policy selects potential data center of efficient processing and RT. If multiple fog
nodes, each with the single data center, are accessible for a user; then, service broker policy selects
a potential fog node (fog data center) to route the traffic of requests on it. Selection is made on the
bases of a variety of parameters—for example, PT, resource availability and RT, etc., by defining the
policies to route the traffic of requests [37]. In this paper, ORTP is used to select potential data center in
fog node.

Optimized Response Time Policy

This service broker policy makes selection of potential fog using the following points:

• Index of available HPFs in a region is maintained,
• Check the history in which HPF provides best RT in the history,
• The request coming from the clusters are assigned to the HPF located on the same region with

best RT.
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4.3. VM Load Balancing Algorithms

The load balancing algorithm helps to balance the load requests on multiple VMs for efficient
processing. The efficiency of load balancing of algorithms varies and two of them are discussed in
detail as below.

4.3.1. FCFS VM Load Balancing Algorithm

In the FCFS algorithm, the order in which requests arrive on the data center is allocated to
VMs, accordingly. When huge requests arrive on data center, then these are put in wait in a pool
in the same order as they are received. Each request is assigned with time or incremental priority
tag. The algorithm picks the first request by calculating tag associated with it and prefers the earliest
request to feed into the system for processing. The system has VMs which receive these requests for
processing on FCFS bases. The algorithm has steps given in Algorithm 1.

Algorithm 1: FCFS
1: Input the requests along with their burst time (bt)

2: Find waiting time (wt) for all requests.
3: The request comes first, need not to wait so, waiting time
4: Request 1 will be 0
5: wt[0] = 0
6: Find waiting time for all other requests i.e.; for Request = i + 1 do
7: wt(i) = bt(i− 1) + wt(i− 1)
8: Find turnaround time (Tt) for all requests
9: Tt(i) = wt(i) + bt(i)

10: Find average waiting time
11: Total_wt(i)/No.o f Processes
12: Similarly, find average turnaround time
13: Total_Tt(i)/No.o f Processes

4.3.2. ACO VM Load Balancing Algorithm

ACO algorithm is inspired from the behavior of ants when they search for food. Ants have no eyes
and use pheromones chemical for their route to search the food. When plenty of food is found, then
others are directed to the same destination from the nest with multiple paths using swarm intelligence.
Initially, ants have multiple paths; however, after some time, the shortest path is chosen using swarm
intelligence. Ants follow pheromones, which can be evaporated and the chance of availability from
one location to other is also reduced. Hence, the performance of finding or calculating the shortest
path is affected. Availability of pheromone is probabilistic; hence, ACO is a probabilistic meta-heuristic
problem solving technique. The optimized solution inspiring from the behavior of ants is calculated
with Equation (15):

pd
ij =

(τij(t))α × (ηij(t))β

∑ s ∈ Jd(i)(τis(t))α × (ηis(t))β
, (15)

where pd
ij is the probability of pheromone, τij(t) between i and j ants at time t. τ and ηij(t) are heuristic

factors with coefficients of α and β. The ACO algorithm has steps given in Algorithm 2.
The time required to allocate available number of requests on the VMs is called time complexity

of ACO. The time complexity from one pheromone’s position to other is O(n) for n positions.
For iteratively visiting all positions, the time complexity is O(n2). This exponential increase of time
is too high for large instances. Hence, in this paper, the PT and RT for ACO are higher as compared
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to FCFS in Scenario 1. The time complexity differences in Scenario 2 and Scenario 3 are higher as
compared to Scenario 1 due to a higher number of VMs. Local search is implemented in each fog
computing for VM allocation; hence, space complexity is linear Ω(n) while a global solution of ACO
has space complexity of Ω(n2). The space and time complexity of ACO are very high.

In this paper, requests are the food and VMs are ants while HEMC acts as a nest of ants and
generates requests and sends to HPF using 5G technology. The potential VM is selected by evaluating
the availability and capacity for every request. Hence, before allocating the VM, the probability and
suitability of VMs are updated in the list. Thus, iterative update and prioritization increase the time
for manipulation.

The high time and space complexity of ACO make it unsuitable for huge data (e.g.; more than
3800 data requests [38]). For huge data, ACO traps in local optima. However, in this paper, number of
requests or data are small and does not trap in local optima. However, time complexity is very high as
compared to FCFS. It is assumed that probability of pheromone evaporation is reduced. Moreover,
co-efficients α and β are reduced to control local optima of ACO.

Algorithm 2: ACO
1: ACO parameters initialization: pheromone, routes, iteration
2: Solution = 0
3: Iteration = 1
4: Probability of allocation of VM computed using equation 15
5: Random allocation of tasks to VMs
6: The value of VM is inserted into list of VMs
7: Repeat the step until the completion of tour of ants
8: Compute the Solution
9: Calculate the distance between source to destination

10: Update the pheromone
11: Again calculate the distance
12: For every edge update the pheromone locally
13: Optimal solution is replaced by current solution
14: Continue the process until best optimal solution
15: Display the results

5. Simulation Results and Discussion

In this paper, ORTP selects the potential HPF or data center. Requests are assigned to VMs using
FCFS and ACO algorithms. Three scenarios with 25, 50 and 100 VMs on the HPFs are considered.
Every hour, a huge number of requests arrive at HPF, as shown in Figure 2, which are allocated
to VMs using FCFS and ACO. Each scenario is also implemented with the cloud-based centralized
system. In the system, we consider all groups of buildings are connected with the cloud which has an
equivalent number of requests and resources, as the sum of all HPFs.
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Figure 2. Amount of request load on each HPF.

5.1. Scenario 1

In the scenario, there are 25 VMs on HPFs with a group of buildings generating requests and
send to HPFs every hour, as shown in Figure 2. The requests are allocated on VMs using ACO and
FCFS load balancing algorithms. The RT of the requests is measured in milliseconds for each group of
buildings and their average, minimum and maximum RT is given in Table 4 using the ACO algorithm.

Table 4. Response time of each group of buildings for ACO.

Group of Buildings Average (ms) Minimum (ms) Maximum (ms)
G1 52.31 38.82 64.63
G2 51.29 39.99 66.39
G3 52.47 40.22 66.60
G4 52.31 38.67 64.17
G5 54.66 41.24 70.15
G6 54.92 42.28 71.27

The PT of each HPF with the given scenario using ACO algorithm is given in Table 5. Average,
minimum and maximum PT with 25 VMs of each HPF are also given in the table.

Table 5. Processing time of each HPF for ACO.

HPF Average (ms) Minimum (ms) Maximum (ms)
HPF1 2.59 0.04 9.82
HPF2 1.58 0.03 6.18
HPF3 2.64 0.03 9.06
HPF4 2.63 0.04 9.93
HPF5 4.79 0.08 17.15
HPF6 5.19 0.67 19.56

Similarly, for the same number of requests, the RT for each group of buildings has an average,
minimum and maximum are given in Table 6 using the FCFS algorithm.
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Table 6. Response time of each group of buildings for FCFS.

Group of Buildings Average (ms) Minimum (ms) Maximum (ms)
G1 52.20 38.82 64.63
G2 51.22 39.97 66.39
G3 52.33 39.90 66.60
G4 52.19 38.67 64.17
G5 54.38 41.24 66.78
G6 54.51 42.28 67.12

The PT of each HPF for the requests of buildings generated in a day, allocated to VMs using FCFS,
are given in Table 7 with average minimum and maximum time.

Table 7. Processing time of each HPF for FCFS.

HPF Average (ms) Minimum (ms) Maximum (ms)
HPF1 2.47 0.04 4.08
HPF2 1.51 0.03 2.70
HPF3 2.50 0.03 4.06
HPF4 2.51 0.04 4.10
HPF5 4.51 0.08 7.25
HPF6 4.78 0.67 7.09

The simulation shows in Figure 3 that total cost of VMs, MGs and DT using ACO and FCFS are
the same. The operational cost of each region is associated with MGs, VMs of HPFs and DT. The “Fog4”
has the least total cost due to being equivalent to the average number of requests being processed
during most of the hours of the day.
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Figure 3. VM, MG, DT and total cost for ACO or FCFS.

The scenario is also implemented in the cloud based system. The cloud has a sum of requests of
all HPFs with FCFS and ACO algorithms for allocation of requests to VMs along with ORT service
broker policy for selection of data center. In Table 8, the cloud based system has longer RT as compared
to individual HPFs using ACO and FCFS load balancing algorithms. However, PT using ACO is longer
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as compared to FCFS for the requests of buildings from all the regions. The PT of cloud based system
is efficient as compared to individual HPFs. The minimum and maximum RT and PT using ACO and
FCFS algorithms are also given in the table. The delayed RT can affect the cost efficiency of energy
consumers. For instance, electricity prices are updated at the cloud which may be responded to with
a longer delay that compromise the total energy consumption cost for a day. Implementations of cloud
based and cloud-fog based systems validate the performance of cloud-fog based system model as well
as claim that the SG has time sensitive applications.

Table 8. Scenario 1: Response and processing time of cloud.

Time Load Balancer Average (ms) Minimum (ms) Maximum (ms)
Response ACO 98.31 69.68 106.62

Processing ACO 1.12 0.06 2.1
Response FCFS 101.34 87.02 112.03

Processing FCFS 1.92 0.10 2.6

5.2. Scenario 2

In this scenario, 50 VMs are considered on HPFs. Huge requests are generated from groups
of buildings in the regions and are sent to the HPFs every hour. ACO and FCFS load balancing
algorithms allocate the requests on VMs. The RT for the scenario using ACO with average, minimum
and maximum are given in Table 9.

Table 9. Response time of each group of buildings for ACO.

Group of Buildings Average (ms) Minimum (ms) Maximum (ms)
G1 54.52 41.26 67.65
G2 52.18 37.80 65.89
G3 54.57 39.72 70.87
G4 54.50 40.28 70.43
G5 57.50 39.76 78.09
G6 57.83 42.36 75.38

Time taken to process requests are also measured in milliseconds. Average, minimum and
maximum time for processing of each HPF in a day using ACO algorithm is given in Table 10.

Table 10. Processing time of each HPF for ACO.

HPF Average (ms) Minimum (ms) Maximum (ms)
HPF1 4.72 0.07 15.57
HPF2 2.54 0.04 10.97
HPF3 4.83 0.07 15.69
HPF4 4.84 0.07 19.34
HPF5 7.70 0.12 27.52
HPF6 8.17 1.05 20.83

Unlike Scenario 1, RT of group of buildings with 50 VMs using FCFS is different from the ACO
algorithm. The RT of the number of requests generated every hour from each group of building is
given in Table 11 with average, minimum and maximum time.
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Table 11. Response time of each group of buildings for FCFS.

Group of Buildings Average (ms) Minimum (ms) Maximum (ms)
G1 54.29 38.89 67.88
G2 52.01 40.08 67.53
G3 54.48 40.20 69.85
G4 54.31 38.83 67.42
G5 56.78 41.50 70.15
G6 57.12 42.65 70.87

In the scenario, the number of VMs are twice the amount as compared to Scenario1. The number
of requests in a day generated from the group of buildings in the regions are processed in respective
HPF. Their average, minimum and maximum PT are given in Table 12.

Table 12. Processing time of each HPF for FCFS.

HPF Average (ms) Minimum (ms) Maximum (ms)
HPF1 4.57 0.07 7.09
HPF2 2.31 0.04 4.95
HPF3 4.65 0.07 7.07
HPF4 4.63 0.07 7.11
HPF5 6.93 0.12 11.00
HPF6 7.39 1.05 10.84

The cost of VMs on HPFs, MGs and DT in the regions are calculated. The cost using ACO is
shown in Figure 4. The “Fog4” has the lowest cost due to a lower number of requests being processed
as compared to rest of the HPFs in the regions. Similarly, costs of VMs, MGs and DT using FCFS
algorithms are shown in Figure 5.
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Figure 4. VM, MG, DT and total cost for ACO.
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Figure 5. VM, MG, DT and total cost for FCFS.

The scenario is also implemented using a cloud based system model. The cloud node has VMs
equal to the sum of all VMs on HPFs with the sum of all requests from all the regions. Both FCFS and
ACO algorithms are used for allocation of requests to VMs and ORTP is used for data center selection.
In Table 8, average RT with ACO algorithm for the cloud based system is longer than HPFs in the
regions for the groups of buildings G1, G2, G3, G4, G5 and G6. Each building is entertained with
a more delayed response as compared to the cloud-fog based system. Delayed responses for the
buildings in the regions compromise the efficiency of energy consumption. For instance, if a building
is consuming power with some cost that is updated with cheaper rates; however, delayed response
keeps the consumers consume expensive energy for the delayed time. The PT in the cloud is affected
with sub-delays like; allocation of requests due to a huge number of requests, evaluation for allocation
of requests due to more number of VMs and creation of too many VMs which compromise the
performance of physical resources etc. In a cloud based system, average RT and PT using the FCFS
algorithm are higher as compared to ACO, which validates the efficiency of ACO. Similarly, variations
can be observed for minimum and maximum RT and PT in the table with both ACO and FCFS
algorithms. The cloud based system has high processing resources as compared to HPFs that reduce
the evaluation time for ACO. Hence, ACO is a good load balancing algorithm; however, time and
space complexity is higher as compared to FCFS. The summery of performance with ACO and FCFS is
given in Table 13.

Table 13. Scenario 2: Response and processing time of cloud.

Time Load Balancer Average (ms) Minimum (ms) Maximum (ms)
Response ACO 158.01 98.45 172.60

Processing ACO 2.34 1.0 3.51
Response FCFS 169.03 101.66 181.53

Processing FCFS 4.06 2.89 5.99

5.3. Scenario 3

In this scenario, the number of VMs are twice the amount as compared to “Scenario 2”. Average,
minimum and maximum RT of requests for a group of buildings in a day using ACO are given in
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Table 14. The PT for the requests of buildings at each HPF for a day using ACO algorithm with average,
minimum and maximum are given in Table 15.

Table 14. Response Ttime of each group of buildings for ACO.

Group of Buildings Average (ms) Minimum (ms) Maximum (ms)
G1 57.44 37.61 77.01
G2 54.17 39.22 69.54
G3 57.58 39.46 81.62
G4 57.53 42.63 73.70
G5 58.63 41.95 81.16
G6 58.90 41.87 83.59

Table 15. Processing time of each group of buildings for ACO.

HPF Average (ms) Minimum (ms) Maximum (ms)
HPF1 7.72 0.11 28.70
HPF2 4.52 0.10 17.16
HPF3 7.83 0.11 29.83
HPF4 7.86 0.11 20.60
HPF5 8.72 0.22 30.33
HPF6 9.16 1.05 30.80

The RT for each group of buildings with average, minimum and maximum with the FCFS
algorithm on HPFs for a day is given in Table 16. Similarly, PT for the requests processed at each HPF
using the FCFS algorithm for a day with average, minimum and maximum given in Table 17.

Table 16. Response time of each group of buildings for FCFS.

Group of Buildings Average (ms) Minimum (ms) Maximum (ms)
G1 56.77 38.96 71.63
G2 53.69 40.32 69.96
G3 57.02 40.57 73.60
G4 56.82 39.02 71.17
G5 56.78 41.50 70.15
G6 57.12 42.65 70.87

Table 17. Processing time of each group of buildings for FCFS.

HPF Average (ms) Minimum (ms) Maximum (ms)
HPF1 7.05 0.11 10.84
HPF2 4.01 0.06 8.95
HPF3 7.19 0.10 10.82
HPF4 7.15 0.11 10.86
HPF5 6.93 0.12 11.00
HPF6 7.39 1.05 10.84

The cost of VMs on HPFs using the ACO algorithm for the allocation of requests of buildings,
MGs and DT for a day is shown in Figure 6. The cost of VMs using FCFS algorithm, MGs and DT for
a day is shown in Figure 7.
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Figure 6. VM, MG, DT and total cost for ACO.
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Figure 7. VM, MG, DT and total cost for FCFS.

The scenario is also implemented in a cloud based system. The cloud has an equivalent number
of VMs as those on all HPFs and the resources. The traffic of requests being routed to the data centers
using ORTP and VMs are allocated with requests of buildings from all the regions using ACO as well
as FCFS algorithms. The groups of all buildings are connected with the cloud and send a huge number
of requests on the cloud for computation. Utility and MGs receive instructions from the cloud. Table 18
shows that average RT for groups of buildings in all regions. The ACO is efficient as compared to
FCFS algorithm. However, average RT of the cloud is longer than individual HPFs for the group of
buildings in the regions which makes the cloud based system inefficient as compared to the HPFs
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based system. The size of computing resources of the cloud is equivalent to the sum of sizes of the
computing resource of all HPFs. The closed based system of Scenario/2 is efficient as compared to this
scenario due to too many VMs compromising the performance of physical resources of the cloud.

Table 18. Scenario 3: Response and Processing Time of cloud.

Time Load Balancer Average (ms) Minimum (ms) Maximum (ms)
Response ACO 301.01 271.31 324.65

Processing ACO 4.01 2.01 5.48
Response FCFS 312.42 288.84 332.10

Processing FCFS 5.23 3.10 7.21

5.4. Comparative Analysis

Three scenarios have been implemented with 25, 50 and 100 VMs on each HPF. The groups of
buildings in each region generate a huge number of requests and sent to HPFs. The implementation of
the scenarios explained the performance parameters like RT, PT, cost of VMs, MGs and DT. ORTP is
implemented for the routing of the requests to data centers. ACO and FCFS algorithms are used for
VMs allocation to the requests.

The tables of RT and PT for the requests of buildings for a day with Scenario 1 have the least
values as compared to Scenario 2 and Scenario 3 using ACO and FCFS algorithms. VMs are computing
resources that enhance the RT and PT by sharing the physical resource; however, too many VMs
compromise the performance of physical resources that ultimately compromise the performance of the
overall system. Hence, the performances of HPFs and the cloud of Scenario 1 are ideal as compared
to Scenario 2 and Scenario 3. The number of VMs of Scenario 2 are twice the amount of Scenario 1
and the Scenario 3 is twice the amount of Scenario 2. Hence, Scenario 1 has the ideal number of
VMs according to the specification of the physical resource as compared to Scenario 2 and Scenario 3.
The performances of HPFs and the cloud in the scenarios also affect the depending parameters like the
cost of MGs, DT and VMs.

The comparative analysis of all scenarios verifies the claim. In Figure 8, the average PTs for
Scenario1, Scenario2 and Scenario3 are given. The RT in Scenario1 has less graph representation as
compared to Scenario2 and Scenario3 using ACO and FCFS algorithms for requests of groups of
buildings in a day.
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Figure 8. Response time comparison between ACO and FCFS for all scenarios.

Average PT for all scenarios using ACO and FCFS algorithms for requests of buildings in a day
on all HPFs are shown in Figure 9. Scenario 1 has optimized average PT as compared to Scenario 2
and Scenario 3 while Scenario 2 has optimized PT as compared to Scenario 3. Average PT using ACO
is more optimized then FCFS in Scenario 2 and Scenario 3 while this is vice versa in Scenario 1.

Scenario 1 Scenario 2 Scenario 3
0

1

2

3

4

5

6

7

A
vg

. P
ro

ce
ss

in
g 

T
im

e 
(m

s)

ACO
FCFS

Figure 9. Processing time comparison between ACO and FCFS for all scenarios.

Total cost of VMs, MGs and DT for all scenarios using ACO and FCFS on HPFs for allocation
of VMs to the requests of groups of buildings are shown in Figure 10. Scenario 1 has the lowest
cost as compared to Scenario 2 and Scenario 3; however, overall cost with ACO is more optimized as
compared to FCFS.



Sustainability 2018, 10, 3592 21 of 24

Scenario 1 Scenario 2 Scenario 3
0

500

1000

1500

2000

2500

3000

T
ot

al
 C

os
t (

$)
ACO
FCFS

Figure 10. Total cost comparison between ACO and FCFS for all scenarios.

The increased number of VMs reduce the RT, PT and increase the cost; however, the simulation
results show that RT, PT and cost are increased due to too many virtual resources on physical resources.
Hence, too many virtual resources for physical resources compromise the system performance.
The average RT and PT of Scenario 2 are longer than Scenario 1, while Scenario 3 has the longest RT and
PT with the highest cost. Average RT using ACO of Scenario 3 is increased by 6.70% from Scenario 1
and 5.05% from Scenario 2. Similarly, RT using ACO of Scenario 2 is increased by 1.99% from Scenario 1.
Average RT using FCFS of Scenario 3 is increased by 3.28%, 4.23% from Scenario 2 and Scenario 1,
respectively. Similarly, average RT using FCFS of Scenario 2 is increased by 1.10% from Scenario 1.
Average PT using ACO in Scenario 3 is increased by 43.87% and 21.07% as compared to Scenario 1
and Scenario 2, respectively. Similarly, average PT using FCFS of Scenario 3 is increased by 54.69%
and 23.9% as compared to Scenario 1 and Scenario 2, respectively. The cost using ACO for Scenario 2
is the highest by 8.8% and 4.4% from Scenario 1 and Scenario 3. However, using FCFS, the cost in
Scenario 3 is increased by 23.62% and 9.55% from Scenario 1 and Scenario 2, respectively. Similarly,
cost in Scenario 2 using FCFS is increased by 15.55% from Scenario 1. The higher time complexity of
ACO is due to the number of iterations performed to find an appropriate solution; hence, ACO is
problem-oriented and take a longer time for request allocation and FCFS is simple, timely and an
availability based load balancer. Moreover, too many virtual resources on physical resource affect the
cost and performance.

The simulations of the scenarios show that cloud-based systems are very slow as compared to the
cloud-fog based systems. The cloud based system has 41.72% to 44.14%, 63.40% to 66.98% and 81.71%
to 82.81% slower response as compared to the cloud-fog based system in Scenario 1, Scenario 2 and
Scenario 3, respectively. Similarly, 46.21% to 49.46%, 66.21% to 69.23% and 81.14% to 82.66% the cloud
based system has a slower response as compared to a cloud-fog based system using an FCFS load
balancer in Scenario 1, Scenario 2 and Scenario 3, respectively. RT using ACO of Scenario 1 is 37.78%
and 67.38 more efficient as compared to Scenario 2 and Scenario 3, respectively, similarly, 40.05% and
67.56% using FCFS. The PT of Scenario 1 using ACO and FCFS are 52.13% and 52.71% more efficient
as compared to Scenario 2. Similarly, PT using ACO and FCFS of Scenario 1 are 73.07% and 63.29%
more efficient as compared to Scenario 3.
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6. Conclusions and Future Work

In this paper, we have modeled a system in which there are six regions each with a MG, group of
buildings of multiple homes and an HPF. MG is used to provide uninterpretable power supply
to consumers. Each home generates requests for energy demand and sends to HPF to process.
The requests are routed to potential HPF using ORTP service broker policy and assigned to the
corresponding VM using either ACO or FCFS load balancing algorithms. The RT and PT of requests
from each region are optimized using aforementioned service broker policy and load balancing
algorithms. Three scenarios with 25, 50 and 100 VMs are implemented to analyse the effects on RT,
PT and cost. RT and PT in Scenario 1 are more optimized as compared to Scenario 2 and Scenario 3;
however, Scenario 2 has twice the number of VMs as compared to Scenario 1 and Scenario 3 has twice
the number of VMs as compared to Scenario 2. VMs are installed on physical resources for resource
sharing. Simulations validate that physical resources are suffocated when VMs are increased beyond
their limits. Scenario 1 has 25 VMs that are suitable for physical resource sharing while 50 and 100 VMs
in Scenario 2 and Scenario 3 share the physical resources more than the capacity, which slows down the
system by affecting the parameters like RT, PT and cost. Cloud based system has longer delay issues
that does not suit SG such as time sensitive applications.The simulation results prove that the cloud-fog
based system shows high performance as compared to only fog based system for time sensitive SG
applications. Moreover, too many VMs with respect to capacity of physical resources compromise
the RT, PT and the cost. In Scenario 1, fogs have less VMs than Scenario 2 and Scenario 3; therefore,
performance of Scenario 1 is better as compared to the other two scenarios. There are too many VMs in
Scenario 2 and Scenario 3 for physical resources.

In the future, we will provide a mathematical and logical evaluation criterion to create a suitable
number of VMs on physical systems for efficient performance.
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