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Abstract: The Thailand Development Policy focuses on the simultaneous growth of the economy,
society, and environment. Long-term goals have been set to improve economic and social well-being.
At the same time, these aim to reduce the emission of CO2 in the future, especially in the construction
sector, which is deemed important in terms of national development and is a high generator of
greenhouse gas. In order to achieve national sustainable development, policy formulation and
planning is becoming necessary and requires a tool to undertake such a formulation. The tool is
none other than the forecasting of CO2 emissions in long-term energy consumption to produce a
complete and accurate formulation. This research aims to study and forecast energy-related carbon
dioxide emissions in Thailand’s construction sector by applying a model incorporating the long-
and short-term auto-regressive (AR), integrated (I), moving average (MA) with exogenous variables
(Xi) and the error correction mechanism (LS-ARIMAXi-ECM) model. This model is established and
attempts to fill the gaps left by the old models. In fact, the model is constructed based on factors that
are causal and influential for changes in CO2 emissions. Both independent variables and dependent
variables must be stationary at the same level. In addition, the LS-ARIMAXi-ECM model deploys a
co-integration analysis and error correction mechanism (ECM) in its modeling. The study’s findings
reveal that the LS-ARIMAXi (2, 1, 1, Xt−1)-ECM model is a forecasting model with an appropriate
time period (t − i), as justified by the Q-test statistic and is not a spurious model. Therefore, it is used
to forecast CO2 emissions for the next 20 years (2019 to 2038). From the study, the results show that
CO2 emissions in the construction sector will increase by 37.88% or 61.09 Mt CO2 Eq. in 2038. Also,
the LS-ARIMAXi (2, 1, 1, Xt−1)-ECM model has been evaluated regarding its performance, and it
produces a mean absolute percentage error (MAPE) of 1.01% and root mean square error (RMSE) of
0.93% as compared to the old models. Overall, the results indicate that determining future national
sustainable development policies requires an appropriate forecasting model, which is built upon
causal and contextual factors according to relevant sectors, to serve as an important tool for future
sustainable planning.

Keywords: long- and short-term; greenhouse gas; LS-ARIMAXi-ECM model; sustainability;
economic growth; exogenous variables; CO2 emissions

1. Introduction

Over the past few years and up to the present, Thailand has continuously made a firm effort
to enhance its economic development. As a result, the national economy has continued to grow.
The gross domestic product (GDP) has also grown at the same time [1]. In fact, Thailand has been
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seriously engaging with exports to gain for them a bigger global market share, particularly penetrating
the Chinese market. Also, the country is improving its tourism industry in order to generate more
national revenue. Among other major actions taken, it has set a clear goal and objective to promote
foreign investments in local industries by offering low tax rates and subsidies in some sectors in
order to attract more investment and create better revenues for its people. According to the Office of
the National Economic and Social Development Board (NESDB), Thailand’s economy has increased
its growth rate, resulting in the social growth rate increasing in a positive relationship with this.
However, energy consumption has also been found to be climbing steadily [2,3]. The increments in
energy consumption have influenced a continuing rise in greenhouse gas emissions. In particular,
greenhouse gas emissions in the industrial sector are projected to grow at a very high rate of 27% with
a growth rate of 4.3% (comparing 2017 to 2016). Besides this, the construction sector has been found to
be continuously emitting CO2 at a higher emission rate.

The CO2 emission in the construction sector has a 1.6% growth rate (2017/2016) [4].
The construction sector consumes a large amount of energy, causing massive greenhouse gas emissions.
In general, it releases 90% of the carbon dioxide and 75% of other greenhouse emissions out of all the
greenhouse gases in Thailand [3,4].

Thailand pursues its policy objectives by setting a sustainable development plan as the key to
achieve sustainability. This plan aims to develop three main areas simultaneously, ensuring economic,
social and environmental growth. In such development, the environmental aspect is very important
and challenging as it requires highly effective action plans and positive long-term effects.

Therefore, it is necessary to create an effective tool for its implementation and possible application
in the future. Engaging in future long-term planning is always challenging and complex as it requires
extreme care in all planning phases. If the planning fails, damage later is hard to resolve. Hence,
the most important tool for such long-term policy planning is a long-term forecasting model. This paper
has addressed research gaps by reviewing other relevant literature, and it is determined to fill them.
Some special causal factors are carefully selected in the modelling process so as to make use of both
the endogenous variables and exogenous variables, which are characterized as stationary at the
same level. The paper conducts an analysis of the co-integration test at the same level, examines the
appropriateness of the period of time (t − i) with respect to both types of variables, and investigates
the model falseness or model spuriousness. Additionally, it attempts to extend its forecasting capacity
to a long-term prediction of 20 years (2019–2038), and it can be extended to apply in other sectors and
various contexts. The structure of this paper is as follows:

1. We analyze stationary causal variables and those which are influential over the change of CO2

emissions based on the augmented Dickey and Fuller theory [5]. We select stationary variables at
the same level under the Sustainable Development Framework along with the use of data from
1990 to 2017.

2. We bring those stationary causal variables to the same level to analyze a long-term relationship
through a concept from Johansen and Juselius [6].

3. We apply co-integrated variables at the same level to construct the the long- and short-term
auto-regressive (AR), integrated (I), moving average (MA) with exogenous variables (Xi) and the
error correction mechanism (LS-ARIMAXi–ECM) model comprising endogenous variables and
exogeneous variables.

4. We examine the period of time (t − i) for the appropriateness of the LS-ARIMAXi
(p, d, q, Xt−i)-ECM model with Q-testing, as well as checking on spurious issues, consisting of
heteroscedasticity, multicollinearity and autocorrelation.

5. We compare the efficiency of the LS-ARIMAXi (p, d, q, Xt−i)-ECM model with other existing
models, including multiple regression, the grey model (GM (1,1)), grey model-autoregressive
integrated moving average (GM-ARIMA) model, artificial neural network (ANN) model,
autoregressive moving average (ARMA) model, and autoregressive integrated moving average
(ARIMA) model, through the performance measurement of MAPE and RMSE.
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6. We forecast future CO2 emissions from the LS-ARIMAXi (p, d, q, Xt−i)-ECM model during
the years 2019 to 2038, totaling 20 years of forecasting. The flowchart of the LS-ARIMAXi
(p, d, q, Xt−i)-ECM model is shown in Figure 1.
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Figure 1. The flowchart of the long- and short-term auto-regressive (AR), integrated (I),
moving average (MA) with exogenous variables (Xi) and error correction mechanism (LS-ARIMAXi
(p, d, q, Xt−i)-ECM) model.

The remainder of this paper is as follows: Section 2 is a literature review. Section 3 discusses the
materials and methods. Section 4 shows the results. Section 5 summarizes the discussion. Section 6 is
the conclusion.

2. Literature Review

Developing an energy-forecasting model is a key step to promoting a supportive national policy of
an individual country. Having an efficient and effective model would allow all policy makers to make
better decisions. Many studies have highlighted the significance of forecasting the energy consumption
or other related areas. Ardakani and Ardehali [7] developed an optimized regression and ANN models
for a long-term forecasting for the years 2010 to 2030 on the electrical energy consumption (EEC)
of both developing and developed economies based on different optimized models and historical
data types. By using such an approach, they obtained the result of which usage of historical data of
socio-economic indicators produce more accurate EEC forecasting. Azadeh, Ghaderi, Sheikhalishahi
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and Nokhandan [8] applied two different seasonal ANNs in order to predict a short load in Iran’s
electricity market. As regards their prediction result, it reflected a significant correlation between actual
data and ANN outcomes. Hence, the ANN models outperform the regression models in terms of MAPE
in most cases. Zhao, Zhao and Guo [9] carried out a study to estimate the electricity consumption in
Inner Mongolia by using an integrated Grey model enriched by a Moth-flame optimization (MFO)
algorithm along with rolling mechanism (Rolling-MFO-GM (1,1)). From their study, it can be seen that
such a hybrid model can greatly enhance a forecasting performance for annual electricity consumption.
In China, monthly electric energy was also estimated with the implementation of a feature extraction,
and this study was investigated by Meng, Niu and Sun [10]. They found that the above method
performed better than traditional approaches in terms of expected risk and forecasting precision.
Hasanov, Hunt and Mikayilov [11] attempted to establish a model to forecast Azerbaijan’s electricity
demand in 2025 by applying co-integration and error correction approaches. In their study, Azerbaijan’s
electricity demand in 2025 was forecast between 19.50 and 21 TWh. Khairalla, Ning, AL-Jallad and
El-Faroug [12] investigated the stacking multi-learning ensemble (SMLE) model to forecast energy
consumption in the short term. The study’s result demonstrated that the mentioned model functioned
better and more accurately compared to other methods discussed in this paper.

In other studies, various methods are utilized differently, and their applications vary in context.
Chang, Sun and Gu [13] presented a novel quantum harmony search (QHS) algorithm-based
discounted mean square forecast error (DMSFE) combination model to forecast energy CO2 emissions.
This study’s finding was able to certify the validity of the presented approach, while it also
revealed that the forecasting precision can be enhanced to a certain degree. Zeng, Xu, Wang,
Chen and Li, [14] examined and forecasted the allocative efficiency of China’s carbon emission
allowance financial assets at a provincial level for 2020. In their study, they deployed a zero sum gains
data envelopment analysis (ZSG-DEA) model. As of their finding, an efficient allocation scheme for
all the provinces, based on the mentioned model, was achieved. With that, they therefore provided
a suggestion of which particular provinces have to cut off their CO2 emission. Also, Liang, Niu,
Wang and Chen [15] did an evaluation on the security early warning of energy consumption carbon
emissions (ECCE) in Hebei Province of China. They constructed an assessment index system according
to the pressure-state-response (P-S-R) model, as well as deploying the variance method and linearity
weighted method in order to compute such an early warning index of ECCE. Their finding has shown
the potential trend of growing improvement from the security index during 2015 to 2020, while
the security degree and the corresponding alarm are found to be negative. Prakash, Xu, Rajagopal
and Noh [16] presented a forecasting technique according to Gaussian process regression (GPR) to
estimate an energy load, and the result reflected that the above method outperformed precisely as
compared to other forecasting models. While Mehedintu, Sterpu and Soava [17] embarked on a study
to estimate and predict the share of renewable energy consumption in final energy use within the
European Union by 2020. This study’s analysis utilized three macroeconomic indicators and five
regression models (polynomial, ARIMA). Later, the finding showed a growing trend of the share.
Liang, Niu, Cao and Hong [18] conducted an analysis and constructed a model to forecast China’s
electricity demand, in terms of carbon emissions. They began the study with an integration of the
Grey relation degree (GRD) and induced ordered weighted harmonic averaging operator (IOWHA)
in order to construct the optimal hybrid forecasting model, based on multiple regression and an
extreme learning machine. Throughout the study, they drew the conclusion that the proposed model
performs better than other forecasting models, especially in boosting overall instability. Furthermore,
the study revealed that a low-carbon economy development will increase the demand for electricity,
while it impacts the adjustment of the electricity demand structure. In other studies, Zhai and
Wang [19] tried to predict the carbon emissions demands in India, under the balanced economic
growth path, from 2009 to 2050, using the economy-carbon dynamic model. In this study, they projected
that the cumulative energy demand and carbon emissions demand are 44.65 Gtoe and 36.16 Gt C,
respectively. Additionally, those two demands will peak in 2045 at 1290.74 Mtoe and 1045.98 Mt C,
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respectively, while their demands disclose maximum values of 0.81 toe and 0.65 t C, respectively.
On the other hand, in the case of China, Zeng and Chen [20] developed a low-carbon economy index
evaluation system, based on the entropy weight method, in order to forecast the allocation ratio of
carbon emissions in China for 2020 and 2030. They projected reasonable allocation ratios for carbon
emission allowances during the predicted period. Attaining such an allocation ratio can help China in
many respects, including economic development, energy conservation and emissions reduction. Zhou,
Yu, Guang and Li [21] analyzed and predicted CO2 emissions in China during the period of 2000 to 2014,
by implementing the logarithmic mean division index (LMDI) and genetic algorithm-support vector
machine (GA-SVM) model. Their finding reveals that the proposed model performs better than a
back propagation neural network (BPNN) model and a single SVM model in terms of forecasting CO2

emissions. Later, Xu, Gua, Liu and Dai [22] forecasted the final energy consumption of the Guangdong
Province of China from 2013 to 2016 using a newly established GM–ARMA model, based on a HP filter.
The study shows that this particular model has excellent precision and a higher level of reliability.
Additionally, it indicates that the study region will face a serious issue concerning energy conservation
and emission reductions in the next few years.

With different developed forecasting approaches, Zhao, Zhao, Liu, Su and An [23] conducted
a study to forecast wind speed using the self-adaptive auto-regressive integrated moving average
chaotic particle swarm optimization (SA-ARIMA-CPSO) approach. This approach was developed by
a SA auto-regressive integrated moving average, with an exogenous variables (ARIMAX) model,
through the optimization of the CPSO algorithm. Once the experimental result was revealed,
the developed model was shown to outperform the other models. Souza, Christo and Almeida [24]
proposed a method using the ARIMA model to locate the faults in power transmission lines.
In the study, they analyzed the voltage oscillographic signals. Their study results were found to
be satisfactory in a comparison with other used techniques in the literature. In addition, Farias,
Puig, Rangel and Flores [25] attempted to forecast the demand of water distribution networks by
deploying a multi-model predictor, qualitative multi-model predictor plus (QMMP+). In their study,
it was found that such a predictor enhances the forecasting precision. On the other hand, Chen,
Xu and Zhou [26] proposed a hybrid approach, combining the variational mode decomposition
(VMD) denoising technique and the autoregressive integrated moving average (ARIMA) and GM (1,1)
models to predict the lifetime of a battery (RUL). Once the experiment was carried out, a result was
produced that indicates the accuracy of the proposed methods for lithium-ion battery on-line RUL
prediction. Other than the above studies, Yang, Park, Choi, Kim, Munkhdalai, Musa and Ryu [27]
conducted a comparative study on state-of-the-art techniques. They compared four different temporal
outbreak detection algorithms, namely, the cumulative SUM (CUSUM), early aberration reporting
system (EARS), ARIMA and the Holt–Winters algorithm. Here, the comparison results indicate
that the EARS C3 method performs better than any other studied algorithms. However, it can be
observed that the Holt–Winters outperforms the others when the baseline frequency and dispersion
parameter values are less than 1.5 and 2, respectively. Additionally, Kahsai, Nondo, Schaeffer and
Gebremedhin [28] investigated the relationship between energy consumption and economic growth in
Sub-Saharan Africa by deploying a panel co-integration approach. Their examination explains the
interdependence of energy consumption and economic growth in the study region. The results draw
a vital conclusion for formulating sustainable development policies in order to achieve the efficient
allocation of resources.

However, Xin, Zhou, Yang, Li and Wang [29] proposed a new method, which integrates the
Kalman filter, ARIMA, and generalized autoregressive conditional heteroskedasticity (GARCH) to
predict a bridge structure deformation. The study reported the discovery of a new way of predicting
structural behavior, based on data processing, laying a basis for a bridge health monitoring system
based on sensor data using sensing technology. Li, Yang and Li [30] developed four time-series
forecasting techniques, including a metabolism grey model (GM), ARIMA, grey model (GM)-ARIAMA
and non-linear metabolism grey model (NMGM), to forecast China’s coal power installed capacity for
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the next 10 years (2017–2026). The prediction results present an average annual growth rate of 5.26% for
the predicted period. In addition to this, the average annual new added installed capacity for 2017–2026
is found to be 74 gigawatts. Kurecic and Kokotovic [31] examined the relevance of political stability on
foreign direct investment (FDI) in three different panels—small, developed, and instability threatened
economies—by implementing a Granger causality test, a vector autoregressive (VAR) framework and
an ARDL model. As a result, the study presents a conclusion that there is a long-term relationship
between political stability and FDI in the panel of small economies, while such a relationship is not
found in other panels of larger and more developed economies. Meanwhile, Li and Su [32] adopted the
VAR model to study the dynamic effect of renewable energy consumption on carbon dioxide emissions
in the US, from 1990 to 2015. They found that the use of renewable energy would greatly help to reduce
carbon emissions, yet natural gas consumption would have a negative impact on CO2 emissions in the
early stages. This could guide policy makers to develop energy-saving and emission-reduction policies.
Consequently, Dai, Niu and Han [33] proposed to adapt the MSFLA-LSSVM model for CO2 emissions
prediction in China from 2018 to 2025. They concluded that China’s CO2 emissions would exhibit slow
growth trend for the next few years. With this in mind, China’s CO2 emissions could be effectively
controlled in the future, which could start to reduce the greenhouse effect. In another approach.

Last but not least, Jiang, Yang and Li [34] carried out a comparative study of forecasting an
energy demand in India by deploying various methods, namely MGM, ARIMA, MGM-ARIMA,
and back propagation neural network (BP). Based on their predicted result, India’s energy demand
will potentially increase by 4.75% from 2017 to 2030.

Based on a review of previous research, many works have presented metrologies,
research methodologies, and various analytical results differently. Thus, this research is grounded
in unique features which other existing research has not undertaken before in terms of its modeling,
validation, spurious check testing, and the efficiency and effectiveness of its modeling regarding
decision-making. In addition, a key feature of this study is the possible application of the model to
other sectors according to their particular contexts.

3. Materials and Methods

3.1. Co-Integration Testing and Error Correction Mechanism Model Based on Johansen and Juselius

A co-integration test based on the concept of Johansen and Juselius [35] is developed to serve
as the relationship model of at least two variables. If the model comes with large sample properties,
the result generated may not be accurate as a reference. In practice, we will find that a regression
indicates that a modelling variable is co-integrated. If we perform a regression in the form of an order
or reverse order, this shows the variable as non-co-integrated. Hence, the second condition is taken
out of interest, as the co-integration test should not vary over the change of the variables [5,6,35]:

λtrace(r) = −T
n

∑
i=r+1

ln(1− λ̂i) (1)

Equation (1) sets a hypothesis as follows:
Ho : r ≤ k
Ha : r > k, k = 0, . . . , n

λmax(r, r + 1) = −T(1− λ̂r+1) (2)

Equation (2) presents a hypothesis as below:
Ho : r = k
Ha : r = k + 1, k = 0, . . . , n
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where λ̂i is an estimated value of the characteristic roots or eigenvalues derived from estimated
matrix π, and T is a number of observations for an estimation of the characteristic roots, retrieved from
the equation below: ∣∣∣ λSpp −Spo S−1

oo Sop

∣∣∣ = 0 (3)

where Sij = T−1
T
∑

t=1
RitR′jt i, j = o, p

As for the residuals Rot and Rpt, they can be derived from a regression of ∆ut and ∆ut−p with
∆ut−1, . . . , ∆ut−p+1, where xt and yt are the time series which are stationary at first differences I (1);
A is a constant where ui is I (0).

A likelihood ratio test statistic of the null hypothesis is shown below:
Ho: A rank of π that is less or equal to k, or written as Ho : r ≤ k
Hence,

− 2 ln(Q) = −T
n

∑
i=r+1

1− λ̂i (4)

Equation (4) tells us that α = (n× r) matrix, β = (n× r) matrix, r = a rank of matrix π where a
characteristic of matrix α and β is as follows:

π = αβ′ (5)

where matrix β is a parameter matrix of co-integrating vectors, and matrix α is a parameter matrix of
speed of adjustment parameters.

In estimating a parameter of the ECM for a co-integrated series, the multi-learning (ML) process
that we consider is determined by a sequence, wherein a dimension n can be written as NID (0.Λ).

The process of cointegration testing according to Johansen can be seen as follows:
Step 1: the procedure to evaluate the order of integration by testing and evaluating the order of

integration of all the variables is done by plotting the data to see whether the data-generating process
is a linear time trend or otherwise; the variables must be at the same level.

The lag length can be found through a test in VAR with undifferenced data, and later we can
estimate a vector autoregression. The process starts from the longest lag length which is deemed
reasonable, and we can check whether we can shorten the lag length or not. For instance, if we want to
test a significance of lag 2 to lag 5, we have to estimate the VARs as follows [36]:

y1 = A0 + A1yt−1 + A2yt−2 + A3yt−3 + A4yt−4 + A5y1−5 + u1t (6)

y1 = A0 + A1yt−1 + u2t (7)

where
yt = n× 1 vector of variables;
A0 = n× 1 matrix of intercept terms;
Ai = n× n matrix of coefficient;
u1i and u2i = n× n vector of error terms.
In practice, we take an estimation of Equation (6) with a lag equal to 5 for each variable in each

equation, and let ∑5 be a variance–covariance matrix of the residuals of Equation (6). Later, we estimate
Equation (7) with only one lag for all variables in each equation, and let ∑t be a variance–covariance
matrix of residuals of Equation (7).

As for testing, we use a likelihood ratio test statistic as proposed by Sims [37], although the
studied variables taken into account are non-stationary variables. The likelihood ratio test can be
demonstrated as below:

(T − c)(ln
∣∣∑ 1

∣∣− ln
∣∣∑ 5

∣∣) (8)

where:
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T = a number of observations;
c = a number of parameters in unrestricted system;
ln|∑1| = natural logarithm of determinant of ∑1;
ln|∑5| = natural logarithm of determinant of ∑5.
A statistical test has a distribution as X2 with a degree of freedom equivalent to the number of

limited coefficients. However, we have found that Ai has n2 coefficient. In Equation (7), we have a
limitation of A2 = A3 = A4 = A5 = 0, and that means that the limitation is equal to 4n2. Nonetheless,
Enders (2010) suggested that we can choose a lag length p by using AIC or SBC.

Step 2 estimates the modeling and value of rank of π. In this case, the use of ordinary least
square (OLS) is not appropriate for the estimation, because the restrictions must be inserted across the
equation in matrix π. Here, we may choose to estimate in three different forms: (a) a form that gives a
set of A0 equivalent to zero, (b) a form with a drift or (c) a constant term in a co-integrating vector as
shown below:

∆yt = A0 + π1∆yt−1 + πyt−2 + εt (9)

where the drift term A0 is given with restrictions to monitor an intercept appearing in the co-integrating
vector in the case of the intercept existing in the co-integrating vector. However, we have to analyze
the residuals of the model. If the errors are found not to be white noise, this means that the lag lengths
are too short. In terms of the residuals’ criteria, the first condition lies upon the residuals of a long-run
equilibrium, which must be stationary, and the second condition is that the estimation of short-term
deviation (that is εt in Equation (9)) must be white noise.

Thereafter, the characteristic roots of matrix π have to be estimated, and we compute the value of
λmax and λtrace.

However, to justify the hypothesis in which the variables are not co-integrated (rank π = 0),
we have two possible statistical tests based on an alternative hypothesis. This is to say that if we
want to test the hypothesis saying that the variables are not co-integrated (r = 0) where the alternative
hypothesis is a co-integrating vector equivalent to or greater than 1 (r > 0), we need to do a statistical
test of λtrace (0) as explained below. In the case of Equation (7), the value of the characteristic roots of
matrix π 3 (assume n = 3) is λ1, λ2, λ3 as shown in the following:

λtrace(0) = −T[ln(1− λ1) + ln(1− λ2) + ln(1− λ3)],

λtrace(1) = −T[ln(1− λ2) + ln(1− λ3)] (10)

where λi = an estimated value of the characteristic roots (or known as eigenvalues) derived from
matrix π estimated by λ1 > λ2 > λ3 > . . . > λn, and T = a number of observations we can use and
compare with a critical value of λtrace.

Step 3 is a process of the coefficient analysis of co-integrating vectors, which have been normalized,
as well as the coefficients of speed of adjustment, as demonstrated below:

1. When we consider whether β0 = 0 or otherwise, we must impose one restriction into the
co-integrating vector with the use of the likelihood ratio test. This distributes X2 with a degree of
freedom equivalent to 1, and we assume that we cannot reject H0 where β0 = 0. Here, we may
need to reapply the model where the constants are absent in the co-integrating vector;

2. In limiting a normalized co-integrating vector at β2 = −1 and β3 = 1, we are imposing two
restrictions into the co-integrating vector. When the likelihood ratio test is used here, in this case
it is distributed as X2 with degrees of freedom equivalent to 2 due to two restrictions;

3. In testing whether β = (0,−1,−1, 1), we impose three restrictions including β0 = 0, β2 = −1,
β3 = 1 (β1 is equal to −1). In this case, the statistical test is the likelihood ratio test, which is
distributed as X2 with a degree of freedom of 3. This type of testing is known as a joint restriction.
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4. For a test that is β = (0,−1,−1, 1), then the constraint 3 is for −1. In this case, the test statistic
is the likelihood ratio test, which is a line of degrees of freedom equal to 3 tests (the joint
restriction test).

Step 4 is a stage called “innovation accounting” (which falls under an analysis of impulse response
and variance decompositions) designed as a useful tool to evaluate a relationship. If the relationship
among other innovations is very low, it indicates that an identification problem will no longer occur.
If the order is set differently, the impulse responses and variance decomposition would become similar.
In testing the innovation accounting and casual factors toward an error–correction model, this helps to
identify a structural model and answer the question of whether an estimating model is reasonable
or otherwise.

3.2. Long- and Short-Term Auto-Regressive Integrated Moving Average with Exogenous Variables and the
Error Correction Mechanism (LS-ARIMAXi–ECM) Model

The LS-ARIMAXi-ECM model is a newly developed model built upon a concept of the ARIMA
model with the following conditions: (1) factors used in modelling are both endogenous variables
and exogenous variables, and they must be stationary only at the same level; (2) when the first
condition is fulfilled, the above factors have to undergo a co-integration test to investigate the long-term
relationship of all factors at the same level only; (3) the next step is to build a forecasting model of
LS-ARIMAXi-ECM whose construction is structured based on autoregressive (AR), integrated (I),
moving average (MA), ECM (t − i) and exogenous variables (Xi), as explained in the next paragraph.

3.2.1. Autoregressive Moving Average (ARMA) Model

The ARMA (p, q) model is written as [38,39]:

Xt = α0 + α1Xt−1 + α2Xt−2 + . . . + αpXt−p + εt − β1εt−1 − β2εt−2 − . . .− βqεt−q (11)

where t = 1, 2, . . . , T. If we consider at time T, the ARMA model becomes:

XT = α0 + α1XT−1 + α2XT−2 + . . . + αpXT−p + εT − β1εT−1 − β2εT−2 − . . .− βqεT−q (12)

or it can be written in another form as:

α(L)XT = α0 + β(L)εT (13)

where α(L) = 1− α1L− α2L− . . .− αpLp and β(L) = 1− β1L− β2L− . . .− βqLq while the information
at time T can be replaced by IT = {X1 . . . , XT , ε1 . . . , εT} . Equation (12) produces XT−1 and XT−2 as
the equation below:

XT−1 = α0 + α1XT + α2XT−1 + . . . + αpXT+(1−p)
+εT+1 − β1εT − β2εT−1 − . . .− βqεT+(1−q)

(14)

XT−2 = α0 + α1XT+1 + α2XT + . . . + αpXT+(2−p)
+εT+2 − β1εT+1 − β2εT − . . .− βqεT+(2−q)

(15)

A forecasting of time series 1 and 2 from ARMA(p, q) can be made below:

X̂T(1) = E(XT+1|IT )= α0 + α1XT + α2XT−1 + . . . + αpXT+(1−p) − β1εT − . . .− βqεT+(1−q) (16)

X̂T(2) = E(XT+2|IT )= α0 + α1X̂T(1) + α2XT + . . . + αpXT−(p−2) − β2εT − . . .− βqεT+(2−q) (17)

While we can formulate XT+j in a general form as:

X̂T(j) = E(XT+j|IT ) (18)
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X̂T(j) = α0 +
p

∑
i=1

αiX̂T(j− i)−
q

∑
i=1

βiεT(j− i) (19)

where:
X̂T(j− 1) = XT+(j−i) when j− i ≤ 0

εT(j− i) =

{
εT+(j−i)

0
, i f j− i ≤ 0
, i f j− i > 0

Besides, we can also check ARMA(1, 1) as the above explanation when j→ ∞ , and the forecasting
can be executed from:

X̂T(j) =
α0

1− α1 − . . .− αp
(20)

Equation (20) tells us when to forecast further where the forecasting result will approach
α0

1−α1−...−αp
= E(Xt), and this is the average of time series Xt in the ARMA(p, q) model. In addition,

the j-step ahead forecast error and its variance can be easily executed when altering the ARMA(p, q)
model into MA(∞) as explained below.

Since the time series Xt is stationary, it can be rewritten as:

XT =
α0

α(L)
+

β0

α(L)
εT (21)

when considering α0
α(L) = α0

1−α1−...−αp
= E(Xt), which is the average. When β0

α(L) εT is considered, it

shows a relativeness to εT , and that β0
α(L) εT =

1−β1L−···−βq L
1−α1L−···−αp L εT with inconstancy in value.

α0

α(L)
= µ (22)

β(L)
α(L)

= φ(L) = 1 + φ1L + φ2
1 L2 + . . . (23)

Thus, Equation (21) with ARMA(p, q) can be formulated into the MA(∞) form as:

XT = µ + φ(L)εT (24)

We call this φi(i = 1, 2, . . .) the impulse response function of the ARMA model. When the time
series XT is stationary, φ1, φ2, φ3, . . . will rapidly decrease exponentially. However, Equation (24) can
be used to compute the j-step ahead forecast error and its variance through the following description.

From Equation (24), the time series XT+1, XT+2, and XT+3 can be written as follows:

XT+1 = µ + εT+1 + φ1εT + φ2εT−1 + . . . (25)

XT+2 = µ + εT+2 + φ1εT+1 + φ2εT + φ3εT+1 + . . . (26)

XT+3 = µ + εT+3 + φ1εT+2 + φ2εT+1 + φ3εT + φ4εT−1 + . . . (27)

Then, the forecasting value of 1, 2, and 3 ahead is derived from the following:

X̂T(1) = E(XT+1|IT ) = µ + φ1εT + φ2εT−1 + . . . (28)

X̂T(2) = E(XT+2|IT ) = µ + φ2εT + φ3εT−1 + . . . (29)

X̂T(3) = E(XT+3|IT ) = µ + φ3εT + φ4εT−1 + . . . (30)

While its error at 1, 2, and 3 ahead is as follows:

eT(1) = XT+1 − X̂T(1) = εT+1 (31)
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eT(2) = XT+2 − X̂T(2) = εT+2 + φ1εT+1 (32)

eT(3) = XT+3 − X̂T(3) = εT+3 + φ1εT+2 + φ2εT+1 (33)

Moreover, its variance at 1, 2, and 3 ahead is as below:

Var(eT(1)) = σ2 (34)

Var(eT(2)) = (1 + φ2
1)σ

2 (35)

Var(eT(3)) = (1 + φ2
1 + φ2

2)σ
2 (36)

However, the j-step ahead forecast error and its variance can be drawn in an equation as follows:

eT(j) = εT+j + φ1εT+(j−1) + φ2εT+(j−2) + . . . + φj−1εT+1 (37)

Var(eT(j)) = (1 + φ2
1 + φ2

2 + . . . φ2
j−1)σ

2 (38)

3.2.2. Autoregressive Integrated Moving Average (ARIMA(p, d, q)) Model

The non-stationary variables used in the modeling must be converted into a stationary variable
before being deployed into the modeling by differentiating. This is called ARIMA(p, d, q) and can be
explained through the equation below [38,39]:

∆Xt = α0 + α1∆Xt−1 + εt (39)

where t = 1, 2, . . . , T.
When the value X1, X2, . . . XT (otherwise denoted as IT) is known, Equation (39) can be illustrated

as follows:
X̂T+1 = α0 + α1∆X̂T

X̂T+2 = α0 + α1∆X̂T+1

X̂T+3 = α0 + α1∆X̂T+2

X̂T+j =

...
α0 + α1∆X̂T+(j−1)


(40)

Another explanation of ARIMA(1, 1, 0) can be seen as below:

Xt − Xt−1 = α0 + α1(Xt−1 − Xt−2) + εt (41)

Xt = α0 + (α1 + 1)Xt−1 − α1Xt−2 + εt (42)

where t = 1, 2, . . . , T
As for forecasting with ARIMA(p, 1, q), this can be applied as demonstrated below.
Assuming the ARIMA(p, 1, q) model is written as below:

∆Xt = α0 + α1∆Xt−1 + α2∆Xt−2 + . . . + αp∆Xt−p + εt − β1εt−1 − β2εt−2 − . . .− β1εt−q (43)

Xt − Xt−1 = α0 + α1(Xt−1 − Xt−2) + α2(Xt−2 − Xt−3) + . . . + αp(Xt−p − Xt−p−1) + εt−
β1εt−1 − β2εt−2 − . . .− β1εt−q

(44)

when the ARIMA model is retrieved, we will apply it to establish a model called the
LS-ARIMAXi-ECM Model. This can be seen in the following.
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3.2.3. LS-ARIMAXi-ECM Model

The LS-ARIMAXi-ECM model can be written as below:

∆Xt = α0 + α1∆Xt−1 + α2∆Xt−2 + . . . + αp∆Xt−p+

εt − β1εt−1 − β2εt−2 − . . .− β1εt−q +
p
∑

i=1
Yt−i+

p
∑

i=1
ECMt−i

(45)

where
p
∑

i=1
Yt−i = exogeneous variables, which are stationary at a level and

p
∑

i=1
ECMt−i = the error

correction mechanism test.
The LS-ARIMAXi-ECM model is a model that requires the testing of the appropriateness of the

time-period through Q-test statistics. Also, it needs to undergo an assessment of its heteroskedasticity,
multicollinearity, and autocorrelation. This is to ensure that the model will not be a spurious model.
Once we derive the best model, we must test the model performance for both MAPE and RMSE values.
Consequently, we can compare the above values of the model with other studied models to monitor
the effectiveness of the model for future use.

3.3. Measurement of the Forecasting Performance

There are many methods we can choose; we decided to utilize the MAPE and RMSE to compare
the forecasting accuracy of each model. The calculation equations are shown as follows [38,39]:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (46)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (47)

4. Results

4.1. Screening of Influencing Factors for Model Input

In this paper, we bring the causal factors to bear on the stationary status under the Sustainable
Development policy of Thailand. The time series data used ranges from 1990 to 2017 along with
8 factors, including carbon dioxide emissions (CO 2), per capita GDP (GDP), population growth
(Population), urbanization rate (URT), industrial structure (IST), total coal consumption (CCT),
oil price (OP), and total exports and imports (X− E).

The test was conducted based on the augmented Dickey and Fuller theory at Level I (0) and the
First Difference I (1), as illustrated in Table 1.

Table 1. Unit root test at one level and first difference I (1).

Tau Test at Level I (0) Tau Test at First Difference I (1) MacKinnon Critical Value

Variables Value Variables Value 1% 5% 10%

ln(CO2) −2.21 ∆ ln(CO2) −4.69 *** −4.37 −3.05 −2.95
ln(GDP) −2.74 ∆ ln(GDP) −5.95 *** −4.37 −3.05 −2.95

ln(Population) −2.13 ∆ ln(Population) −4.44 *** −4.37 −3.05 −2.95
ln(URT) −2.59 ∆ ln(URT) −5.61 *** −4.37 −3.05 −2.95
ln(IST) −2.77 ∆ ln(IST) −5.74 *** −4.37 −3.05 −2.95

ln(CCT) −2.40 ∆ ln(CCT) −5.45 *** −4.37 −3.05 −2.95
ln(X− E) −2.90 ∆ ln(X− E) −5.59 *** −4.37 −3.05 −2.95

ln(OP) −2.83 ∆ ln(OP) −5.61 *** −4.37 −3.05 −2.95

Note: *** denotes a significance, α = 0.01, compared to the Tau test with the MacKinnon Critical Value, ∆ is the first
difference, and ln is the natural logarithm.
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Table 1 clarifies which of all the factors are analyzed in the unit root test and found to be
non-stationary at Level I (0) or insignificant at 1%, 5% and 10%. Therefore, it requires a first difference
analysis. This results in the fact that all the factors are stationary at Level I (1) or significant at 1%,
5% and 10%. Next, we bring the factors for co-integration testing using a concept of Johansen and
Juselius in Table 2.

Table 2. Co-integration testing using a concept of Johansen and Juselius.

1% 5%

∆ ln(CO2), ∆ ln(GDP), ∆ ln(Population), ∆ ln(URT),
∆ ln(IST), ∆ ln(CCT), ∆ ln(X− E), ∆ ln(OP)

None *** 275.41 141.25 20.15 15.05 I (1)

At Most 1 *** 82.45 96.05 5.25 3.40 I (1)

*** denotes significance α = 0.01.

The test results of co-integration are shown in Table 2. The test presents a trace test score of
275.41 and 82.45. At the same time, the results of the maximum eigenvalue test are 141.25 and 96.05,
which are higher than the MacKinnon critical values at the same significance levels. This signifies
a long-term relationship of all variables as well as a feasible use of variables in structuring the
LS-ARIMAXi-ECM model.

4.2. Formation of Analysis Modeling with the LS-ARIMAXi (p, d, q, Xt−1)-ECM Model

As for the LS-ARIMAXi (p, d, q, Xt−i)-ECM model, it is built with the aim of being applicable
in different contexts in various sectors. Hence, we seek to test an appropriate time period by using
Q-testing. This produces a conclusion in which the right time is a period (t − i) of p, d, q, Xt−i, and the
best fit is the period (t − i). They are embedded in the LS-ARIMAXi (2, 1, 1, Xt−1)-ECM model as
shown in Figure 2.
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Figure 2. The correlogram of the residual error of the LS-ARIMAXi (2, 1, 1, Xt−i)-ECM model.

Figure 2 reflects the fact that the LS-ARIMAXi (2, 1, 1, Xt−i)-ECM model becomes the best
forecasting model because all values of the Q test statistic at time (t − i) are in the criteria and
meet all conditions, or the insignificance falls as follows; α = 0.01, α = 0.05 and α = 0.1. Therefore,
this model can be used to forecast CO2 emissions. However, the authors have discovered the best
model currently to be the LS-ARIMAXi (2, 1, 1, Xt−i)-ECM model, and this allows us to know about the
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influence of the changes or elasticity of all independent variables causing changes in the CO2 emission
at time (t − i), as illustrated in Table 3.

Table 3. The result of the LS-ARIMAXi (2, 1, 1, Xt−i

Independent Variables
Dependent Variable

∆ln(CO 2)t

∆ln(CO 2)t−1 2.01 **
∆ln(CO 2)t−2 3.75 ***

MA(1) 2.72 ***
∆ln(GDP)t−2 6.78 ***

∆ln(Population)t−1 2.33 **
∆ln(URT)t−1 5.45 ***
∆ln(IST)t−1 4.62 ***

∆ln(CCT)t−2 3.15 ***
∆ ln

(
X− E)t−2 6.40 ***

∆ln(OP)t−3 6.55 ***
ECMt−1 −3.87 ***

Note: In the above, ∆ln(CO 2)t−1 and ∆ln(CO 2)t−2 are the autoregressive model, MA is the moving average model,
*** denotes significance α = 0.01, ** denotes significance α = 0.05, R-squared is 0.94, adjusted R-squared is 0.93,
the Durbin–Watson statistic is 2.02, the F-statistic is 245.05 (probability is 0.00), the ARCH test is 31.05 (probability
is 0.1), the LM test is 1.45 (probability is 0.11), and the chi-square test represents the significance.

Table 3 illustrates the parameters of the LS-ARIMAXi (2, 1, 1, Xt−1)-ECM model at a statistically
significant level of 1% and 5%. Regarding the examination of the goodness of fit of the LS-ARIMAXi

(2, 1, 1, Xt−1)-ECM model, it has been found that R-squared is 0.93, and this indicates that the
independent variables can explain or predict the dependent variables by up to 93%. By investigating
the autocorrelation at the Durbin–Watson statistic of 2.02 and the LM test, of 1.45, the model was found
to be free from the autocorrelation issue. The F-statistic is 245.05 (probability is 0.00), and this shows
that the LS-ARIMAXi (2, 1, 1, Xt−1)-ECM model maintains a confidence interval of 99% and 95% and
eliminates the issue of multicollinearity. The value of the ARCH test is 31.05, and this guarantees that
the model is free from the issue of heteroscedasticity.

The findings have illustrated that when the per capita GDP (∆ln(GDP)t−2 at time (t-2) changes
about 1%, it affects CO2 emissions (∆ ln(CO2)t) changing in the same direction equivalent to 6.78% at
a confidence interval of 99%. While the population growth (∆ln(Population)t−1 changes by about 1%,
it influences CO2 emissions (∆ ln(CO2)t), changing in the same direction, equivalent to 2.33% at a
confidence interval of 95%. When the urbanization rate (∆ln(URT)t−1) changes by about 1%, it changes
CO2 emissions (∆ ln(CO2)t) in the same direction, equivalent to 5.45% at a confidence interval of 99%.
When the industrial structure ∆ ln (IST)t−1 changes by about 1%, it affects CO2 emissions (∆ ln(CO2)t)
changing in the same direction, equivalent to 4.62% at a confidence interval of 99%. When the total coal
consumption (∆ ln (CCT)t−2) changes by about 1%, it changes CO2 emissions (∆ ln(CO2)t) in the same
direction, equivalent to 3.15% at a confidence interval of 99%. Also, when the total exports and imports
∆ ln (X− E)t−2 change by about 1%, they influence CO2 emissions (∆ ln(CO2)t) changing in the same
direction, equivalent to 6.40% at a confidence interval of 99%. With the same effect, when the oil
price (∆ ln (OP)t−3) changes by about 1%, it affects CO2 emissions (∆ ln(CO2)t) changing in the same
direction, equivalent to 6.55% at a confidence interval of 99%. In the case of oil prices, although the oil
price has climbed, energy consumption is also increasing, which results in increased CO2 emissions.
This is because oil price is not a product based on the law of demand.

In case of ECMt−1 at a coefficient value of −3.87, the adjustment of the LS-ARIMAXi

(2, 1, 1, Xt−i)-ECM model toward the equilibrium is at a rate of 3.87%.
As far as the LS-ARIMAXi (2, 1, 1, Xt−i)-ECM model is concerned, we have compared it in terms

of its model efficiency with other old models by deploying MAPE and RMSE. The comparison
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between the new model with the old ones—multiple regression, GM (1,1), ANN, ARMA, ARIMA,
and GM-ARIMA—is undertaken as follows.

Table 4 shows that the LS-ARIMAXi (2, 1, 1, Xt−i)-ECM model comprises the lowest value of
MAPE and RMSE, equivalent to 1.01% and 0.93%, respectively. The GM-ARIMA model shows
an MAPE and RMSE at 4.27% and 3.45%, respectively. The ARIMA model shows an MAPE
and RMSE of 5.38% and 5.85%, respectively, while the ARMA model has an MAPE and RMSE
equivalent to 10.18% and 11.36%, respectively. The ANN model produces MAPE and RMSE of
12.55% and 13.65%, respectively, whereas the GM (1,1) has MAPE and RMSE of 12.94% and 17.39%,
respectively. Lastly, the multiple regression model generates an MAPE and RMSE equivalent to
20.05% and 19.49%, respectively. When comparing the studied model’s values with other models, it is
found that the LS-ARIMAXi (2, 1, 1, Xt−i)-ECM model is an efficient model and is suitable for future
long-term forecasting.

Table 4. The performance monitoring of the forecasting model. MAPE: mean absolute percentage error.

Forecasting Model MAPE (%) RMSE (%)

Multiple Regression model 20.05 19.49
Grey model (GM (1,1)) 12.94 17.39

Artificial Neural Natural (ANN) model 12.55 13.65
Autoregressive Moving Average (ARMA) model 10.18 11.36

Autoregressive Integrated Moving Average (ARIMA) model 5.38 5.85
GM-ARIMA Model 4.27 3.45

LS-ARIMAXi (2, 1, 1, Xt−i)-ECM 1.01 0.93

4.3. CO2 Emission Forecasting Based on the LS-ARIMAXi (2, 1, 1, Xt−1)-ECM Model

When the most suitable forecasting model of LS-ARIMAXi (2, 1, 1, Xt−1)-ECM is retrieved, we can
then use it to predict and estimate the carbon dioxide emissions in Thailand’s construction sector for a
duration of 20 years (2019–2038), as shown in Figure 3.
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Figure 3. The forecasting results of CO2 emission from 2019 to 2038 in Thailand’s construction sector.

Figure 3 shows that the CO2 emissions for the next 20 years from 2019 to 2038 in Thailand’s
construction sector will increase along with a growth rate of 37.88%. In 2019, the CO2 emissions
are projected to be 43.31 (Mt CO2 Eq) with a continuous increase. By 2038, the CO2 emissions are
forecast to be 59.72 (Mt CO2 Eq). The above results reflect that the construction sector is a sector with
continuous emissions of CO2, resulting in a continuous rise in greenhouse gas emissions.
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5. Discussion

The result of this study is the establishment of the LS-ARIMAXi (2, 1, 1, Xt−i)-ECM model.
This model is built and used to forecast CO2 emissions in the construction sector in Thailand for
20 years in total (2019–2038). As for this model, only causal factors which are stationary at the same
level are selected, and the model is free from being a spurious model. In this study, the model efficiency
is evaluated by comparing the model performance with other old models, consisting of the multiple
regression, grey model (GM (1,1)), ANN, ARMA model, ARIMA model, and GM-ARIMA model.
The evaluation outcome reaffirms that the LS-ARIMAXi (2, 1, 1, Xt−i)-ECM model has better efficiency
and is more appropriate for long-term prediction than the other existing models. In its prediction,
the established model projects that there will be a continuous increase of CO2 emissions at a growth
rate of 43.31 (Mt CO2 Eq) (2019–2038). This suggests that Thailand has to take serious action in
policy planning as well as in following up evaluations in the construction sector. In the meantime,
Thailand has to develop other sustainability policies in line with existing policies. This study differs
from other previous studies as it builds a new LS-ARIMAXi-ECM model based on the concept of the
ARIMA model coupled with co-integration testing. In modelling, the LS-ARIMAXi-ECM model is
deployed with advanced statistics. Only the causal yet exogeneous factors are integrated, while an
error correction mechanism has been incorporated to clearly determine the magnitude of equilibrium
adjustment in both the short and long term. The unique feature of the LS-ARIMAXi (2, 1, 1, Xt−i)-ECM
model is that it can be applied to other sectors and areas. The model is not a spurious model as it is
free from heteroskedasticity, multicollinearity, and autocorrelation. As such, this allows the model
to accurately determine a magnitude of change of CO2 emissions better than other existing models.
Hence, it becomes supportive in the decision-making and long-term planning of Thailand in the future.

From the review of the literature, this kind of study has been shown to be relevant to other
past research in terms of model applications in CO2 emission forecasting. Zhao, Zhao, and Guo [9]
used GM (1,1) optimized by MFO with a rolling mechanism to forecast the electricity consumption of
Inner Mongolia; Chang, Sun, and Gu [13] forecast energy CO2 emissions using a quantum harmony
search algorithm-based DMSFE combination model; Zeng, Xu, Wang, Chen, and Li [14] forecasted
the allocative efficiency of carbon emission allowance financial assets in china at the provincial level
in 2020; Liang, Niu, Wang, and Chen [15] did an assessment analysis and forecast for the secure early
warning of energy consumption carbon emissions in Hebei Province, China; Li, Yang, and Li [30]
forecast China’s coal power installed capacity using a comparison of MGM, ARIMA, GM-ARIMA,
and NMGM Models.

However, the entirety of the literature is distinguished this paper in terms of its modeling process,
application capability, appropriateness assessment of the time period, prediction quality and usage.
In fact, this research aims to forecast energy-related carbon dioxide emissions in Thailand’s construction
sector for 20 years (2019–2038), which is constructed based on advanced research methodologies,
high-quality statistics and a detailed research process. In the past, many studies have focused on
research findings, not the research process. Therefore, some errors and potential risks occurred.
Nonetheless, our particular study is seen as better and more efficient than any other previous studies
in the field. Also, this study responds to a long-term need to have a model whose capacity is improved
for future application in different contexts.

In the selection of software for use in this research, we decided to use the EVIEWS 9.2 software as
a research tool to optimize the advanced statistics effectively. As for those who are interested in the
software, EVIEWS can be downloaded in a student version at no cost or license fee, or you may choose
other software as you see fit.

Regarding the limitations of this study, some factors of the sustainable development policy are
not taken into account, including oil prices. This is because the Thai government has a policy to ensure
diesel prices, and that is a major factor affecting energy consumption in Thailand. With government
interference, the price of diesel fuel does not fluctuate in line with market mechanisms. Due to this
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phenomenon, this study is not able to include that factor, as it does not determine the real magnitude
of the change in diesel prices on CO2 emissions.

6. Conclusions

This paper has developed and established the LS-ARIMAXi (2, 1, 1, Xt−i) model for a useful
application in forecasting the future trends of CO2 emissions in the construction sector of Thailand
for the next 20 years (2019–2038). This model is able to effectively and efficiently support sustainable
development policy planning in Thailand. Most importantly, it can reduce errors in the planning
so as to avoid mistakes of the past. In addition, the model is undertaken through careful research
methods, with a highly statistical use of data. Additionally, we have chosen 8 variables from the casual
factors. The variables are carbon dioxide emissions (CO 2), per capita GDP (GDP), population growth
(Population), urbanization rate (URT), industrial structure (IST), total coal consumption (CCT),
oil price (OP), and total exports and imports (X− E). All of the variables used are assessed by the unit
root test, at the first level, and analyzed using the co-integration test, resulting in the LS-ARIMAXi

(2, 1, 1, Xt−i) model. Additionally, they are tested for a proper time period (t − i). In fact, the model
is found to be free from the issue of heteroskedasticity, multicollinearity, and autocorrelation and
therefore, it becomes a most suitable model for forecasting CO2 emissions in Thailand’s construction
sector, while it is available for future applications in other sectors and contexts both in Thailand and
other countries.

One remaining aspect to reflect upon is that the LS-ARIMAXi (2, 1, 1, Xt−i) model has considered
not only the stationary causal factors on the same level, but also proportion and relationship analysis.
In addition to this, each factor of the model is analyzed based on rationality and the structure equation
model (SEM) so as to increase its utilization and optimization for future research and policy planning.

As a recommendation for applying this research, the model should be adapted for the context
of each sector and area. In particular, factors have to be stationary and influential over dependent
variables. At the same time, they must have a co-integration at the same level to avoid the model being
spurious and to decrease errors. Also, they must undergo an assessment of the appropriateness of
their time period in order to produce the most accurate prediction result.
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