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Abstract: Significant increase in the demand for freight and passenger transports by trains pushes
the railway authorities and train companies to increase the speed, the axle load and the number
of train carriages/wagons. All of these actions increase ground-borne noise and vibrations that
negatively affect people who work, stay, or reside nearby the railway lines. In order to mitigate these
phenomena, many techniques have been developed and studied but there is a serious lack of life-cycle
information regarding such the methods in order to make a well-informed and sustainable decision.
The aim of this study is to evaluate the life-cycle performance of mitigation methods that can enhance
sustainability and efficacy in the railway industry. The emphasis of this study is placed on new
methods for ground-borne noise and vibration mitigation including metamaterials, geosynthetics,
and ground improvement. To benchmark all of these methods, identical baseline assumptions and
the life-cycle analysis over 50 years have been adopted where relevant. This study also evaluates and
highlights the impact of extreme climate conditions on the life-cycle cost of each method. It is found
that the anti-resonator method is the most expensive methods compared with the others whilst the
use of geogrids (for subgrade stiffening) is relatively reliable when used in combination with ground
improvements. The adverse climate has also played a significant role in all of the methods. However,
it was found that sustainable methods, which are less sensitive to extreme climate, are associated
with the applications of geosynthetic materials such as geogrids, composites, etc.

Keywords: life-cycle assessment; ground-borne noise and vibration; railway vibration; railway
noise; vibration and noise mitigation methods; geosynthetics; metamaterials; ground improvement;
Net Present Value

1. Introduction

The railway industry is facing one of its greatest challenges. The increasing demand for railway
transport for both freights and passengers leads to an increase in the train speed, the train axle load
(carrying burden), and the number of train carriages or wagons (longer train). These needs induce even
more noise and vibration, which impacts society, especially in any urban areas where the population
is very dense [1,2]. In addition, it is highly likely that more and more people will live in urban areas.
These noise and vibration issues will thus have more pronounced impacts on people who work and live
along railway corridors, on nearby building acoustics, and also on the comfort of onboard passengers.
The environmental and economic cost of railway noise and vibration together with the complaints
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of residents who lives next to railway corridors have pressured the railway industry to take some
meaningful measures to mitigate the effects of railway noise and vibration [3,4]. There are several types
of railway noise and vibration problems [5–10]. This study will, however, focus on the ground-borne
noise and vibration, generated through track support and foundation.

Ground-borne noise and vibrations from railway tracks are commonly generated by the
dynamic loading condition coupling with the train-track interaction. To mitigate these phenomena,
many different solutions have been developed and used in practice. When facing a new railway
project development, it has thus become somewhat difficult to decide which one is more suitable and
financially sustainable. With respect to the environmental issues, it also becomes important to know
the impact of each method. To help decision-makers and track designers to improve their choice,
many previous studies have been made: [11–15]. However, recent technologies and methods for railway
ground-borne noise and mitigation have not been investigated. For example, modern meta-structures
have been recently designed computationally but the insight into the life-cycle performance of such
methods do not exist.

In this paper, the emphasis will be placed on new methods for ground-borne noise and vibration
mitigation which have never been evaluated before according to the open literature review. The study
aims to enable new and practical insight in order to help decision-makers such as track engineers,
acoustic designers, and rail operators to develop their choice of suitable technique. The methods
highlighted in this study include the formation or subgrade stiffening method using geosynthetics,
the use of metamaterials, and ground improvements. These methods are relatively new and most of
them are either in the modeling and design stage or in the experimental stage. The methods assessed
in this study are resonators (meta-structure), inclusions (meta-material), geogrids (subgrade stiffening),
composites sleepers, infilled trenches, buried columns (ground improvement), and vibro-compactions
(soil improvement). These methods will be evaluated in terms of life-cycle cost to enable a comparison
between the new methods and with other previous studies. All of the methods will be presented in
detail, including how they mitigate vibration and noise. Then, the life-cycle consideration, assumptions,
and methodology will be set identical to allow benchmarking. The outcome of this study will help
track engineers and acoustic designers make a better-informed decision on railway ground-borne noise
and vibration mitigation methods, improving the economic sustainability of railway networks globally.

2. Mitigation Methods

2.1. Methods Using Metamaterials

2.1.1. Background

Metamaterials are a type of special materials designed and built to have a non-natural property
such as a negative index of refraction, for example. Their specific properties are used in different
domains of physics. The most interesting aspect that we can apply to railway noise and vibration
mitigation is by influencing ground-borne waves in a way that cannot be possible with other traditional
materials [16]. Their special properties do not come from the nature of materials of which they are
made of, but in the form and disposition of the structure of various different elements in a specific
pattern. Metamaterials can affect many kinds of waves depending on the composition design of the
meta-structure. Most recent developments are to use the system properties of metamaterials to block
waves in a way that cannot be possible with other materials. With this benefit, this approach creates
a new application. Metamaterials are used to manipulate electromagnetic radiation, sound waves,
or seismic waves [16]. Additionally, they are used to create a new kind of filters, communication
cloaking devices, and many other applications.

One of their most important applications is to create a sort of ‘invisibility’ cape. It has been
demonstrated that metamaterials in a specific pattern can be used to hide an area from a wave
(e.g., seismic waves). Scientists and engineers are developing this application and many experiments
have been established. This type of application can be used in civil engineering to protect critical
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infrastructures and buildings, such as a nuclear power plant, from Earthquake [16,17]. This barrier
is placed around the building, preventing damage from a disaster. In light of this new technology,
engineers have designed metamaterials and meta-structures, which can be built easily with current
civil engineering and construction methods.

The ground-borne vibration generated by train/track interactions is a specific type of seismic
waves, and metamaterials can thus be applied to protect buildings (e.g., acoustic theatres, etc.) along
the railway corridors. Vice versa, the rail infrastructure can be protected from the natural disaster such
as an earthquake. However, building a barrier for each building along the railway corridor can be
too expensive so engineers and scientists have to imagine other solutions. These solutions consist of
building a variety of barriers of metamaterials in a specific pattern along the railway track. There exist
many types of patterns that are being developed and tested but none of them have been implemented
in the field. However, a few of these solutions have the potential to be used in applications including
the resonator and inclusion methods. All of these methods are re-designed for constructability with
minor adaptations of existing construction methods that are already used.

2.1.2. Resonator Method #1

This type of resonator has been developed by Miniaci et al. [18]. The concept of this method is to
use metamaterials in a specific pattern to create a barrier in order to attenuate the vibration and reduce
it to an acceptable level that cannot damage the surrounding structure and building. Accordingly,
this kind of meta-material/structure could be placed between the railway track and the buildings
would be protected. It is noted that the pattern of the meta-structures is a matrix of a simple structure
in concrete, steel, or with some rubber. In this study, the key focus is to study the hollow cylinder
unit cell, which is a cylinder of concrete filled with soil materials. This method is relatively easy to
build, and it can be constructed using the same strategies as the diaphragm wall or the bridge stack in
civil constructions. The way that this method mitigates the vibration is not fully understood and so
there is a lack of data about the performance of this method. However, the initial modeling results
stated that it can be used in the railway industry with a proper design, although there is currently no
experimental data [18]. At this stage, full insight into the application of this kind of meta-material
in the field is limited. However, its existing design can be assessed for a life-cycle cost analysis in
order to benchmark the economic sustainability of this method and to evaluate the suitability for its
practical use. The application of this method requires a special size of the area that it needs to be built.
In fact, the minimum size for the meta-structure matrix is around 10 m × 10 m. The total area where
the resonators should be installed would need around 40 m wide around each side of the railway track.
Therefore, this method is not suitable for urban areas where existing buildings are close to the railway
track and where every available space is needed to build new equipment, infrastructure or buildings.
However, this method would be very suitable for rural areas, greenfield projects, or for places where a
railway track runs just near sensitive buildings such as a nuclear plant.

2.1.3. Resonator Method #2

Another different type of meta-material structure has been developed by Krodel et al. [19].
The original idea is the same: mitigate the vibration using a barrier made from metamaterials/
structures, but the pattern and the resonator design is different. The design of this method requires a
cylinder made from concrete but smaller and not filled with soil. Inside the cylinder, there is a large
steel cylinder sandwiched to the concrete using a series of springs. So when there are trains passing
by, the vibration product is converted by the resonator into sound internally by the vibration of the
sandwiched-steel cylinder. Due to its size, this kind of resonator can be easily built like a buried
column or a pile with just a minor adaptation of the equipment. However, the behavior of these
resonators is not fully understood and none of them have been built or used in the field. Recently,
some scaled experiments have been conducted to complement some computational simulations [19].
The initial results showed that this method can decrease the ground-borne vibrations by more than
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10 dB, depending on the direction of the vibration and the frequency. However, due to the experimental
state of this method, there exists a lack of historical and time-dependent data. The required size of
the meta-structure matrix for this type is smaller than for the previous one (Resonator Method #1).
An area of 5 or 6 m wide on both sides of the railway track is necessary, which is more suitable for
urban built environments. It was found that this method can be applied in both urban and rural areas.
The conversion of the energy into sound waves is the main drawback of this resonator because it
causes more internal noise that could be counterproductive and may not be suitable for installation in
an urban area with any underground space usage.

2.1.4. Inclusion

The last method using metamaterials highlighted in this paper is the inclusion. This solution
was developed by Castanheira-Pinto et al. [20]. The concept is quite different in the way that the
inclusion is a series of buried concrete cylinders along and parallel to the railway track. When the
position of this cylinder is correctly designed, it will reduce the amplitude of the vibrational wave.
The inclusions are buried to a small depth and the size of the cylinder can be the same as a construction
pipe. Accordingly, this type of meta-material can be easily set up and does not need much space.
However, they need to be buried 10 m from the railway track, and this approach can be suitable
for urban and rural areas. The research around this method and the vibration propagation in soil
with the inclusion is still ongoing so the mitigation process is not fully understood, similar to the
two other methods presented earlier. Despite the lack of experimental or filed data, the design and
simulation results are very promising [20]. Therefore, the life-cycle cost analysis to assess the economic
feasibility of this method could enable the adoption of this technique for pilot field study or for in-field
applications in the future.

2.2. Methods Using Geosynthetics

2.2.1. Background

Geosynthetics are a material made by polymeric compounds. They can be natural or artificial
and can be used in many domains such as civil engineering, clothing, or as materials to build different
kinds of objects. Most geosynthetics are made from fibers that are knotted or glued to form a new
fabric. In civil engineering, their properties can be used to reinforce soil, sustain embankment, filter or
partition two different soils, for example. These kinds of materials have gained momentum for various
applications around the world.

In the railway industry, geosynthetics are also widely used [21]. Some of these methods have
been already assessed in terms of life-cycle cost analyses [11], but this is not the case for all of them.
The process to mitigate noise and vibration using geosynthetics depends on the methodologies and
materials so that case-by-case evaluations should be carried out.

The methods highlighted in this study are geogrids (to stiffen the formation or subgrade),
composite sleepers, and Geofoam-infilled trenches. Contrary to metamaterials, these methods have
been used for many years and are well known [22] so the data of field behaviors and the process of
vibration mitigation can be found in the open literature. It is noted that the implementation processes
for all of these methods are also well known and many railway companies have an extensive experience
of using them.

2.2.2. Geogrid

Geogrids are one of the most common methods using geosynthetics in the railway industry.
This method consists of a geogrid placed under the ballast layer or between two of them. When the
geogrid is added, it reinforces the ballast layer and reduces the vertical settlement [22,23]. The vertical
settlement is one of the main causes of the rail track geometry deterioration (i.e., increased roughness)
that creates additional noise and vibration, as well as increasing maintenance costs. Therefore, geogrids
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have been used to reduce track deformation and prolong the track geometry. The installation of
geogrids also reduces the maintenance frequency because they can stiffen the layer of track support
formation. Grids/ballast interaction and geogrids properties are well known since there have been
a large number of studies about it. These studies showed that the reduction of noise and vibration
is dependent on the ballast and the subgrade properties. Over the past years, geogrids have been
used mainly in combination with other methods and particularly with ground improvement methods.
In this study, the combination of the geogrid application with other ground improvement methods
will be investigated. The installation of geogrids is relatively convenient and the manufacturers sell
geogrids in a roller so that the geogrids can be unrolled over the formation before installing ballast.
This technique is very suitable for all new and existing railway tracks because it can be added during
ballast renewal or track reconstruction. This is the reason that this method is widely used in the railway
industry and also at a relatively low cost.

2.2.3. Composite Sleepers

Another emerging method that can be associated with geosynthetics methods is polymer
composite sleepers [24]. This method adopts the use of a new type of sleeper made from composite
materials and replaces either aging timber or concrete sleepers. Composite sleepers are widely used in
Japan and to a certain extent, in Australia, but not many are used in Europe because of their higher cost
compared to concrete sleepers. However, with the increase of vibration and noise mitigation needed,
they have begun to gain momentum in the railway industry. Composite sleepers tend to reduce noise
and vibration better compared to brittle concrete sleepers, and the composites can absorb much more
strain energy than concrete. They have also been used to reduce any impact noise and vibration at
switches and crossings. Their installation is also easy because they can be installed in the same manner
as every other sleeper. They can also be used for all types of railway tracks, in both rural and urban
areas, and also for new and old tracks. The most important drawback of this kind of sleeper is the unit
cost compared to timber, steel, or concrete sleepers; but, with their recent development, it is supposed
that their cost will decrease in the coming years. Composite sleepers can also reduce the need for
maintenance and the maintenance costs over the whole life cycle.

2.2.4. Geofoam Infilled Trench

To attenuate ground-borne vibrations generated by the train-track interactions, there is a recent
method by using trenches along the railway lines. Trenches have the same role as the vibration and
noise barrier has in terms of wave reduction. Their mitigation principle is the same. Trenches create
an obstacle for the wave and create a ‘shadow’ behind them where the vibration is being suppressed.
Many studies have been conducted to understand soil behaviors with various types of trenches and to
know which type of trench is the best one [11,25,26]. Most data suggested that emptied trenches with
nothing inside are the best ones to suppress ground-borne vibration, but this type of trench is difficult to
keep maintained and secured because it needs to be supported and stabilized by especially improving
the surrounding soil or by foundation structures. To resolve this problem, many types of infilled
trenches have been developed. One of them adopts geosynthetic materials and there are trenches
infilled with Geofoam [25,26]. These infill blocks are made from composite materials, which are widely
used to reinforce bridge abutment and embankment. The construction of this infilled trench is the
same as other types with a Geofoam block installed inside. Similar to noise barriers, a trench needs to
be built at a distance of a few meters from the track. Since it can be built after the track construction,
a trench could be built in urban and rural areas and also for new and existing tracks. In this study, it is
considered that this method is reliable and practicable.

2.2.5. Concrete Infilled Trench

To compare Geofoam infilled trenches with other types of trenches, a concrete infilled trench
has been considered [11]. This type of trench was designed to solve the same problem as Geofoam
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infilled trenches. A concrete infilled trench is a basic trench filled with concrete (and sometimes
bentonite) inside. This kind of trench is much more common than the Geofoam one because concrete
or bentonite is relatively easier and cheaper to find and use. In addition, concrete is more common
and inexpensive. The mechanism that concrete trenches reduce vibration is similar to the other
type of trench. However, some studies showed than concrete-filled trenches are less efficient than
Geofoam trenches due to concretes’ mechanical and dynamic properties [8,27,28]. Considering the
potential adoption of concrete-filled trenches, there is a need to assess the life-cycle performance and
compare these two types of infilled trenches. In this paper, the point of view of life-cycle cost and
systems thinking approach have been highlighted to identify the suitability, reliability, and life-cycle
sustainability of the methods.

2.3. Ground Improvement Methods

2.3.1. Background

The ground-borne vibrations generated by train-track interactions depend largely on the
variable subgrade properties. Stiffening the subgrade could suppress the vibrations from the track.
The engineering properties of the ground where the track is built can be different and varied; and can
depend on the environmental conditions and many other factors. In many circumstances, the soil could
be weakened and unable to support the track components or to appropriately dampen vibrations [29].
To suppress ground-borne vibrations and to improve soil properties, various ground improvement
methods are established in the railway industry.

Ground improvement methods are widely used in civil engineering for many reasons. They are
used mainly to strengthen the foundation to support the building or infrastructures or to avoid ground
liquefaction in case of earthquakes. They are also used in the railway industry for similar reasons.
However, ground improvement methods can also be used as vibration mitigation methods [29]. In this
paper, three techniques using ground improvement methods to mitigate ground-borne vibrations
will be considered. These methods are the vibro-compaction of formation (also called vibro-flotation),
ballasted columns, and buried concrete columns. All of these methods are already used in civil
engineering projects and have been used in railway tracks. In many cases, a geogrid is also added to
improve the interface between the ballast and formation. It can also be inserted to strengthen or stiffen
the layer of track support formation. The life-cycle costs of the combination between geogrids and all
of the methods are then assessed in this study.

2.3.2. Vibro-Compaction

The vibro-compaction or vibro-flotation method increases the compactness of the soil to increase
the soil stiffness and decrease the risk of settlement [30]. The process commences by penetrating
the vibrating device in the soil, and the vibration will compact the soil by rearranging the granular
structure. Due to the penetration process, this method cannot be applied to all types of soil. It can only
be used in silt, sand, and clay. This is also a well-known method and the process has been adopted in
various industries [30].

This method can be implemented underneath the railway tracks so it does not need extra space
than the track requires. Although the method has been implemented for the construction of new
railway tracks, the method for existing tracks is not available and being developed. The method needs
a few quantities of materials to replace the loss of volume due to compaction.

2.3.3. Ballasted Column

Another ground improvement method that can be used to improve the soil stiffness and reduce
vibrations is ballasted column [31]. This method is quite similar to vibro-compaction. A vibrating
device is used to compact the soil and add gravel inside the soil to form a buried column. This kind of
column (in the horizontal direction) has the advantage of creating an area with a good permeability
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and drains water away from the track. This method also needs a soil type that can be compacted so it
can be only used in stabilized sand, silt, and clay.

Ballasted columns can also only be constructed in a new railway track because they are
implemented under the ballast. Because of this, it cannot be used in most urban areas where tracks are
already built with constrained clearance. This method also uses gravel as its material to replace the
soil, requiring additional compaction. This technique enables a better soil stiffness.

2.3.4. Buried Concrete Column

This ground improvement method is different from the two others. It is more complex in terms of
the construction approach. There are many ways to build this concrete column. The most common one
is to use a drilling machine to create holes and when it is at the right depth, the drill is then used to
pour the concrete inside the holes to form a concrete column embedded within the compacted soil.
Contrary to the other methods, this method can be used in soils composed of gravel and sand [31].

Similar to the ballasted column and vibro-compaction methods, this method can be used on
new railway tracks. However, due to the physical constraints, the application of this method for
existing railway tracks is limited. This method also uses concrete that causes a high environmental cost
compared to the other methods [32,33]. The illustrations and indicative performance of each method
are in Appendix A.

3. Assumptions and Computation Methods

3.1. General Assumptions

To benchmark the economic sustainability of all the methods, the common bases, assumptions,
and the methodology to obtain their life-cycle cost analysis are set to be identical. In this study,
the impact of the extreme climate on each method is highlighted. The aim is to develop new insights
into the sustainability of the methods under normal conditions (control case) and when they are
exposed to adverse climate conditions. The railway track chosen in this study is a 100 m double track
(two tracks in parallel). The double track represents the track structure of most of the railway lines
in Europe, which is the reason why it was chosen for this study [34]. A length of 100 m is chosen for
the unit computation. This double track is also 10.5 m wide according to classical clearance designs
and interoperability recommendations. The ballasted track is highlighted in this study since it is of
the same types used by the majority of railway tracks worldwide. This type of railway track tends to
cause more troublesome issues with ground-borne vibrations [4,5]. In addition, all the aforementioned
methods including geogrids can be applied to ballasted tracks. When evaluating the maintenance tasks
without any mitigation methods, standard recommendations for track resurfacing (or track alignment
restoration) have been used [34]. These tasks include tamping, stone blowing, and track inspection.
According to the prices shown in the study, the costs are generalized for 100 m of double track: 3400 €
for tamping, 2800 € for stone blowing and 170 € of track inspection [34,35]. The total cost for each
maintenance operation for the track is 6370 € for 100 m of double track [35]. All of these general
assumptions are used for all of the relevant cases and all of the identical tracks. Specifically, as follows:

3.1.1. Control Case

The control case is the case with normal conditions and without any adversity or extreme
conditions. For the control case, the normal average temperature is around 20 ◦C and there is no
extreme rainfall and particular events such as storms or flooding in this case. The only factors that affect
the track components are the natural fatigue life of the materials and the number of cycles of loading
due to the train. Thus, in this case, and according to the above recommendation, the maintenance
frequency is yearly. The maintenance cost is estimated at 6370 € per year [35]. These assumptions are
used for all of the relevant methods unless it is specified in the details of the calculation.
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3.1.2. Adverse Climate Case

To measure the impact of the weather and the climate on all of the methods, the adverse climate
effects found in Europe or North America are considered. The adverse climate is considered when the
railway tracks are exposed to extreme hot and cold temperatures, which can affect the behavior of the
track and its components. In addition, railway tracks commonly face heavy rain, storms, and floods.
The return period of extreme floods is chosen to be at 10 years according to the British government’s
recommendation [36–38]. Floods can significantly affect the behavior of the track, resulting in an
increase in the maintenance cost and inspection for all of the relevant methods.

All of the addressed assumptions will be adopted in this study for all the methods to enable a
common-ground comparison using the same baseline.

3.2. The Net Present Value

To benchmark all of the mitigation methods based on their life-cycle costs, a methodology to
evaluate this cost should be generalized. In practice, the cost of an investment must be represented by
the Net Present Value (NPV). This NPV method is generalized in order to take into account all of the
costs and profits (detailed cash flows) of an investment during a period of time and to also take into
account the time effect on the value of the money. The formula to calculate the NPV is the following:

NPV(i, N) =
N

∑
t=0

Rt

(1 + i)t (1)

where:
N is the time period chosen to do the NPV
i is the discount amount
t is the iteration of time
Rt is the net cash flow of the year t. R0 is the initial cost or the construction cost.
In this study, the period of time used to calculate the NPV is 50 years. This period of time

corresponds to the lifespan of the ballasted track and most of the infrastructure assets in harsh
environments. This is also the common period of time taken by most of the previous studies on the life
cycle of rail infrastructures and fixed assets [34,39].

The discount rate or expected rate of return on an investment is the expected amount that the
investment will gain or profit each year. According to this study, its values have an impact on the final
conclusion of the study and can also influence the final choice. In this paper, a discount amount of 5%
was chosen. This corresponds to the amount advised by the government and the amount generally
used for this type of study and government projects [34]. The period of time and the discount rate are
identical for all of the cases and methods. The calculation of net cash flow for each case is different
because the cash flow items (cost/benefit) are varied for each method.

3.3. Assumptions and Quantity

Before calculating the NPV for each method, the initial cost and the maintenance costs for each
mitigation method are estimated. The labor cost is not considered in this study as it is a highly
variable cost. The unit cost takes into account the material cost and the installation cost. For this study,
the concrete cost is 90 € per cubic meter according to the market price [35].

3.3.1. Resonator 1

This type of resonator is designed in accordance with the guideline in Reference [18]. The resonator
is an empty cylinder and is made from concrete. To know the unit material cost we just need the
volume and the concrete cost. The inner radius is 3 m and the outer radius is 4 m. The length of
the cylinder is also 20 m. A bridge stack foundation or diaphragm wall is considered for this type
of design. The market price for a diaphragm wall is around 23 € per square meter. The matrix for
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each side of the track is formed with 4 rows of resonators. The width of the square of the matrix that
contains the resonator is 10 m; so for 100 m of track, there are 10 resonators by row.

In the control case, the concrete buried in the soil does not need any maintenance. Based on the
distance of the structure to the track, it can be supposed that there is no impact of the meta-structure
on track maintenance. In the adverse climate case, there are no impacts of weathering on the resonator
because it is a buried concrete structure so the extreme temperature and floods do not have any
significant impact. It is implied that the maintenance cost is relatively the same for both cases. All of
the costs are summarised in Table 1.

3.3.2. Resonator 2

The same methodology is applied to calculate the unit cost for this type of resonator. The design
of this method is based on the following study [19]. The dimensions of the resonator are 2 m in length,
an inner radius of 0.57 m, and an outer radius of 0.60 m. The steel piece inside is a 2000 kg piece.
With these values, the unit material cost is 1300 €. By comparing the installation cost with similar
structures (i.e., prefabricated concrete piles), the installation cost for this kind of pile can be estimated
to be 6800 € per unit.

The matrix for this resonator is made by 5 rows of resonators with the distance between
2 resonators being 0.9 m according to the study [19] (or about 1.5 m between the 2 resonator centers).
Based on the design and its position (buried in the soil) on the railway corridor, it can be found that
the installation costs are similar for both the control and adverse climate cases, as shown in Table 1.

3.3.3. Inclusion

Inclusions are also built from concrete cylinders with the diameter of 0.6 m. The material cost
can be calculated using Reference [35]. Considering the shape and the depth where the inclusion is
buried, it can be assumed that the inclusion can adopt similar construction activities as those of every
water pipe. Therefore, the installation cost can be estimated in relation to the water pipe installation
cost. According to a previous study [20], the most cost/performance effective design is to install 3
inclusions on each side of the track.

Inclusions are a set of totally buried concrete cylinders so when they are installed, they do not
need any maintenance in the control case. Due to its position and location, the maintenance of the
track will not be affected. In the adverse climate case, extreme temperatures do not have an impact
on the meta-structure because the temperature in the soil is insensitive. Similarly, the flood condition
plays a very little effect on the inclusion condition.

3.3.4. Geogrids

Geogrids are commonly installed under the ballast so their surface interlocks with the ballast
surface. In this case, for 100 m of track, the ballast-geogrid contact surface is also 1050 m2. Geogrids
are generally sold in rolls and each roll costs 885 € according to the manufacturer’s price and each roll
is for 150 m2. The installation of geogrids is really easy. The geogrid can be unrolled under the ballast
by a trackwork machine. For this reason, the additional installation cost is relatively negligible.

According to previous studies [22,23], geogrids decrease the maintenance frequency by reducing
the effect of vibrations on the ballast. The routine maintenance frequency for ballasted tracks with
geogrids is around 3 years in the control case and about 2 years in the adverse climate case (due to
the effect of flooding that can undermine the formation). In the adverse climate case, the influence
of floods can be significant. Indeed, after each major flood, the geogrid needs to be replaced by a
new one because the flood damages the geogrid and clogs the interlocking surface with soil. With a
return period of 10 years for floods, the lifespan of the geogrids is reduced to 10 years in the adverse
climate case.
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3.3.5. Composite Sleeper

Composite sleepers can replace other types of sleepers in certain locations (e.g., switches and
crossings, bridge ends, etc.). According to the manufacturer’s price, each composite sleeper costs more
than 250 € (depends on the manufacturer). In this study, there is a sleeper every 0.60 m on average
since this is the common spacing value recommended by the government and professionals of railway
engineering. Because the composite sleepers can simply replace other sleepers, there no additional
cost of installation compared with other the methods. It is thus considered that the installation cost is
0 (nil).

According to a previous study [15], composite sleepers can reduce the maintenance frequency.
For both cases (control and adverse climate cases), the maintenance frequency can be reduced by half.
It is noted that adverse climates have no impact on the composite sleepers.

3.3.6. Concrete Infilled Trench

According to previous studies [11,25,26], the concrete infilled trenches have a depth of 6 m and a
width of 1 m. They are also made with classic concrete so the material cost can be simply quantified.
Trenches are installed on each side of the track. Then, it is supposed that this kind of trench can be
built like a diaphragm wall, so the installation cost can be obtained according to the market price for
the construction of this type of structure. The concrete infilled trenches are totally buried concrete so
they do not need any significant maintenance. Additionally, because of their position and location,
they do not affect the track maintenance process. Thus, the cost of track maintenance will not change.

For both adverse climate and control cases, the maintenance frequency does not change. Because
the structure is buried, the extreme temperature ranges have a very little impact on this structure and
floods also have an insignificant impact on the concrete infilled trenches.

3.3.7. Geofoam Infilled Trench

Geofoam infilled trenches also have a depth of 6 m but the width is 0.75 m because it corresponds
to the width of a pre-manufactured Geofoam bloc. Indeed, Geofoams are mainly sold in a block of 2 m
by 0.75 m by 0.75 m. According to the manufacturer data, each block costs around 107 €. Similar to the
concrete infilled trench, there is a trench on each side of the track and due to its position, the trenches
do not impact the track maintenance process as well as the maintenance cost. However, for the trenches
itself, there is no extra maintenance need because the Geofoam trench is totally buried.

In the control case, there is no particular issue with the use of Geofoam infilled trenches, but in
adverse climates, the rain and floods can affect Geofoam blocs. In fact, Geofoam blocs are sensitive
to water and the pressure created by floods. Therefore, after every flood, the geofoam needs to be
replaced by a new one. With a return period of 10 years, the lifespan of Geofoam infilled trench is
estimated to be 10 years. However, the maintenance frequency is relatively the same for both cases.

3.3.8. Concrete Buried Column

Concrete buried columns are designed using the ground improvement method standard. They
are 10 m in depth and their diameter is 0.6 m. The concrete use for this kind of structure is the
classical one. Therefore, it is relatively easy to calculate the material cost. For the installation cost,
the price proposed by construction companies who build this type of structure has been adopted.
The ground improvement standard [35] is also used to calculate the number of columns needed in this
case. These structures do not need any maintenance and because they suppress the propagation of
vibrations underneath the track. It is supposed that the maintenance process of the track is not affected.
Ground improvement methods are also constructed to avoid soil liquefaction. As such, the flood
conditions have a negligible impact on all of the ground improvement methods. Additionally, because
they are buried, extreme temperatures are not influential.
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3.3.9. Ballasted Column

As for buried concrete columns, European technical standards to design the column are
adopted [35]. The given recommendations to calculate the number of columns are that each column is
18 m depth and the diameter is 1 m. To calculate the materials cost, the price of ballast is 27 € per tons.
For the maintenance cost and the maintenance frequency for the different cases, the assumptions are
the same as for the buried concrete columns.

3.3.10. Vibro-Compaction

Vibro-compaction is the only method that does not use any additional materials so the extra
material cost is obviously null. The depth of vibro-compaction is 15 m and the area of treatment is the
total area of the track, about 1050 m2. Construction companies with expertise in ground improvement
have provided the cost per m3 for this study. This cost is around 8.5 € per m3 with 3000 € being the
fixed cost. For all of the maintenance costs and frequencies, the assumptions are the same as the two
other ground improvement methods.

When geogrids are combined with ground improvement methods, the assumptions of the two
methods are taken into account for all of the costs. However, when only the geogrid needs to be
changed, merely the costs for the geogrid are taken into account. All the costs and information about
all the methods are summarized in the following tables.

Table 1. General data of the mitigation methods.

(A)

Method Materials Cost Installation Cost (€) Quantity Initial Cost for 100 m of Track

Resonator 1 80,000 € per unit 101,004 per unit 80 7,208,000
Resonator 2 1300 € per unit 6800 per unit 670 4,427,000

Inclusion 50 €/m 25,000 600 m 55,000
Geogrid 6 €/m2 0 1050 m2 6300

Composite sleeper 250 € per unit 0 335 83,750
Concrete infilled trench 540 €/m 5250 200 m 113,250
Geofoam infilled trench 430 €/m 5250 200 m 91,250
Concrete buried column 509 € per unit 320,080 736 694,704

Ballasted column 1209 € per unit 107,000 290 457,610
Vibro-compaction No materials 8.5 per m3 + 3000 15,750 m3 136,875

(B)

Method
Control Case

Maintenance Cost (€) Maintenance Frequency (Years) Lifespan (Years)

Resonator 1 6370 1 More than 50
Resonator 2 6370 1 50

Inclusion 6370 1 75
Geogrid 6370 3 20

Composite sleeper 8375 2 50
Concrete infilled trench 6370 1 50
Geofoam infilled trench 6370 1 50
Concrete buried column 6370 1 More than 50

Ballasted column 6370 1 More than 50
Vibro-compaction 6370 1 More than 50

(C)

Method
Adverse Climate Case

ParticularityMaintenance
Cost (€)

Maintenance
Frequency (Years)

Lifespan
(Years)

Resonator 1 6370 0.5 More than 50 Experimental method
Resonator 2 6370 0.5 50 Experimental method

Inclusion 6370 0.5 75 Experimental method
Geogrid 6370 2 10 -

Composite sleeper 8375 1 50 Replace classic sleeper
Concrete infilled trench 6370 0.5 50 -
Geofoam infilled trench 6370 0.5 10 -
Concrete buried column 6370 0.5 More than 50 Can only be used for sand and gravel

Ballasted column 6370 0.5 More than 50 Can only be used for sand, silt, and clay
Vibro-compaction 6370 0.5 More than 50 Can only be used for sand, silt, and clay
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4. Results

4.1. The Outcome of the Analysis

The calculation of the NPV, which is widely accepted as the most suitable method to consider
detailed cash flows and to evaluate the value of the investment, allows us to generalize the economic
effects and to enable a fair comparison and benchmarking of all of the methods in the same baseline.
The following figures show the NPVs of all the methods in the control case (Figure 1) and in the
adverse climate case (Figure 2).
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Figure 1. The Net Present Values (€) in the control case.
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Figure 2. The Net Present Values (€) in the adverse climate case.

It is very clear from Figures 1 and 2 that the resonators have very high costs compared with the
costs of other methods considering both cases (normal and adverse conditions). This significant cost is
not viable for the railway industry to adopt them for a railway vibration and noise mitigation method.
This cost is considered to be too expensive per unit and a large number of units will be required along
the railway track. The use of resonators in the railway industry is not proven presently but if some
progress and developments are made in the future, they may become usable. Figures 3 and 4 highlight
the comparison among the common mitigation methods (without both resonators).
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Figure 4. The Net Present Values (€) in the adverse climate case without the resonators.

Considering Figures 3 and 4, it is apparent that geogrids are the most cost-effective method for
both cases (adverse climate and control cases). However, the relatively poor performance of the geogrid
compared with the other methods in terms of vibration mitigation do not make them the best choice if
they are used alone. Indeed, the findings reveal that the use of geogrids with another method reduces
the maintenance cost and the total life-cycle cost. By using geogrids, ground improvement methods
become cheaper and can be a very good choice if there is a need of ground improvement for other
reasons (i.e., to avoid soil liquefaction, to strengthen soft soil, to enhance critical track velocity). It is
noted also that the inclusions can be suitable for vibration mitigation since their cost is not prohibitive
compared with other common methods such as trenches or composite sleepers.
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4.2. Adverse Climate

In many regions around the world, railway tracks are facing adverse climates with high and low
temperatures as well as floods. This kind of incidental event also incurs in Europe, so it is necessary to
highlight the impact of an adverse climate on the life-cycle costs of every mitigation method adopted
in railway tracks. This will enable a new insight into their adaptation in the future. Figures 5 and 6
show the comparison between the life-cycle costs in the control case and the costs in the extreme
climate case.
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Figure 6. The comparison of the Net Present Value (€) between the control case and adverse climate
case, without resonators.

Based on the analyses, the life-cycle costs in the adverse climate case are generally higher
for all of the methods than under normal weather conditions. This is due to the increase of the
maintenance frequency derived from the weakened stability and stiffness due to the extreme weather.
However, it can be observed that the extreme climate conditions have a different impact on some of the
methods and it is clear that some of them are more sensitive than others. To highlight this sensitivity,
the percentage of rise (incremental cost) has been tabulated in Table 2.
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Table 2. The rise of life-cycle cost between the control case and the adverse climate case.

Method Rise in % Method Rise in % Method Rise in %

Resonator 1 1.59 Concrete infilled trench 50.66 Vibro-compaction and Geogrid 13.42
Resonator 2 2.10 Geofoam infilled trench 119.85 Ballasted column and Geogrid 4.90

Inclusion 35.78 Ballasted column 20.26 Concrete buried column and Geogrid 3.33
Geogrids 52.14 Concrete buried column 14.34 - -

Composite sleeper 47.28 Vibro-compaction 45.93 - -

It is apparent from Table 2 that the Geofoam infilled trench is the most sensitive method, and in
the case of floods, its cost will be double and the method becomes the most expensive option compared
with concrete infilled trenches. It is also noted that the relatively inexpensive methods tend to be more
sensitive to and endure a larger impact from the extreme climate conditions. As a result, engineers
should be prudent and careful when designing and selecting the best option or method for railway
noise and vibration mitigation. Based on this study, it is clear that the impact of the extreme weather
and the climate (especially with global warming, which could cause more natural disasters such as
flood) can significantly affect the performance of railway tracks and there is a necessity to identify
the cost implication due to climate adversity on the track maintenance prior to the installation of any
railway noise and vibration mitigation method.

4.3. Parametric Effects

To reflect the effect of economic agglomeration, the effects of the discount rate and construction
and maintenance costs on the overall life-cycle costs (normal weather case) have been demonstrated
in Tables 3 and 4. The results clearly show that the rise of life-cycle costs between the control and
adverse weather cases is sensitive to the discount rate. It is noted that if the discount rate or expected
rate of return is higher, the difference in life-cycle costs between the normal and adverse cases
becomes noticeably lesser. These trends can be observed for every method of ground-borne noise and
vibration mitigation.

By considering the effect of construction and maintenance costs as tabulated in Table 4, it is
clear that the reduction in the construction and maintenance costs will increase the rise in the cost
between the control and adverse weather conditions. However, the increase in the construction and
maintenance costs (e.g., from the variation of labor cost) will suppress the rise in the cost between
the control and adverse cases. Despite the similarity of trends, it is noted that the Geofoam-filled
trenches are an exception. It is found that the increase in the construction and maintenance costs
for Geofoam-filled trenches will also increase the rise of the life-cycle cost between control and
adverse climate cases. This is because the capital costs for Geofoam-filled trenches are relatively
higher than the annual maintenance costs. When the trenches experience extreme climates, the cost
for the total renewal of the structure becomes significant, resulting in the rise of the life-cycle cost.
This insight implies that this Geo-foam filled trench solution might not be suitable for regions or
countries where the economic agglomeration effect is vulnerable (for example, in countries where
labor costs fluctuate significantly over short periods of time). Note that the uncertainties from local
cost variations, contingency plans, currency exchanges, and so on can be justified by individual risk
management frameworks of constructors project developers associated with international monetary
institutions (e.g., World Bank, Asian Development Bank, etc.).
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Table 3. The effects of the discount rate on the rise of the life-cycle cost between the control and adverse
climate cases.

Method

% Rise in the Life-Cycle Cost Increment between the Control and
Adverse Climate Cases

Discount
Rate = 2.5%

Discount Rate =
5% (Baseline)

Discount
Rate = 7.5%

Discount
Rate = 10%

Resonator 1 2.45 1.59 1.13 0.87
Resonator 2 3.22 2.10 1.50 1.15

Inclusion 53.32 35.78 20.09 6.90
Geogrids 53.18 52.14 51.23 50.14

Composite sleeper 53.34 47.28 40.68 35.08
Concrete infilled trench 61.47 50.66 42.19 35.80
Geofoam infilled trench 151.40 119.85 95.65 77.67

Ballasted column 28.31 20.26 15.30 12.13
Concrete buried column 14.34 14.34 10.63 8.33

Vibro-compaction 56.90 45.93 37.65 31.57
Vibro-compaction and Geogrid 18.46 13.42 10.27 8.22
Ballasted column and Geogrid 7.30 4.90 3.57 2.78

Concrete buried column and Geogrid 5.04 3.33 2.41 1.86

Table 4. The effects of construction and maintenance costs on the rise of life-cycle costs between the
control and adverse climate cases.

Method
% Rise in the Life-Cycle Cost Increment between Control and Adverse Climate Cases

Reduction in Construction and
Maintenance Costs 25%

Increase in Costs 0%
(Baseline)

Increase in Construction and
Maintenance Costs 25%

Resonator 1 2.11 1.59 1.27
Resonator 2 2.78 2.10 1.69

Inclusion 42.00 35.78 30.09
Geogrids 51.65 52.14 52.58

Composite sleeper 47.28 47.28 47.28
Concrete infilled trench 57.42 50.66 45.33
Geofoam infilled trench 116.92 119.85 122.22

Ballasted column 23.92 20.26 17.58
Concrete buried column 16.21 14.34 12.85

Vibro-compaction 52.93 45.93 40.57
Vibro-compaction and Geogrid 16.57 13.42 11.28
Ballasted column and Geogrid 5.95 4.90 4.16

Concrete buried column and Geogrid 3.82 3.33 2.95

5. Conclusions

With the increasing demand for freight and passenger transport, the speed of trains, the number
of train wagons/carriages, and the axle loads are expected to increase significantly. These can induce
an increase in railway noise and vibration problems along the railway network, especially in an urban
area where the railway tracks are closer to buildings and infrastructures. As a result, the railway
industry faces a big challenge to improve the transport networks while maintaining or reducing the
noise and vibration level. There have been a large number of noise and vibration mitigation methods
in the railway industry since the 1950s. The progress of the development has recently been improved
due to the advancement in construction and manufacturing technologies. Many new technologies
have been established such as meta-material, geosynthetics, and so on. However, a life-cycle cost
evaluation underpinning economic sustainability still does not exist.

To help decision-makers and engineers design and select the most suitable method for their
networks, many studies have been carried out to understand their technical performance and how
they mitigate railway vibration and noise. However, very few studies have identified the life-cycle
cost and the longer-term performance over the whole life of the infrastructure. This has motivated
us to highlight the life-cycle evaluation in uncertain settings. The emphasis of this study is placed
on the ground-borne noise and vibration mitigation techniques. The methods focused in this study
are meta-structures using resonators and inclusions, geogrids, composite sleepers, Geofoam infilled
trenches and concrete infilled trenches, and the applications of geosynthetics and vibro-compaction,
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buried concrete column and ballasted column, which are further developed from ground improvement
methods. All of these methods have been evaluated in two cases: a control case (normal weather
pattern) and the adverse climate case (extreme climate conditions).

This study reveals that the resonator-based meta-structures are not a viable solution to mitigate
ground-borne vibration and noise because their life-cycle costs are significantly high compared
with the other methods. Geogrids are the cheapest method but their performance is relatively
insignificant compared with the other methods, which is why it is better used to complement other
ground improvement methods. Such combinations could significantly reduce the whole life cost
compared with the ground improvement method alone. This study is the world’s first to highlight the
sustainability of ground-borne vibration mitigation by identifying the impact of the extreme climates
on the whole life cost. It was found that the lifecycle costs of all methods tend to increase in an
adverse climate due to the increase in the maintenance cost. In addition, the parametric studies have
demonstrated that some mitigation methods are more sensitive than another. The most sensitive
method is the Geofoam infilled trenches due to the vulnerability and performance reduction of the
Geofoam under flooding conditions. This study has clearly shown that to enhance sustainability and
lifecycle improvement, the impact of the climate should be taken into account over the whole life
cycle. Future work includes the lifecycle evaluation of carbon emissions, considering the extreme
climate conditions.
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Appendix A

Table A1. The illustrations and design performance of the ground-borne noise and vibration solutions.

Method Illustration Noise and Vibration
Reduction as Design

Resonator #1 [18]
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Table A1. Cont.
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